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On the Genealogy of Large 
Populations 

J. F. C. KINGMAN 

Abstract 

A new Markov chain is introduced which can be used to describe the family relationships among n 
individuals drawn from a particular generation of a large haploid population. The properties of this 

process can be studied, simultaneously for all n, by coupling techniques. Recent results in neutral 
mutation theory are seen as consequences of the genealogy described by the chain. 

WRIGHT-FISHER MODEL; NEUTRAL MUTATION; RANDOM EQUIVALENCE RELATIONS; COALESCENT; EWENS 

SAMPLING FORMULA; COUPLING; ENTRANCE BOUNDARY 

1. Introduction 

In modelling the way in which some characteristic changes with time in a 

biological population it is often necessary to take account of correlations 
between individuals caused by kinship. These can be purely genetical, but they 
need not be; in a spatially distributed population for instance there may be a 

tendency for the more closely related members to cluster together. Such 
correlations are never easy to handle, and have given rise to interesting 
developments in spatial branching processes (e.g. Fleischmann and Siegmund- 
Schultze (1978)), in point processes (Kerstan, Matthes and Mecke (1978), 
Felsenstein (1975), Sawyer (1977)), and in Malecot's elaboration of 'identity by 
descent' (Malecot (1969)). 

Another example, in which the role of kinship is particularly clear, is the 
Ohta-Kimura (1973) model of neutral mutation. Professor Moran (1975) has 
himself made a striking contribution to its analysis, and more recent progress is 
summarised in Kingman (1980), but special reference should be made to a paper 
of Kesten (1980), in which explicit recognition of the genealogyt leads to very 
deep and surprising results. 

t Note that 'genealogy' means the whole family tree structure, and not just the sizes of related 
families as in Kendall (1975). 
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My purpose here is to suggest that, by bringing the genealogy into the open, 
the complex problems implied by family relationships even in simple models can 
be seen in perspective and more readily attacked. Indeed, a simple process will 
be shown to be a general and robust approximation when the population is large 
and the characters of interest uncorrelated with fitness or fertility. 

One crucial limitation of the present analysis is that it applies only to haploid 
models: an individual has just one parent. To apply the theory to a diploid 
population, one must consider only individuals of one sex, or (much more 
usefully in genetical problems) work with the haploid gametes which carry 
genetic material from one generation to the next. It would be of great interest to 
seek a comparable analysis of truly diploid genealogy (cf. Wachter et al. (1978), 
Chapter 9). 

The basic strategy (which has affinities with Kallenberg's (1977) idea of 
backward trees) is to select n individuals from a particular generation, and to 
trace back their descent, noting when there are common ancestors. Typically 
there will come a time (after going back a number of generations comparable 
with the population size) when all n have a common ancestor. We seek to 
describe the family tree over this period, and when the population is large this 
can often be done in terms of a finite Markov chain, the n-coalescent. This is a 

single process, free of parameters except for n, an interesting object of study in 
its own right, whose properties explain and draw together some of the results of 
more specialised studies. 

2. The Wright-Fisher model and the n-coalescent 

To a population geneticist the branching process models so beloved of the 
probabilist fail to carry conviction because, in biological reality, the total 
population size is more often determined by external factors like availability of 
food or living space, or the action of predators, than by summing independent 
family sizes. His first approximation to reality is therefore a model in which the 
total population size is a fixed number dictated by external constraints, and the 
most popular is that associated with the names of Sewall Wright and R. A. 
Fisher.t 

This assumes discrete, non-overlapping generations Go, Gt, G2,''' in which 
each generation contains a fixed number N of individuals. (In most genetical 
applications these are the successful gametes in the reproductive process, so that 
N is twice the 'effective population size', N = 2Ne.) Each member of Gr+i is the 
child of exactly one member of G,, but the number of children born to the jth 
member of G, is a random variable v,, subject of course to the constraint 

t The book by Ewens (1979) discusses these issues and their history in a manner accessible to the 
mathematician. 
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N 

(2.1) E v, = N. 
j=1 

In the neutral Wright-Fisher model the vj are assumed to have a symmetric 
multinomial distribution: 

(2.2) P{v, = n, ( = 1,2, , N)}= N!/n,! n2!... nN!NN 

This process is particularly tractable because it has a simple 'backwards' 
structure: (2.2) is equivalent to the prescription that each member of G,+, 
chooses its parent at random, independently and uniformly from the Nindividu- 
als of G,. 

Consider two particular members of Gr. They have the same parent with 

probability N-', and different parents with probability 1- N-'. The probability 
that they have distinct parents but the same grandparent is (1 - N-')N', and so 
on; the probability that they have distinct ancestors in G,-s is (1- N-'). 

A much more difficult problem is to compute the probability y(N, s) that the 
whole of G, has a common ancestor in G,_,. Since 1 - y(N, s) is the probability 
of the union, over i < j, of the event that the ith and jth members of G, have 
distinct ancestors in G,-,, we have the inequalities 

(2.3) (1- N-')s - 1 - y(N, s) ' ?N(N - 1)(1 - N'). 

The upper bound here is very crude, and can be reduced to one which differs 
from the lower bound by a factor of 3: 

(2.4) 1 - y(N, s) - 3((N - 1)/(N + 1))(1 - N-1)s ? 3(1 - N-')s 

The constant 3 is best possible (Kingman (1980)). 
These bounds show that, when N is large, the number of generations which it 

is necessary to count back before the whole of G, has a single common ancestor 
is of the order of N, and this defines a natural time unit of N generations. Notice 
that the backwards description allows us to extend the whole process to negative 
values of r, and we shall therefore suppose that G, (and the family ties between 
G, and Gr+0) are defined for both positive and negative integers r. 

Now fix r, and select n( N) particular individuals J1, 2" ', ,n from G,. 
The family tree of these and their ancestors may be described by means of a 

sequence of equivalence relationst s (s = 0, 1,2, ? ) on the set {1, 2, - , n}, 
where Rs contains a pair (i, j) if JX, and ~j have common ancestor in G, s. Note 
that 

(2.5) = A = {(i, i); i = 1,2, . n}, 

' 
Equivalence relations (apart from the special cases A and O) will be denoted either by the 

letter R in some fount, or by Greek lower case 5 or r1, with affixes as necessary. 
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that 

(2.6) e, c_ s+,, 

and that y(N, s) is the probability, in the special case n = N, that R, is the 
relation 

(2.7) (i, j); i,j = 1, 2, , n}. 

Each equivalence class of R, corresponds to a member of G,-, (but not 

conversely). Two such members may choose the same parents in G, -s-, in which 
case the corresponding equivalence classes of R, are combined in s,+,, or 
different parents, in which case the classes are not so combined. It follows that 
the sequence (,s) forms a (discrete-time) Markov chain, whose state space is the 
finite set ,n of equivalence relations on {1,2,--, n}, and whose transition 

probabilities 

(2.8) = P{ .,+l = , = } 

are calculated as follows. By (2.6), pt, = 0 unless C C 17. If 4 C 77 we can label the 

equivalence classes of rl as C, (a = 1,2, *, a) and those of 4 as Coo (a = 

1,2, , a; 13 = 1,2,. ., b,), where 
b 

C = U Ca. 
j=1 

Then p~, is the probability that, if balls Ca, are placed at random (independently 
and uniformly) into N boxes, then for each a all the Ca, fall into the same box, 
the boxes for different a being distinct. This is a combinatorial quantity, 
depending only on N, a, bi, b2, * *, ba. 

There is no need to compute the pt in detail, since for present purposes it is 

enough to record that pt, is of order N-2 unless either e = r1, or 71 is derived 
from 5 by amalgamating two of its equivalence classes (in which case we write 

< r). In fact, 

(2.9) P = 6, + q,NN-' + O(N-2), 

where A, is the Kronecker delta, and 

-ik(k- 1) if = and k= |11 
(2.10) q, = 1 if r7 

0 otherwise, 

| 1 denoting the number of equivalence classes of ?. 
In matrix notation, the stochastic matrix 

PN = (P, E s) 
satisfies 
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(2.11) PN= I + N-'Q + O(N-2) 

as N -- o. Stochastic matrices are contraction operators for the norm 

(2.12) I|A 1| = ma|x a, , 

and contraction operators satisfy the inequality (well known, and easily proved 
by induction on r) 

(2.13) |IAIA2' Ar - B1B2 Br || |IIA, - B, It. 

Taking A, = PN, B, = exp(N-'Q) (Bs is stochastic because Q is a 'Q-matrix' 
with positive off-diagonal elements and zero row sums) and r as the integer part 
of Nt for fixed t > 0, we have 

IPN1 - exp(N-'[Nt]JQ)lI< [Nt] IIP - exp(N- Q)II = O(N-') 

by (2.11), so that 

(2.14) lim PN'1 = exp(tQ). 
N--^ 

In other words, if 

(2.15) R, = R[N] 

denotes the process on &n in the natural time scale, it converges in distribution as 
N-> oo to the (continuous-time) Markov chain with infinitesimal generator Q. 
This latter process we call the n-coalescent, and its study will concern us from 
Section 5 onwards. Before embarking on this, we indicate very briefly the way in 
which it relates to previous work on the neutral mutation problem, and the fact 
that it arises from other models than the Wright-Fisher. 

The assumption that N is constant is not essential. If N varies because of 
external factors, we simply assign the step from G, to G,+, a time interval equal 
to the local value of N-' (cf. Kingman (1978c)). The argument then proceeds, 
using (2.13) to reach the same conclusion for the 5-process observed in this 

natural, but now non-linear, time scale. 

3. Neutral mutation 

The neutral Wright-Fisher model has been used by Ohta and Kimura (1973), 
Moran (1975) and others to assess the amount of genetic variability to be 

expected at a locus at which selection is not operating, the dominant forces being 
mutation which increases variability and 'genetic drift' (the randomness of the 

reproduction mechanism) which tends to reduce it. Almost all the analysis has 
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been for large populations, and has involved either explicitly or implicitly (by a 
diffusion approximation) a limit as N - oo. The results of this limiting operation 
can be expressed directly in terms of the n-coalescent. 

Consider for definiteness the generalized Ohta-Kimura model of Kingman 
(1976). Here the alleles at a locus are described (doubtless with some loss of 
discrimination, cf. Singh, Lewontin and Felton (1976)) by values of a single 
numerical measurement, so that the genetical structure of the rth generation is 
described by a collection Xi (r) (j = 1,2, - , N) of real random variables. If the 
jth member of G, is the child of the a th member of G,_-, it is assumed thatt 

(3.1) X (r)= X (r - 1)+ Yj, 

where the effect of mutation is to displace by an amount Y,j, assumed to be 
independent of other Y, and to have a known characteristic function 

(3.2) N (u) = E(eu "Y). 

The mutation probability P(Yri, 0) is assumed to be of order N-1 (so as to 
achieve a balance between mutation and drift), and the mathematician interprets 
this as meaning that 

(3.3) +(u) = lim N{1- TN(u)} 

exists as a finite limit. The main result, established by direct calculation, is that in 
the limit as N-->oo the joint characteristic function 

(3.4) An (l, U2,**, Un)= E exp(i E ujXj\ 

of n typical individuals in a generation is determined, when 

(3.5) u =0, 
j=1 

recursively on n, by the equation 

{n(n - 1)+ 4 (u,)} fn (u,, u2, .,Un) 

(3.6) 
= ,n-l(U,..l, Uj,, Uj + Uk U, Uj+1., Uk-I, UMk+l,, Un). 

l j <k- n 

The condition (3.5) is needed because it is only the differences Xj - Xk which 
have a genuine statistical equilibrium (see Kingman (1980) for an alternative 
model without this feature). However, (3.6) is enough to determine the joint 

t The same model would serve for a population distributed in a linear habitat, in which the 
individual moves randomly from the position of its parent (Felsenstein (1975)). 
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distribution of these differences, and so to evaluate quantities of biological 
significance. 

Equation (3.6) is exactly what one would expect from the theory of the 
n-coalescent. The n selected individuals have a family tree which, measured in 
units of N generations, converges to the n-coalescent as N - oc. In any line of 

descent, mutations occur at an average rate of order N-~ per generation, and 
therefore at unit rate in the natural time scale. In [Nt] generations, the total 
effect of the mutations in a single line has characteristic function 

TN (u)-J_ exp{ - t4(u)} 

as N--oo because of (3.3). 
This means that we can formulate a model by using the n-coalescent to 

describe the genealogy of the n individuals, and the function 4) to describe the 
effect of mutation. The latter defines an additive process with independent 
increments, such that the increment on a time interval t has characteristic 
function exp{- t4(u)}. Let (R,; t _ 0) be an n-coalescent and imagine that, at 

any t _ 0, each equivalence class of R, is located at a point of the line. 
Conditional on R, these points vary with t in a random way; when two classes 
coalesce they are at the same place, and between transitions of R they perform 
independent versions of the additive process. It can be checked (by running time 

backwards) that these conditions can be met, and then the Xj in (3.4) are just the 
n points of R,. 

If now we analyse Ro by a backward Kolmogorov equation argument, 
examining the possible transitions in the time interval (0, h) as h -> 0, we arrive 
at (3.6) as an exact consequence of the model just described. The analysis works 
almost without change when the Xj take values in some space of higher 
dimension, or when the mutation structure is quite general (Kingman (1980)). 

Of course, the algebra implied by (3.6) is very complicated, and it is not easy to 
derive results in useful form. Ironically the feature of the Ohta-Kimura model 
which makes it difficult is also that which makes it notably unrealistic. In its 

original form, in which 

(3.7) P(Yj = 1) = P(Yrj = - 1)= 

it implies that two successive mutations will with probability cancel each other 
out and restore the original allele. In fact, such returns to the origin probably 
occur most infrequently, and a model at the other extreme, ignoring recurrent 
mutation, is more plausible as well as mathematically simpler. 

Thus suppose that mutation always produces a completely novel allele. Two 
individuals in G, have the same allele only if no mutation has occurred in the line 
of descent of either from their common ancestor. If s generations have elapsed 
since their last common ancestor (an event with probability N '(1 - N-')s-') the 
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conditional probability that they are identical is (1-3_)2s, where ,3 is the 

probability of mutation affecting a particular birth. Hence the unconditional 

probability is 

N-'(1 - N-')'-( l - )2s = (1 -)2{1 + 2(N - 1)p}1, 
s=l 

and this converges to (1 + 0)-' as N--*oo, f ->O, 2N -> 0. 
More generally, the results of this limit can be formulated directly using the 

n-coalescent. Suppose that mutations occur in a Poisson way at a rate 20, 

independently to the equivalence classes of R,. We can then define a relation 
E n', which contains (i,j) if, on watching the equivalence classes of R, 

containing i and j until the moment at which they coincide, we observe no 
mutation to either. 

A backward Kolmogorov argument like that leading to (3.6) then gives the 
distribution of $t in the explicit form 

(3.8) }=(+1)(+2) .(+n -1) (Aa-1)! ( n) (8 + 1)(0 + 2)... (0 + n - 1)-1) 

where Al, A2,* *, Ak are the sizes of the equivalence classes of 4. 
If (3.8) is multiplied by the number of 4 E Sn with the given Al, A2, * *, Ak, we 

obtain the distribution of the allelic partition of the sample of size n, and this 

agrees with the celebrated Ewens sampling formula (Ewens (1972), Kingman 
(1978a)). This has been derived many times, but always as an approximation or a 
limit. It is therefore of some interest that the Ewens formula is an exact 

consequence of mutation in the n-coalescent. 

4. Robustness 

Although the n-coalescent arises most easily from the Wright-Fisher formula- 

tion, there are many other models which exhibit the same limit for large 
population size. Suppose for instance that the symmetric multinomial (2.2) is 

replaced by some other exchangeable joint distribution for the vj (the ex- 

changeability implying that we need not label the members of a generation in 

any particular way), and suppose that the vj are independent of the correspond- 
ing family sizes in other generations. Then the relations R, again form a Markov 

chain, whose transition probabilities are of the form 

(4.1) p = (N)k,E { (VJ,j)b(V2) (V )ba} 

where a, b,, b2, * *, ba are determined by s and r7 as in Section 2, 

k= b,,,, (N)k =N(N-1)" '(N-k+1), 
a=! 
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and the summation extends over distinct jl, j, * ', j, in 1 j < N. 
If for example e has just two equivalence classes, and r1 = 0 only one, then 

pe, = N-l(N- 1)-'E - vj (v - 1) = (N- 1)-IF{v1(v - 1)} 

= (N - 1)-'Var(v) 

since, by (2.1), E(v,) = 1. Now assume that, as N-> oo, the variance of a typical 
family size vI tends to a finite non-zero limit a2, and that the moments of vl are 
bounded: 

(4.2) Var(v,)-- (2 E(v')' Mm (m = 1,2, * ). 

Then (4.1) leads, after some algebra and an application of Holder's inequality, to 
the conclusion that, for r7 

(4.3) pT, = qfo,2N-' + O(N-2), 

where q, is given by (2.10). As in Section 2, this implies that the continuous-time 

process 

(4.4) R, = 2I[N,-2,j 

converges in distribution to the n-coalescent. Notice the way in which the 

family-size variance affects the natural time scale. 
A degenerate example is the Moran process, which has 

(4.5) P(v = 2) = N-', P(v = 0) = N-', P(v, = 1) = 1 - 2N-', 

so that Var(v) = 2N-'. For this one must use the different time change r = 1N2t 

to achieve the n-coalescent in the limit. In the Moran (1958) formulation 
mutation only operates on the newly-born individual, and this difference from 
the Wright-Fisher model cancels out the different time change, except for the 
factor of 2 which always separates the conclusions of the two models. 

Not all models have the v, exchangeable, or independent between genera- 
tions, but if a reproductive mechanism makes the sequence (R,) Markovian (or 
approximately so to order o (N-')) it is worth checking its transition probabilities 
for large N. If they satisfy (4.3) (perhaps with O(N-2) replaced by o(N-')), then 
the n-coalescent will describe the limiting genealogy of n contemporaries, and 
conclusions like those of Section 3 remain valid. 

This whole question of the robustness of the n-coalescent requires further 

study. A preliminary conclusion is that it represents a good approximation when 
the population is large and the individuals have no inherited differences of 

fertility or fitness. Selective advantages and disadvantages (cf. Kingman (1980)) 
lead to very different behaviour, and the n-coalescent is essentially a 'neutral' 

genealogy. 
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5. The transit time 

The rest of this paper will be devoted to the properties of the n-coalescent 
itself. This is a Markov chain in continuous time whose state space is the finite set 
Wn of all equivalence relations on the set {1, 2, * *, n }. The chain starts in the 
state A, and has 0 as its only absorbing state, where A and 0 are respectively the 
finest and coarsest relations in n. The transition rates q,, are given by (2.10), 
and define the chain completely, their form implying that the transitions are of 
the form -> 7t, where e < c7. 

If f is a function from gn onto another (finite) set 9, the transformed process 
f(R,) is not in general Markovian. However, it is a Markov chain (Rosenblatt 
(1974), ?IIId) if, for E v, E 5, f(s) ? v, the sum 

(5.1) E q, 
f(n)=v 

depends on e only through u = f(). 
For the n-coalescent, this is the case for two interesting functions f. The first, 

which will not be exploited here, is that which assigns to the relation R the 
induced partition of n: in the usual notation 

(5.2) f(R)= 1a,2a2 .. na 

where, for each r, ar is the number of equivalence classes of R having exactly r 
elements. Thus f destroys the labelling of {1,2,- , n}, and the fact that the 
Markov property is preserved follows by a simple permutation argument. 

A more radical lumping of the states of (R,) is defined by the function 

(5.3) f(R)= R I, 

the number of equivalence classes of R. Since q < r/ implies that | = r1 |+ l1, 
the sum (5.1) is 0 unless u = f(e) = v + 1, when it takes the value ?u(u - 1). Thus 

(IR, ) is a very simple Markov chain, a pure death process with initial state n, in 
which the transition rate from r to r- 1 is given by 

(5.4) d = ?r(r - 1). 

The transit time for the n-coalescent (R,) is the time Tn at which it first 
reaches its absorbing state 0, and this is the time at which the death process 
(IR, I) reaches its absorbing state 1. Thus 

(5.5) T.= E Tr, 
r 2 

where the r, are independent, with 

P{r, < t} = 1-e-d't, E(r,)= d'. 

36 

(5.6) 



On the genealogy of large populations 

From (5.4) and (5.5), 

(5.7) E(T,)= 2-2n-', 

which is bounded as n increases. In fact, if Tr is defined for all r, then 

(5.8) T, < T Tr, 
r=2 

where the series converges with probability 1 because T has finite expectation 2. 
It is easy to calculate the distribution of T, since for 0 >0 

E(e 2 d r + E(eT) = n (d dr )= 27 sec{n((l-80)-} 

d4, = (-1)"' (2m - 1) 0 
m=2 dm I 

which shows that T has probability density 

(5.9) g(t)= '.(-i1)"' .... .^-l)^"1' 
(5.9) g(t) E (- 1,m (m - 1)(2m 1)e -'m(mr 1)1 

m=2 

By (5.8), 

(5.10) P{R, } = P{T >t} ' (- 1)m(2m -l)e - '"mm '" 
m=2 

which is a powerful upper bound, uniform in n, for the probability that R has not 
reached its absorbing state by time t. 

The right-hand side of (5.10) is asymptotically 3e-' for large t, and this 
constant 3 is the same as that we have already met in (2.4). The proof of (2.4) 
depended (though this was not admitted in Kingman (1976)) on identifying a 

supermartingale for the Wright-Fisher process, and this becomes a martingale 
for the n-coalescent. If (X,) is a pure death process whose death rates dr satisfy 
Ed,' <oo, and if 

eo(x)= n (1-dr'O), 
r=x+l 

then o, (X,)e ' is a martingale. In the present context the most interesting value 
of 0 is 1, when +,(x) = (x - 1)/(x + 1). Thus 

I R, I- 1 
(5.11) e' IR,J+i'1 

is a martingale, and in particular 

(5.12) {i n+le IRt J+ I n + 1- 
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Since (x - 1)/(x + 1) > 3 when x _ 2, this shows that 

(5.13) P{R, O} = P{'I R |2 2} < 3 n e -' n+1e 

This complements (5.10); the one is asymptotically sharp as n --oo, the other as 
t --oo. 

It will be observed that we have been able to obtain properties of the 
n-coalescent for all values of n by implicitly thinking of the random variables Tn 
as being defined on the same probability space. This is an example of the 
fashionable technique of coupling, and one can ask whether it can be exploited 
systematically by constructing a probability space on which n -coalescents can be 
defined for all n. There are (at least) two quite different useful ways of doing this. 
The first is just an elaboration of the arguments used in this section, and is 
described in Section 6. In Section 7 the second, which fits in more naturally with 
the genealogical interpretation, is defined and exploited. 

6. Temporal coupling 

Let (Dt; t > 0) be a pure death process, with death rates (5.4), starting from oo.t 
Such a process can be constructed directly from independent random variables T, 

(r = 2, 3, * * ) satisfying (5.6) by the recipe 

Em=T-Tn= Tr,, 
r=n+l 

(6.1) D n ifEn E (n_2) 
Dn = 

1 if E, -t. 

For the n-coalescent, the Markov chain (R, tJ;t-0) has the same joint 
distributions as the chain 

(6.2) D(n, t)= D(En + t). 

The problem is to enlarge this construction by producing a model, not just for 
the integer-valued random variables JR, 1, but for the . -valued variables R,. 
This can be done by taking a probability space on which can be defined, 
independently of the r,, a binary fission process (a continuous-time branching 
process in which, in a time interval (t, t + St), any individual present has a 

probability 8t + O(St) of splitting into two new individuals) with just one 
individual at t = 0. 

For any n 2, there are exactly n individuals present just before the nth 

' This is one of the very few examples of the application of the boundary theory of Markov 
chains, and the only one I know involving an entrance boundary. 
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splitting. Label these in random order as Ji, 62, * * *, -n, and define (for 1 = m - 
n) an equivalence relation (m") on {1, 2, , n} by specifying that (i, j) E e () if Ji 
and _j have a common ancestor among the m individuals present just before the 
mth splitting. It is clear that 

(6.3) A = () < (.)l <... < =(,, I \) 
= m. 

Direct computation of 

P{IF(, = m (m = n, n - 1, , 1)} 

for any m E Wn with 

(6.4) A = fn < n-I <. < <1 = 

shows that this probability does not depend on the (-sequence, and from this it 
follows that 

(6.5) R-) = (nt) 

is a (continuous-time) Markov chain with transition rates (2.10). Thus R'") is an 

n-coalescent, with 

(6.6) R (n") =D(n, t). 

In other words, the jump chain of the n-coalescent, which describes the 

sequence of distinct states through which it passes, is independent of the death 

process which governs the timing of the jumps. A model of this jump chain can 
be derived from a binary fission process by observing it backwards from the time 
of the nth splitting. 

In this sense the backward genealogy of the binary fission differs from the 
backward genealogy of the Wright-Fisher model and its relatives in the limit of 

large population size only in its time scale. This makes precise a percipient 
remark by Kesten (1980). 

7. The natural coupling 

The construction of Section 6 represents n-coalescents for all values of n on a 

single probability space by combining a pure death process with an independent 
binary fission. It depends on that fact that, for m < n, an m-coalescent can be 
found in an n-coalescent by waiting until the latter has only m equivalence 
classes and then looking at the coalescence of these m classes, regarded as 
individuals. 

This is not however the most natural way of finding an m-coalescent in an 
n-coalescent. After all, the n-coalescent was derived by taking n particular 
members i1, 2, * *' , -n of a particular generation of a Wright-Fisher popula- 
tion, and examining the ancestry of these individuals as N -- oo. The obvious way 
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of deriving an m-coalescent is to discard m,,+, ,* * *, and to look just at the 

ancestry of 1, j2, * * *, m. 

Formally, define a function pm,,n: 
' 

m (m < n) by restriction: for f E 'n, 

(7.1) pmn= = {(i, ); 1 i, j m, (i, j) E }. 

It can then be checked directly, or deduced from Section 2, that if (R,) is an 
n-coalescent then (p,nR,) is an m-coalescent. 

Thus, on the probability space of an n-coalescent, we can construct m- 
coalescents for all m in 2 - m ' n. Can we, in a similar way, construct 
n-coalescents for all n on a single probability space? There is a general 
'projective limit' technique which answers such questions, but as in Section 6 it is 
better to proceed concretely. 

Let ' be the (uncountable) set of equivalence relations on the set N= 

{1,2,3, -..} of natural numbers. For e E W and n -2, denote by pn. the 
restriction of e to {1,2, * * , n} (as in (7.1)), so that pn maps 

' into Wn and 

(7.2) pmn (pn.)= pm (m < n, f E W). 

We seek to construct a random process (R,; t - 0) with values in W such that, for 
all n _ 2, (pn,R; t _ 0) is an n-coalescent. 

The existence of such a process is most easily proved by the topological 
Kakutani-Nelson technique.t The set W can be regarded as a subset of the 

product space 2"N, whose product topology is compact and has Z as a closed set. 
In the subspace topology W is therefore compact Hausdorff, and the -valued 

process (R,) exists if its finite-dimensional distributions are specified in a 
consistent way. Thus we have to specify 

(7.3) E{(D(R,,, R,, .--, R, )} 

for 0 - t < t2< ... < tk and bounded continuous functions (: ,k -> R. The 

requirement that (pnR,) be an n-coalescent fixes the value of (7.3) whenever ( is 
of the form 

(7.4) ((61, 2, , k) = (pn1, pn2 , Pnk, ), 

and (7.2) establishes consistency between different values of n. The 
Stone-Weierstrass theorem shows that the functions D of the form (7.4) for some 
n form a uniformly dense subset of the set of all bounded continuous D, so that 
the consistent specification of the finite-dimensional distributions is achieved. 

A process (R,), with values in W, for which each restriction (p,R,) is an 

n-coalescent, will be called simply a coalescent. The argument just sketched 

t In the words of Meyer ((1966), p. 319) '... familiere aux lecteurs de Bourbaki, a ete 

popularisee aux Etats-Unis par un article de Nelson (1959)'. 
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shows that coalescents exist, and that they all have the same joint distributions. 
A coalescent is a Markov process, whose detailed properties will be explored 
elsewhere. Briefly, the values of R, are equivalence relations on the infinite set N 
which have only finitely many equivalence classes, (| R, ; t > 0) is a pure death 

process starting from oo, and the jump chain is independent of the death process. 

8. The paintbox 

Let R be an equivalence relation on N, and let nr, = 7, (R) be the partition of 
n induced by the restriction pnR (as in (5.2)). Suppose that we do not know R, 
but that we do know the partitions irn for all n > m; what can then be said about 
t7, ? Clearly all the relevant information is contained in Tm+n,, which determines 
the sizes (A1 ' A2 * * * A, say) of the classes into which R divides 

{1, 2, * , m + 1}. The partitions rrT (n ' m + 2) merely add (incomplete) data 
about the classes into which m + 2, m + 3, .. fall. A knowledge of T,,+l does not 
in general determine iT,, but tells us that the classes in irT have sizes 

A ~- El, A2 - ?2, '* *, Al- E, 

where exactly one of the Ei equals 1, and the rest 0. 

Suppose now that R is a random member of W, which is exchangeable in the 
sense that its distribution is unchanged by any finite permutation of N. Then, 
given rT, (n ' m + 1), the conditional probability that Ei = 1 is proportional to 
the size of the ith class of 7Tr,+, and is thus equal to A, /(m + 1). In other words, 
(rrn; n = 2, 3, * *) is a Markov sequence of partitions whose backward transition 

probabilities are combinatorially determined in this way. Such sequences have 
been examined in Kingman (1978b), where it is proved that, if Ak (n) denotes the 
size of the k th largest class of An, then the limit 

(8.1) xk = lim Ak(n)/n 

exists for all k - 1, with probability 1, and satisfies 

(8.2) x,i X2 X3- 0, Xk 1. 
k=l 

Conditional on the Xk, the joint distributions of the Trr are determined by the 

'paintbox construction', and this extends to give the distribution of R itself. 

Imagine a paintbox with colours 'o, cl, I2, present in the proportions 
Xo, X1, x2, *, where 

(8.3) Xo = 1- xk. 
k=l 

Balls ,81, 2,* * * are painted with colours chosen independently at random from 
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the paintbox, but To has the special property that different balls painted with it 
appear of different colours. The relation of identically coloured balls, 

(8.4) {(i, j); i = j or i, and ,j are painted the same colour Wk (k > 1)} 

has a distribution depending on xl, x2,.. which is the same as the conditional 
distribution of R given xl, x2, ' . 

Now suppose that (R,) is a coalescent. For each t 0, R, is an exchangeable 
random element of g, for which the limits (8.1) therefore exist. Denoting them 
by xk (t), and writing 

(8.5) x(t) = (xl(t), x2(t), ), 

we have a random process (x(t); t-> 0) taking values in the space of sequences 
satisfying (8.2). If we know the distribution of x(t) for a particular value of t, that 
of R, can be deduced. 

It would be interesting to study this process, not only because it is there, but 
because it relates to questions of practical interest. For example, the 'frequency 
spectrum' in a mutation model can be expressed in terms of the paintbox 
proportions xk (t). Kimura and Ohta (1978) have raised the question whether the 
spectrum in the mutation model (3.7) has a finite integral. Kesten's work suggests 
a negative answer, but the question is still unresolved, and an attack along the 
present lines might succeed. 
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