Chapter 7
Central Processor Unit (S08CPUV2)

7.1

Introduction

This section provides summary information about the registers, addressing modes, and instruction set of
the CPU of the HCSO8 Family. For a more detailed discussion, refer to the HCSO8 Family Reference
Manual, volume 1, Freescale Semiconductor document order number HCSOS8RMV 1/D.

The HCSO8 CPU is fully source- and object-code-compatible with the M6SHCO8 CPU. Several
instructions and enhanced addressing modes were added to improve C compiler efficiency and to support
a new background debug system which replaces the monitor mode of earlier M6BHCO8 microcontrollers
(MCU).

711

Features

Features of the HCSO8 CPU include:

Object code fully upward-compatible with M68HCOS5 and M68HCO08 Families
All registers and memory are mapped to a single 64-Kbyte address space
16-bit stack pointer (any size stack anywhere in 64-Kbyte address space)
16-bit index register (H:X) with powerful indexed addressing modes

8-bit accumulator (A)

Many instructions treat X as a second general-purpose 8-bit register

Seven addressing modes:

— Inherent — Operands in internal registers

— Relative — 8-bit signed offset to branch destination

— Immediate — Operand in next object code byte(s)

— Direct — Operand in memory at 0x0000—-0x00FF

— Extended — Operand anywhere in 64-Kbyte address space

— Indexed relative to H:X — Five submodes including auto increment

— Indexed relative to SP — Improves C efficiency dramatically
Memory-to-memory data move instructions with four address mode combinations

Overflow, half-carry, negative, zero, and carry condition codes support conditional branching on
the results of signed, unsigned, and binary-coded decimal (BCD) operations

Efficient bit manipulation instructions
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
STOP and WAIT instructions to invoke low-power operating modes

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

Freescale Semiconductor 85

Chapter 7 Central Processor Unit (S08CPUV2)

7.2 Programmer’s Model and CPU Registers
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.

7 0
[AL] &

16-BIT INDEX REGISTER H:X
H| INDEX REGISTER (HIGH) | | INDEX REGISTER (LOW) | X

15 8 7 0
| © " " STACKPOINTER | sp
15 0
| © ' 'PROGRAMCOUNTER | pC
7 0
CONDITION CODE REGISTER [V "1 1 H | N z C| CCR
CARRY
L ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)

TWO'S COMPLEMENT OVERFLOW
Figure 7-1. CPU Registers

7.21 Accumulator (A)

The A accumulator is a general-purpose 8-bit register. One operand input to the arithmetic logic unit
(ALU) is connected to the accumulator and the ALU results are often stored into the A accumulator after
arithmetic and logical operations. The accumulator can be loaded from memory using various addressing
modes to specify the address where the loaded data comes from, or the contents of A can be stored to
memory using various addressing modes to specify the address where data from A will be stored.

Reset has no effect on the contents of the A accumulator.

7.2.2 Index Register (H:X)

This 16-bit register is actually two separate 8-bit registers (H and X), which often work together as a 16-bit
address pointer where H holds the upper byte of an address and X holds the lower byte of the address. All
indexed addressing mode instructions use the full 16-bit value in H:X as an index reference pointer;
however, for compatibility with the earlier M68HCOS Family, some instructions operate only on the
low-order 8-bit half (X).

Many instructions treat X as a second general-purpose 8-bit register that can be used to hold 8-bit data
values. X can be cleared, incremented, decremented, complemented, negated, shifted, or rotated. Transfer
instructions allow data to be transferred from A or transferred to A where arithmetic and logical operations
can then be performed.

For compatibility with the earlier M68HCOS Family, H is forced to 0x00 during reset. Reset has no effect
on the contents of X.

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

86 Freescale Semiconductor

Chapter 7 Central Processor Unit (S08CPUV2)

7.2.3 Stack Pointer (SP)

This 16-bit address pointer register points at the next available location on the automatic last-in-first-out
(LIFO) stack. The stack may be located anywhere in the 64-Kbyte address space that has RAM and can
be any size up to the amount of available RAM. The stack is used to automatically save the return address
for subroutine calls, the return address and CPU registers during interrupts, and for local variables. The
AIS (add immediate to stack pointer) instruction adds an 8-bit signed immediate value to SP. This 1s most
often used to allocate or deallocate space for local variables on the stack.

SP is forced to OxOOFF at reset for compatibility with the earlier M68HCO05 Family. HCS08 programs
normally change the value in SP to the address of the last location (highest address) in on-chip RAM
during reset initialization to free up direct page RAM (from the end of the on-chip registers to 0xOOFF).

The RSP (reset stack pointer) instruction was included for compatibility with the M68HCO0S5 Family and
is seldom used in new HCSO08 programs because it only affects the low-order half of the stack pointer.

7.2.4 Program Counter (PC)

The program counter is a 16-bit register that contains the address of the next instruction or operand to be
fetched.

During normal program execution, the program counter automatically increments to the next sequential
memory location every time an instruction or operand is fetched. Jump, branch, interrupt, and return
operations load the program counter with an address other than that of the next sequential location. This
is called a change-of-flow.

During reset, the program counter is loaded with the reset vector that is located at $FFFE and $FFFF. The
vector stored there is the address of the first instruction that will be executed after exiting the reset state.

7.2.5 Condition Code Register (CCR)

The 8-bit condition code register contains the interrupt mask (I) and five flags that indicate the results of
the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the
functions of the condition code bits in general terms. For a more detailed explanation of how each
instruction sets the CCR bits, refer to the HCSOS8 Family Reference Manual, volume 1, Freescale
Semiconductor document order number HCSO8RMv1/D.

7 0
CONDITION CODE REGISTER [V "1 1 H | N Z C| CCR

CARRY

——ZERO

NEGATIVE

INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

TWO'S COMPLEMENT OVERFLOW

Figure 7-2. Condition Code Register

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

Freescale Semiconductor 87

Chapter 7 Central Processor Unit (S08CPUV2)

Table 7-1. CCR Register Field Descriptions

Field Description

7 Two’s Complement Overflow Flag — The CPU sets the overflow flag when a two’s complement overflow occurs.
\Y The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.

0 No overflow

1 Overflow

4 Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during
H an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded
decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to
automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the
result to a valid BCD value.

0 No carry between bits 3 and 4

1 Carry between bits 3 and 4

3 Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts
| are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service
routine is executed.

Interrupts are not recognized at the instruction boundary after any instruction that clears | (CLI or TAP). This
ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening
interrupt, provided | was set.

0 Interrupts enabled

1 Interrupts disabled

2 Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data
N manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value
causes N to be set if the most significant bit of the loaded or stored value was 1.
0 Non-negative result
1 Negative result
1 Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation
4 produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the
loaded or stored value was all Os.
0 Non-zero result
1 Zero result
0 Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit
C 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and

branch, shift, and rotate — also clear or set the carry/borrow flag.
0 No carry out of bit 7
1 Carry out of bit 7

7.3 Addressing Modes

Addressing modes define the way the CPU accesses operands and data. In the HCSO08, all memory, status
and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit
binary address can uniquely identify any memory location. This arrangement means that the same
instructions that access variables in RAM can also be used to access I/0O and control registers or nonvolatile
program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing
mode to specify the source operand and a second addressing mode to specify the destination address.
Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

88 Freescale Semiconductor

Chapter 7 Central Processor Unit (S08CPUV2)

of an operand for a test and then use relative addressing mode to specify the branch destination address
when the tested condition is true. For BRCLR, BRSET, CBEQ, and DBNZ, the addressing mode listed in
the instruction set tables is the addressing mode needed to access the operand to be tested, and relative
addressing mode is implied for the branch destination.

7.3.1 Inherent Addressing Mode (INH)

In this addressing mode, operands needed to complete the instruction (if any) are located within CPU
registers so the CPU does not need to access memory to get any operands.

7.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination location for branch instructions. A signed 8-bit
offset value is located in the memory location immediately following the opcode. During execution, if the
branch condition is true, the signed offset is sign-extended to a 16-bit value and is added to the current
contents of the program counter, which causes program execution to continue at the branch destination
address.

7.3.3 Immediate Addressing Mode (IMM)

In immediate addressing mode, the operand needed to complete the instruction is included in the object
code immediately following the instruction opcode in memory. In the case of a 16-bit immediate operand,
the high-order byte is located in the next memory location after the opcode, and the low-order byte is
located in the next memory location after that.

734 Direct Addressing Mode (DIR)

In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page
(0x0000-0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the
high-order half of the address and the direct address from the instruction to get the 16-bit address where
the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit
address for the operand.

7.3.5 Extended Addressing Mode (EXT)

In extended addressing mode, the full 16-bit address of the operand is located in the next two bytes of
program memory after the opcode (high byte first).

7.3.6 Indexed Addressing Mode

Indexed addressing mode has seven variations including five that use the 16-bit H:X index register pair and
two that use the stack pointer as the base reference.

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

Freescale Semiconductor 89

Chapter 7 Central Processor Unit (S08CPUV2)

7.3.6.1 Indexed, No Offset (IX)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair as the address of
the operand needed to complete the instruction.

7.3.6.2 Indexed, No Offset with Post Increment (IX+)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair as the address of
the operand needed to complete the instruction. The index register pair is then incremented

(H:X = H:X + 0x0001) after the operand has been fetched. This addressing mode is only used for MOV
and CBEQ instructions.

7.3.6.3 Indexed, 8-Bit Offset (IX1)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair plus an unsigned
8-bit offset included in the instruction as the address of the operand needed to complete the instruction.

7.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair plus an unsigned
8-bit offset included in the instruction as the address of the operand needed to complete the instruction.
The index register pair is then incremented (H: X = H:X 4+ 0x0001) after the operand has been fetched. This
addressing mode is used only for the CBEQ instruction.

7.3.6.5 Indexed, 16-Bit Offset (1X2)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair plus a 16-bit offset
included in the instruction as the address of the operand needed to complete the instruction.

7.3.6.6 SP-Relative, 8-Bit Offset (SP1)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus an unsigned 8-bit
offset included in the instruction as the address of the operand needed to complete the instruction.

7.3.6.7 SP-Relative, 16-Bit Offset (SP2)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset
included in the instruction as the address of the operand needed to complete the instruction.

7.4 Special Operations

The CPU performs a few special operations that are similar to instructions but do not have opcodes like
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU
circuitry. This section provides additional information about these operations.

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

90 Freescale Semiconductor

Chapter 7 Central Processor Unit (S08CPUV2)

7.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from OxFFFE and OxFFFF and to fill the
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.

The CPU sequence for an interrupt is:

Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.

Set the I bit in the CCR.

Fetch the high-order half of the interrupt vector.

Fetch the low-order half of the interrupt vector.

Delay for one free bus cycle.

AN ol

Fetch three bytes of program information starting at the address indicated by the interrupt vector
to fill the instruction queue in preparation for execution of the first instruction in the interrupt
service routine.

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the
interrupt service routine, this would allow nesting of interrupts (which is not recommended because it

leads to programs that are difficult to debug and maintain).

For compatibility with the earlier M68HCO0S5 MCUs, the high-order half of the H:X index register pair (H)
is not saved on the stack as part of the interrupt sequence. The user must use a PSHH instruction at the
beginning of the service routine to save H and then use a PULH instruction just before the RTT that ends
the interrupt service routine. It is not necessary to save H if you are certain that the interrupt service routine
does not use any instructions or auto-increment addressing modes that might change the value of H.

The software interrupt (SWI) instruction is like a hardware interrupt except that it is not masked by the
global I bit in the CCR and it is associated with an instruction opcode within the program so it is not
asynchronous to program execution.

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

Freescale Semiconductor 91

Chapter 7 Central Processor Unit (S08CPUV2)

743 Wait Mode Operation

The WAIT instruction enables interrupts by clearing the I bit in the CCR. It then halts the clocks to the
CPU to reduce overall power consumption while the CPU is waiting for the interrupt or reset event that
will wake the CPU from wait mode. When an interrupt or reset event occurs, the CPU clocks will resume
and the interrupt or reset event will be processed normally.

If a serial BACKGROUND command is issued to the MCU through the background debug interface while
the CPU is in wait mode, CPU clocks will resume and the CPU will enter active background mode where
other serial background commands can be processed. This ensures that a host development system can still
gain access to a target MCU even if it is in wait mode.

7.4.4 Stop Mode Operation

Usually, all system clocks, including the crystal oscillator (when used), are halted during stop mode to
minimize power consumption. In such systems, external circuitry is needed to control the time spent in
stop mode and to issue a signal to wake up the target MCU when it is time to resume processing. Unlike
the earlier M6BHCO05 and M68HC08 MCUs, the HCS08 can be configured to keep a minimum set of
clocks running in stop mode. This optionally allows an internal periodic signal to wake the target MCU
from stop mode.

When a host debug system is connected to the background debug pin (BKGD) and the ENBDM control
bit has been set by a serial command through the background interface (or because the MCU was reset into
active background mode), the oscillator is forced to remain active when the MCU enters stop mode. In this
case, if a serial BACKGROUND command is issued to the MCU through the background debug interface
while the CPU is in stop mode, CPU clocks will resume and the CPU will enter active background mode
where other serial background commands can be processed. This ensures that a host development system
can still gain access to a target MCU even if it is in stop mode.

Recovery from stop mode depends on the particular HCS08 and whether the oscillator was stopped in stop
mode. Refer to the Modes of Operation chapter for more details.

7.4.5 BGND Instruction

The BGND instruction is new to the HCSO8 compared to the M6SHCOS. BGND would not be used in
normal user programs because it forces the CPU to stop processing user instructions and enter the active
background mode. The only way to resume execution of the user program is through reset or by a host
debug system issuing a GO, TRACE]1, or TAGGO serial command through the background debug
interface.

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the
BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active background
mode rather than continuing the user program.

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01

92 Freescale Semiconductor

