AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

MODEST requirements of a stellar evolution code:

• speed: \sim 1 second per star

AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

MODEST requirements of a stellar evolution code:

- speed: \sim 1 second per star
- communication: standardized interfaces

AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

MODEST requirements of a stellar evolution code:

- speed: \sim 1 second per star
- communication: standardized interfaces
- autonomy: "hands off"

AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

MODEST requirements of a stellar evolution code:

- speed: \sim 1 second per star
- communication: standardized interfaces
- autonomy: "hands off"
- robustness: no breakdowns...

AIM: model evolution of all (exotic/multiple) stellar objects realistically, simultaneously with stellar dynamics

MODEST requirements of a stellar evolution code:

- speed: \sim 1 second per star
- communication: standardized interfaces
- autonomy: "hands off"
- robustness: no breakdowns...

... not so modest!

recipes/formulae/interpolation okay for ordinary single stars
 + many kinds of binary

- recipes/formulae/interpolation okay for ordinary single stars
 + many kinds of binary
- evolution code required for non-canonical stars, e.g.:
 - products of collisions + mergers
 - binaries in RLOF on thermal timescale
 - contact binaries (physics unclear!)

- recipes/formulae/interpolation okay for ordinary single stars
 + many kinds of binary
- evolution code required for non-canonical stars, e.g.:
 - products of collisions + mergers
 - binaries in RLOF on thermal timescale
 - contact binaries (physics unclear!)
- desirable ingredients for speed:
 - efficient timestep control
 - reduction of physical detail (e.g. EOS)
 - skip, or evolve synthetically, rapid but time-consuming phases (He-flash, TPs)

- recipes/formulae/interpolation okay for ordinary single stars
 + many kinds of binary
- evolution code required for non-canonical stars, e.g.:
 - products of collisions + mergers
 - binaries in RLOF on thermal timescale
 - contact binaries (physics unclear!)
- desirable ingredients for speed:
 - efficient timestep control
 - reduction of physical detail (e.g. EOS)
 - skip, or evolve synthetically, rapid but time-consuming phases (He-flash, TPs)

(however, realism might require more physical detail)

 YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation

- YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation
- STARS: Evert Glebbeek, Onno Pols (Utrecht) evolve stellar collision products; couple to starlab...

- YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation
- STARS: Evert Glebbeek, Onno Pols (Utrecht) evolve stellar collision products; couple to starlab...
- STARS: Ross Church, Chris Tout (Cambridge) integrate evolution code with Aarseth's NBODY-x

- YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation
- STARS: Evert Glebbeek, Onno Pols (Utrecht) evolve stellar collision products; couple to starlab...
- STARS: Ross Church, Chris Tout (Cambridge) integrate evolution code with Aarseth's NBODY-x
- EZ: Bill Paxton (KITP) stripped, modern version of STARS

- YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation
- STARS: Evert Glebbeek, Onno Pols (Utrecht) evolve stellar collision products; couple to starlab...
- STARS: Ross Church, Chris Tout (Cambridge) integrate evolution code with Aarseth's NBODY-x
- EZ: Bill Paxton (KITP) stripped, modern version of STARS
- EVSTAR: Attay Kovetz, Dina Prialnik, Ofer Yaron (Haifa) 'hands-off' stellar evolution code

- YREC: Alison Sills et al (McMaster) evolve stellar collision products, including rotation
- STARS: Evert Glebbeek, Onno Pols (Utrecht) evolve stellar collision products; couple to starlab...
- STARS: Ross Church, Chris Tout (Cambridge) integrate evolution code with Aarseth's NBODY-x
- EZ: Bill Paxton (KITP) stripped, modern version of STARS
- EVSTAR: Attay Kovetz, Dina Prialnik, Ofer Yaron (Haifa) 'hands-off' stellar evolution code
- Joris van Bever, Houria Belkus (Brussels) collisions in massive binary populations

code:	speed	interface	autonomy	robustness
YREC	XX	×	?	××
STARS	×	×	X</td <td>××</td>	××
EZ	×	 Image: A second s	/×	××
EVSTAR	X</td <td>×</td> <td> ✓ </td> <td>××</td>	×	 ✓ 	××
ТҮСНО	×	✓(?)	?	××

highly non-TE starting conditions after collision

- highly non-TE starting conditions after collision
- angular momentum: collision products rotate (too) rapidly, yet blue stragglers are slow rotators...
 (→ magnetic braking, disk-locking?)

- highly non-TE starting conditions after collision
- angular momentum: collision products rotate (too) rapidly, yet blue stragglers are slow rotators...
 (→ magnetic braking, disk-locking?)
- dynamical perturbations to Roche-filling stars; eccentric orbits

- highly non-TE starting conditions after collision
- angular momentum: collision products rotate (too) rapidly, yet blue stragglers are slow rotators...
 (→ magnetic braking, disk-locking?)
- dynamical perturbations to Roche-filling stars; eccentric orbits
- physics of contact binaries

- highly non-TE starting conditions after collision
- angular momentum: collision products rotate (too) rapidly, yet blue stragglers are slow rotators...
 (→ magnetic braking, disk-locking?)
- dynamical perturbations to Roche-filling stars; eccentric orbits
- physics of contact binaries
- can any code ever be made robust??

- highly non-TE starting conditions after collision
- angular momentum: collision products rotate (too) rapidly, yet blue stragglers are slow rotators...
 (→ magnetic braking, disk-locking?)
- dynamical perturbations to Roche-filling stars; eccentric orbits
- physics of contact binaries
- can any code ever be made robust??

plus the usual suspects:

- mass and AM loss during RLOF; common envelopes
- supernova kicks, etc...