
The Standard Model: A Primer

c© C.P. Burgess and Guy D. Moore





i

Preface

The standard model of particle physics, developed in the 1960’s and 1970’s,
has stood for 30 years as “the” theory of particle physics, passing numerous
stringent tests. In fact, while many people believe that the standard model is
not a complete description of particle physics, it is expected to be, at worst,
incomplete rather than wrong; that is, the standard model is at worst a
subset of the true theory of particle physics.

For this reason, a good working knowledge of the standard model and
its phenomenology is essential for the modern particle physicist. The goal
of this book is to provide all the tools for a working, quantitative knowl-
edge of the standard model, with the minimum of formal developments. It
presents everything needed to understand the particle spectrum of the stan-
dard model, and how to compute decay rates and cross sections at leading
order in the weak coupling expansion (tree level). We assume a solid quan-
tum mechanics background, up to and including canonical quantization and
the Dirac equation, but we do not assume familiarity with formal quantum
field theory (renormalization, path integrals, generating functionals).

As we see it, this book fills two gaps in the existing literature. The first
of these concerns the balance between theoretical sophistication and phe-
nomenological utility. Most treatments of the standard model appear at the
end of quantum field theory books. This is rational in the sense that the
reader then has the complete set of tools to compute standard model phe-
nomena at the loop level. This approach has its merits; both authors learned
the standard model in this way. Unfortunately, for many, especially exper-
imental practitioners, the quantum field theory preliminaries may be too
burdensome. Also, such books frequently do not present the standard model
in complete detail, and they generally develop little of its phenomenology.
The opposite style of approach is a more “cookbook” book, which introduces
quantum field theory at the tree level, typically using electrodynamics as an
example, and again presents the standard model at the end. Generally these
treatments are incomplete and abbreviated. The intention of this book is
to be similar to the latter type of book, except that the presentation of
the standard model is complete and contains a discussion of the model’s
phenomenology and a complete presentation of its Feynman rules.

Our philosophy is that it is important for a particle physicist to have
a complete and quantitative knowledge of the standard model; indeed, for
many, this is much more important than having a good background in formal
quantum field theory. One cannot present the standard model in detail
without some quantum field theory; but one can get surprisingly far without
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understanding the details of renormalization and loop effects. Of course,
especially for theorists, a good knowledge of quantum field theory is also
necessary; indeed, it should be obvious to the reader, at many points in the
text, that more formal development is needed to compute to high accuracy.
Knowing the material in this book may help the student of more formal
quantum field theory by motivating and providing context for that study.
Conversely, a student already proficient in quantum field theory can use this
book as a succinct presentation of the standard model, and will have the
tools to fill in the gaps left in the presentation, where loop corrections are
required.

The second gap which we believe this book fills concerns the modern the-
oretical framework within which the standard model rests: the framework
of effective field theories. Today we understand the theories we construct to
describe nature — including the standard model — to be effective theories
which capture the low-energy limit of some more fundamental, microscopic
physics. Effective field theories capture a basic experimental fact: although
nature comes to us with many scales, it can be understood one scale at
a time. For instance, atomic physics can be understood with only limited
knowledge of nuclei, and it can because short-distance physics tends to de-
couple from long-distance physics. In the modern understanding it is this
observation which ultimately explains the otherwise-puzzling requirement of
renormalizability which our fundamental theories generally have. This book
starts by using the standard model to build up the tools of effective field
theory, by showing how and why scattering amplitudes simplify in the low-
energy limit. Later chapters then exploit these tools to categorize the kinds
of new physics which might ultimately replace the standard model, starting
with a discussion of neutrino oscillations and ending with a broad survey of
such new-physics topics as supersymmetry and grand-unified theories.

The first chapter of this book is devoted to introducing the field theory
concepts we will need to present the standard model. We present the al-
lowed fields which can make up a quantum field theory (scalars, fermions,
and gauge bosons), with particular emphasis on Majorana fermions and
on the gauge principle, which appear to play especially important roles in
the standard model. We introduce the required rules for formulating the
theory’s Lagrangian–the “sacred principles,” such as Lorentz invariance, lo-
cality, unitarity, and renormalizability. We see what kinds of interactions
are allowed, given the available fields and these basic principles. Then we
give a few illustrative examples, including QED and QCD. Supplementary
material on group theory, the Lorentz group, and spinors is provided in two
appendices.
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The second chapter introduces the standard model itself. We present
the gauge group and the field content. The Lagrangian then follows as
the most general Lagrangian consistent with these fields and with basic
principles. The section then explores the consequences, determining the
mass eigenstates and their interactions. We present in complete detail what
the interaction Hamiltonian of the model is in the mass basis. We also
briefly discuss the symmetries of the model, especially the accidental global
symmetries of baryon and lepton number, and very briefly discuss anomalies
and gauge anomaly cancellation.

The third chapter discusses the S matrix formalism in just enough detail
to define and motivate decay rates and cross-sections, and to show how
they are to be computed in the interaction picture. Together the first three
chapters represent an introduction of the framework of the standard model.

Next, we start using the standard model interactions to compute pro-
cesses, introducing the needed technology as we go with the philosophy of
“learning by doing” and using specific examples to figure out the patterns.
We begin with the simplest processes in the standard model, the decays of
heavy bosons, in chapter 4. The rates of Z0, W±, and Higgs boson decays
can be computed using interaction picture perturbation theory and an ex-
pansion of the fields in creation and annihilation operators, without much
difficulty. In chapter 5, where we consider the decays of leptons lighter than
the W boson mass, we first encounter virtual intermediate particles, requir-
ing the introduction of the propagator. After these examples it is possible
to generalize the procedure for computing a decay process. This allows us to
introduce the Feynman rules. Chapter 5 ends with a complete presentation
of the unitary gauge Feynman rules of the standard model, sufficient for tree
level analysis. (The Rξ gauge Feynman rules appear in appendix D.)

In chapter 6 we address scattering processes, concentrating on fermion-
fermion scattering. We discuss s-channel scattering in some length, espe-
cially near the Z0 pole, where we first discover the necessity of including loop
corrections. We also introduce crossing symmetry and interference between
diagrams, external photon states, and initial state radiation.

In chapter 7 we introduce the notion of effective field theories, using the
Fermi theory as the main example. This is especially important as the
standard model itself is probably just an effective theory for some more
inclusive theory which is manifested at higher energies. We also present
some of the most important results of loop corrections, particularly the
running of gauge couplings with scale.

Chapter 8 begins the discussion of hadrons. We discuss why the running
of couplings causes the confinement of quarks and gluons within hadrons,
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and we describe and motivate the spectrum of heavy-light and light-light
mesons and of baryons, emphasizing the use of approximate symmetries.

Chapter 9 discusses hadronic interactions. It explains why both the low
and high energy regimes are somewhat tractable, but the intermediate en-
ergy regime is not. We discuss chiral perturbation theory, leptonic meson
decays, and oscillation phenomena in the K and B meson systems. Then
we discuss deep inelastic scattering and the partonic structure of hadrons,
up to and including the Altarelli-Parisi (DGLAP) equations.

The last part of the book gives a brief survey of what may lie beyond
the standard model. We begin in chapter 10 with a discussion of neutrino
masses. Technically, these cannot lie beyond the standard model, because
they have been observed, and the meaning of the standard model must be
enlarged to accommodate them. However, as we discuss, there are two viable
ways to do so, Majorana neutrino masses and Dirac neutrino masses, and we
do not (yet) know which is correct. We discuss the Majorana possibility at
some length in the context of non-renormalizable field theories. We discuss
oscillation phenomena in some length, including the MSW effect, and briefly
cover neutrinoless double beta decay. We also give examples of high energy
physics which could lead to the non-renormalizable operator responsible for
Majorana neutrino masses.

Finally, chapter 11 discusses what may lie beyond the standard model. We
organize this material in terms of problems with the standard model, which
can in turn be organized in terms of the dimensionality of the operator
presenting the problem. The hierarchy problem appears because of the
dimension 2 Higgs mass term, and may be solved by supersymmetry. The
strong CP problem appears because of the dimension 4 Θ term in QCD, and
may be solved by the axion mechanism. The baryon number conservation
“problem” (opportunity) arises because of the possibility of dimension 6
operators in the standard model; these might arise at an interesting level
within grand unified theories.

In our experience it is possible to cover most of this book in a high paced,
1 semester first year graduate level course. To do so, it is necessary to
shave some corners. Most of chapter 1, and chapter 2 through section 2.4,
are essential, but section 2.5 can be skipped without too much loss to the
continuity. Similarly section 4.2 and section 4.3 can be given as problems
instead of covered as sections. Chapter 5 and chapter 6 should be covered
in full, but then material from the remaining chapters can be picked and
chosen as time and interest allows. The material in chapter 10 does not rely
on chapter 8 or chapter 9. A full year course should quite easily be able to
cover all of the material in this book.
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Theoretical framework
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Field theory review

Quantum Field Theory is the language in terms of which the laws of physics
are cast, and so we start with a whirlwind summary of some of its main
features. Interspersed amongst the introductory topics in this chapter we
also discuss some of the more general features that are usually demanded of
any reasonable field-theoretic description of nature.

1.1 Hilbert space, creation and annihilation operators

Quantum field theories are special kinds of quantum mechanical theories
which describe the behavior of particles. As quantum mechanical theories,
their most basic objects are the Hilbert space of possible states H, and the
Hamiltonian H which describes time evolution in that Hilbert space.

The possible kinds of states are zero particle states, one particle states,
two particle states, and so on. Therefore, the Hilbert space in which all
operators live is the tensor product of the zero-particle space with the one-
particle space with the two-particle space, and so on:

H = H0 ⊗H1 ⊗H2 ⊗ ... (1.1)

Here

H0 = {|0〉} (1.2)

denotes the one-dimensional space spanned by the zero-particle state: |0〉.
H1 = {|p, k〉} (1.3)

is similarly the span of all one-particle states with the basis states chosen to
be eigenstates of linear momentum. Here p represents the momentum of a
state, and k denotes all of the other particle labels.

The space of N -particle states is constructed as the tensor product of N

3



4 Field theory review

copies of the one-particle space. For instance, H2 is the set of all two-particle
states,

H2 = {|p1, k1;p2, k2〉 = ±|p2, k2;p1, k1〉} (1.4)

etc. The sign, ±, is + for bosons and − for fermions. A Hilbert space
constructed in this way is conventionally referred to as a Fock space.

It is convenient to express the operators that act within this space in terms
of a basic set of creation and annihilation operators in the following way.
The annihilation operator, apk, is the operator that removes the particle
with quantum numbers p and k from a given state. If the state on which
apk acts does not contain the particle in question then the operator is defined
to give zero. That is,

apk|0〉 = 0 ,

apk|q, l〉 = 2Ep(2π)3δ3(p− q)δkl|0〉 ,
apk|q, l;k,m〉 = 2Ep(2π)3δ3(p− q)δkl|k,m〉

±2Ep(2π)3δ3(p− k)δkm|q, l〉 , (1.5)

and so on. Here, Ep is the energy of a particle of spatial momentum p,
namely,

√
p2+m2, with m the mass of a particle with labels k. The sign in

this last result is ± according to the statistics of particles |p, k〉 and |q, l〉.
This definition implies that the Hermitian conjugate, a∗pk, of apk is a

creation operator for the same particle type; i.e.,

a∗pi|0〉 = |p, i〉 (1.6)

a∗pi|q, j〉 = |p, i;q, j〉 (1.7)

etc. (Our notation is to use an asterisk for complex conjugation of c-numbers
and Hermitian conjugation of operators, and to reserve a dagger, †, for
Hermitian conjugation of matrices.)

These definitions, together with the normalization convention,

〈p, i|q, j〉 = 2Ep(2π)3δ3(p− q)δij , (1.8)

imply the following properties. For bosons,

|p, i;q, j〉 = |q, j;p, i〉 (1.9)

[api, aqj ] =
[
a∗pi, a

∗
qj

]
= 0 (1.10)

[
api, a

∗
qj

]
= 2Ep(2π)3δ3(p− q) δij (1.11)

and for fermions,

|p, i;q, j〉 = −|q, j;p, i〉 (1.12)
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{api, aqj} = {a∗pi, a
∗
qj} = 0 (1.13)

{api, a
∗
qj} = 2Ep(2π)3δ3(p− q) δij , (1.14)

in which [A, B] = AB −BA and {A,B} = AB + BA.
A few comments are in order about the field normalizations above. First,

note that momentum integrations dp/2π always have factors of 2π in the
denominator, and momentum delta functions 2πδ(p−q) always have factors
of 2π multiplying them. Following these rules,

• momentum space and energy integrations always involve
∫

d3p/(2π)3,∫
dE/2π;

• delta functions are always of form (2π)3δ3(p−q) or (2π)δ(E1−E2),

accounts for all 2π factors we will ever encounter.
Second, the momentum delta functions we have written are accompanied

by factors of 2Ep, and the same 2Ep appears in the denominator in momen-
tum integrations. This normalization, called relativistic normalization, is
convenient in a Lorentz invariant theory, because it makes it easier to make
Lorentz invariance manifest. Note in particular, that

∫
d3p

2Ep(2π)3
=

∫
d4p

(2π)4
2πδ(p2+m2)θ(p0) , (1.15)

which is manifestly Lorentz invariant. [Note that our metric convention is
that ηµν = Diag[−1, 1, 1, 1], so p2 = −(p0)2 + p2.] This expression can be
verified by performing the p0 integration, using the δ function. Its Lorentz
invariance is not quite manifest, since the step function θ(p0) does not look
invariant, as it refers to the time component; but the 2πδ(p2+m2) forces pµ

to be timelike for m2 > 0 and lightlike for m2 = 0, which ensures that the
sign of p0 does not change under (orthochronous) Lorentz transformations.
Throughout this book, whenever there is an integral

∫
d3p/(2π)32Ep, we

will always implicitly define p0 = Ep inside the integral.
The fundamental claim now to be made is that any operator acting on

our Hilbert space, H, can be written as a linear combination of monomials
of the a’s and a∗’s; i.e.,

O = A0,0 +
∑

i

∫
d3p

2Ep(2π)3
[
A0,1(p, i)api + A1,0(p, i)a∗pi

]
(1.16)

+
∑

ij

∫
d3p d3q

4EpEq(2π)6
[
A0,2(p, i;q, j)apiaqj + A1,1(p, i;q, j)a∗piaqj

+A2,0(p, i;q, j)a∗pia
∗
qj

]
+ · · · (1.17)
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The operators, O, are in one to one correspondence with the coefficient
functions {A0,0, A1,0(p, i), A0,1(p, i), . . .}. This can be shown inductively by
explicitly solving for these coefficients in terms of the matrix elements of O:
〈ψ|O|φ〉. For example 〈0|O|0〉 = A0,0, 〈0|O|p, i〉 = A0,1(p, i), and so on.

In particular, the Hamiltonian for a system of free particles has a simple
expression in terms of the a’s and a∗’s:

H0 = E0 +
∑

i

∫
d3p

2Ep(2π)3
ε(p, i)a∗piapi . (1.18)

To learn the interpretation of the coefficients E0 and ε(p, i), calculate the
action of H0 on various states. On the vacuum H0 gives:

H0|0〉 = E0|0〉 (1.19)

since api|0〉 = 0. E0 is clearly the energy of the no-particle state |0〉, i.e. the
vacuum energy. Similarly,

H0|q, j〉 = [E0 + ε(q, j)] |q, j〉 , (1.20)

and

H0|q1, j1; . . . ;qN , jN〉 =

[
E0 +

N∑

k=1

ε(qk, jk)

]
|q1, j1; . . . ;qN , jN〉 (1.21)

etc. The many-particle momentum eigenstates, |q1, j1; . . . ;qN , jN〉 are also
eigenstates of the energy, H0, with eigenvalue

E = E0 +
N∑

k=1

ε(qk, jk). (1.22)

This implies that the energy of a single-particle state |p, i〉 relative to the
vacuum is ε(p, i). Relativistic kinematics then determines the momentum-
dependence of ε on p as:

ε(p, i) =
√

p2 + m2
i = Ep , (1.23)

where mi is the mass of particle type ‘i’. Notice that the energy of a many-
particle state relative to the vacuum is just the sum of the single-particle
energies, showing that the particles described by H0 do not interact.

We emphasize that this is a special property of free field theories; in
general, even if single particle states are eigenstates of the Hamiltonian,
many particle states are in general not eigenstates of the Hamiltonian. This
means that they can undergo nontrivial time evolution. Indeed, almost all
interesting phenomena in particle physics arise from the fact that many
particle states are not eigenstates of the Hamiltonian.
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1.2 General properties of interactions

We are interested in writing down a Hamiltonian:

H = H0 + Hint (1.24)

that describes the interactions of the particles we know. The present sec-
tion is devoted to summarizing the minimal requirements for a physically
reasonable theory. These properties translate into a set of restrictions on
what form will be allowed for H. The purpose of this process is to arrive
at the general class of theories from which the standard model is to be cho-
sen. Being aware of the alternatives available gives some feeling for which
features may be changed and which are inviolable.

We now return to a statement of these requirements. A sketch of their
justification is given in the next subsection.

1.2.1 Physical constraints on H

The basic principles we demand of any candidate physical theory are:

(i) Unitarity: (i.e. Conservation of probability)
The requirement here is to ensure that time evolution preserve the

property that the sum of probabilities over all mutually exclusive
events gives one. This requires that the time-evolution operator:

U = e−iHt (1.25)

be unitary. Equivalently the Hamiltonian must be Hermitian:

H = H∗. (1.26)

(ii) Cluster Decomposition: (i.e. Locality)
This requirement is that physics be independent at different points

in space at a given time. Specifically we require that amplitudes
(and hence probabilities) for events that are well separated from one
another factorize into a product of independent amplitudes. Such a
factorization is what would be expected for statistically independent
events.

The condition that physics at spatially separated positions be in-
dependent comes in two parts. The first is that physical observables
must commute at spatially separated points and the second is that
time evolution must preserve this property. We consider each of these
in turn:

(a) Microcausality
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The first condition is to require that physical observables may be
separately measurable at different positions and equal times. In a
quantum theory we must therefore demand that all physical observ-
ables commute at space-like separations. That is:

[A(x), B(y)] = 0 for (x− y)2 > 0. (1.27)

Condition (1.27) is sometimes referred to as the requirement of Mi-

crocausality.

(b) Locality
We next require that this property that amplitudes for spatially

separated physical amplitudes must factorize be preserved under time
evolution, provided of course that no physical signals propagate from
one point to the other. Since the time evolution operator, Eq. (1.25),
is the exponential of the Hamiltonian, the property that it factorize
turns out to require that the Hamiltonian should be the sum of those
for each of the spatially separated regions. The Hamiltonian must
therefore have the form:

H =
∫

d3x H(x, t) (1.28)

which boils down to requiring that the total energy be a sum of the
energy of the degrees of freedom at each point. This is consistent
with the intuition that the degrees of freedom at each point of space
at a given time are independent, since the total energy for a set of
independent systems is the sum of the energies of the independent
constituents.

(iii) Invariance under Lorentz transformations and translations: (Poincaré
invariance)

Here we build in the requirements of special relativity and trans-
lation invariance in space and time. In quantum mechanics this
implies the existence of corresponding conserved charges, Pµ and
Jµν = −Jνµ (with µ, ν = 0, 1, 2, 3), representing four-momentum
and angular momentum respectively. In particular, the total energy
is given by:

H = P 0.

The particle states transform under unitary representations of the
Poincaré group given by the operators:

U(ω) = exp
[
−iaµPµ +

i

2
ωµνJ

µν
]

(1.29)
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generated by these conserved charges. The states, |p, σ, j〉, may then
be labelled by their three-momenta, p, mass, m, total spin, s and
spin-projection, σ, together with any other internal labels, j. The
labels m and s are generally not explicitly indicated.

The Minkowski-space conventions used in what follows are:

ηµν =




−1
1

1
1


, (1.30)

Pµ = (E,p), and Pµ = (−E,p) (1.31)

xµ = (t,x), and xµ = (−t,x) (1.32)

ε0123 = +1 (1.33)

implying that the invariant product x2 = −(x0)2 + x2 is negative for
time-like vectors and positive for space-like vectors. We provide a
review of Lorentz symmetry in appendix C.

(iv) Stability:
The final condition to be imposed is that the spectrum of H be

bounded from below. This is necessary if the vacuum state, defined
as the state of lowest energy, is to exist.

1.2.2 Renormalizability

A further condition to be imposed on the standard model that is not as
fundamental as those just described is the requirement of renormalizability.
In fact, perfectly good theories, such as general relativity, are not renormal-
izable and yet are still very successful at accounting for experiments. Some
explanation is therefore required to justify this demand.

The physical motivation comes from the idea that physical theories gener-
ically come with an implicit minimum distance, d, (or maximum energy, Λ)
beyond which they are not meant to apply. For example, the quantum elec-
trodynamics of electrons and photons is only physically correct up to an
energy of twice the mass of the lightest particle that is heavier than the
electron: Λ = 2mµ, i.e. twice the muon mass. At energies higher than this,
muons can no longer be neglected, since they can be pair-produced in the fi-
nal state even if they are not present initially. The correct theory for physics
at energies above Λ becomes the quantum electrodynamics of photons, elec-
trons and muons. This theory is in turn only valid up to the next threshold,
the pion mass, and so on.
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Classically, it is not important to specify this ‘cut-off’ carefully. In a
quantum theory, however, since all states can contribute to any given pro-
cess as intermediate (or ‘virtual’) particles, any quantum calculation will
depend explicitly on the cut-off scale, Λ. This may be seen, for example, by
considering the expression, in time independent perturbation theory, for the
quadratic energy shift due to a perturbing Hamiltonian,

δEψ =
′∑
n

|〈ψ|H|n〉|2
Eψ −En

; |n〉 6= |ψ〉 . (1.34)

Clearly any state, |n〉, contributes to Eq. (1.34) regardless of its energy.
Given our ignorance of the spectrum above the energy Λ, it only makes
sense to include those states with energy less than Λ in this sum. The result
therefore depends explicitly on Λ in a potentially complicated way.

If detailed knowledge of physics at the Λ scale were necessary in order to
calculate probability amplitudes for processes at energies lower than Λ, then
the theory is called non-renormalizable. These theories do not have much
predictive power since all predictions depend sensitively on physics at the
scale Λ, about which we are by assumption quite ignorant.

In renormalizable theories, on the other hand, Λ only appears in physical
predictions (for large Λ) through a small number of parameters, such as
the masses and charges of some or all of the particles involved. All other
processes may then be computed in terms of these parameters. Once the
few uncalculable parameters are taken from experiment, definite predictions
may be made.

Whether or not a renormalizable theory should be expected to describe a
given system depends therefore on the properties of the system. Physically,
successful description in terms of a renormalizable theory is equivalent to
the statement that the physics of interest, at energies E ¿ Λ, is largely
insensitive to the higher energy physics appropriate to the scale Λ. In gen-
eral, a renormalizable description of the physics at an energy E is therefore
justified to the extent that contributions of order E/Λ are not important.
Otherwise nonrenormalizable interactions must be included.

As an example, consider the theory describing the energy levels of the
hydrogen atom. Neglecting the motion of the nucleus, this theory is given
by the Quantum Electrodynamics of electrons and photons moving in an
electrostatic Coulomb field. Ignoring nuclear motion is justified up to cor-
rections of the size of powers of Eatom/Mnucleus. Since this ratio is small,
the resulting theory is renormalizable. Within this theory atomic physics
depends on smaller distance physics only through the total mass and charge
of the nucleus and electron.
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An example of a situation for which a nonrenormalizable theory is ap-
propriate is provided by the theory describing the nuclear scattering of the
deuteron. Suppose that in this theory we wish to ignore the fact that the
deuteron consists of a proton and neutron bound by these same nuclear inter-
actions, instead taking the deuteron as a point particle. The corresponding
theory that describes the scattering data is not renormalizable. This reflects
the fact that in this case the scale, Λ, of the physics being neglected (the
nuclear binding) and the scale, E, of the physics being studied (the nuclear
scattering) are essentially the same. Nonrenormalizability is the theory’s
way of telling us that an essential ingredient to the physics being described
is missing.

Turning this argument around, we can use the renormalizability of a the-
ory to tell us what the next scale, Λ, of new physics is. If we succeed in
describing all data at presently accessible energies, E, in terms of a renor-
malizable theory then we learn that the scale of any new physics is large:
Λ À E. If a nonrenormalizable theory is required, we learn that we are still
missing some fundamental ingredients.

This physical picture implies that renormalizability is the minimal crite-
rion for a theory which purports to describe all of the physics appropriate to
any given scale. Demanding renormalizability for the standard model then
amounts to the assumption that no hitherto unknown particles or interac-
tions are required to understand present experiments. As judged by the
splendid success of the standard model, this turns out to be a fairly good
assumption. The sole exception (at the time of this writing) is the physics
of neutrino oscillations, which appears to demand new physics; this can be
understood within the standard model as the existence of nonrenormaliz-
able interactions. We return to this point at some length in chapter 10 (and
more generally to the issue of renormalizability and high dimension opera-
tors in chapter 7). Note, for the current purposes, that the scale required
to explain neutrino masses is Λ ∼ 1014GeV. This is so much higher than
the intrinsic scales in the electroweak theory that, if the standard model is
correct up to this scale, there are virtually no other consequences of the high
energy physics expected, and therefore we are (otherwise) very well justified
in treating the standard model as a renormalizable theory.

1.2.3 Canonical quantization.

We now turn to the problem of how to ensure that a given set of interactions
incorporates these properties. The most efficient way to do so is to set up
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the formalism in terms of the action:

S =
∫

L(t) dt (1.35)

rather than the Hamiltonian. The conditions listed above for H then become
relatively simple conditions for S.

H is related to S by the usual canonical methods. That is, given a La-
grangian, L(q, q̇), define the canonical momenta by:

pi =
∂L

∂q̇i
. (1.36)

The Hamiltonian, H, is then given by:

H =
∑

i

piq̇
i − L. (1.37)

In this last expression, Eq. (1.36) is supposed to be inverted to allow the
elimination of q̇i in favor of pi. The formalism may be generalized in the case
when this cannot be done, or when L depends on higher time-derivatives of
q such as q̈i etc.

We consider each of the properties of the previous sections in turn:

(i) Unitarity:
H is real provided that the action, S, is real.

(ii) Locality:
In order for H to be a local function,

H =
∫

d3x H(x, t) (1.38)

we require that L must also be expressed as an integral over a La-

grangian density:

L =
∫

d3x L(x, t) (1.39)

so S =
∫

d4x L(x, t). (1.40)

It is customary abuse of language in quantum field theory, to refer to
the Lagrangian density as the Lagrangian.

Recall that H and L, like any operators, are to be expressed in
terms of the creation and annihilation operators, api and a∗pi. But H
and L are built of operators at a single spacetime point, which means
that they must be built from the Fourier transforms of api and a∗pi:

Aα(x, t) =
∑

k

∫
d3p

2Ep(2π)3
uα(p, k)apke

ipx. (1.41)
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In this equation px = pµxµ = −p0x0 + p · x, with p0 = Ep =√
p2 + m2. α denotes any labels that distinguish the fields due to

one particle type from another. The coefficients uα(p, k) ensure that
both sides of the equation transform the same way under Lorentz
transformations. The Lagrange density then becomes:

L = L(x,Aα(x), ∂µAα(x), . . .). (1.42)

We return to the related consequences of causality after first con-
sidering Poincaré invariance:

(iii) Translation Invariance:
Translation Invariance implies that L depends on the spacetime

coordinates x and t only implicitly through its dependence on Aα(x)
and its derivatives:

L(x,Aα(x), ∂µAα(x), . . .) = L(Aα(x), ∂µAα(x), . . .). (1.43)

(iv) Lorentz Invariance:
Noether’s theorem (see subsection 1.4.2) allows the construction

of the conserved charges Pµ and Jµν provided that the action, S,
is invariant under Poincaré transformations. From Eq. (1.40) this
implies that L must be constructed out of the Aα(x) in such a way
as to be a Lorentz scalar. In order to do so it is convenient to choose
the fields, Aα(x), to transform in (finite-dimensional) representations
of the Lorentz group:

U(ω) Aα(x) U(ω)∗ = Dαβ Aβ(exp[ω] · x). (1.44)

This, together with the transformation law for the single-particle
states, determines the coefficients, uα(p, k) appearing in Eq. (1.41).
This is the main topic of section 1.3. Lmust then be constructed from
various combinations of the fields, their derivatives and the invariant
tensors ηµν and εµνλρ.

(v) Causality:
Causality implies that bilinears of fields, such as the Hamiltonian

density, must commute at spacelike separations. This is a strong
condition, since the fields satisfy

[Aα(x, t), A∗α(y, t)] 6= 0. (1.45)

Causality is ensured provided that, for each particle, there exists
another particle (its antiparticle) of equal mass and spin, described
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by the field

Bα(x) =
∑

k

∫
d3p

2Ep(2π)3
vα(p, k) bpk eipx. (1.46)

L must depend on the fields A(x) and B(x) only through the combi-
nation

φα(x) = Aα(x) + ξB∗
α(x) , (1.47)

in which ξ is a phase, since in this case,

[φα(x, t), φ∗α(y, t)] = 0 . (1.48)

In general the antiparticle need not be distinct from the particle.
If the particle and antiparticle are identical, apk = bpk , then ξ can
be chosen such that φ = φ∗ .

This observation has three physical consequences:

(a) Antiparticles exist and couple with a strength identical to parti-
cles. This is called crossing symmetry. Since Hint involves apk

and bpk only in the schematic combination apk + b∗pk there are no
interactions that can conserve the total number of particles.

(b) For fermions the fields anticommute at spacelike separations. For
general spins the condition that bilinears, such as H0, commute
for space-like separations implies that integer-spin particles must
be bosons and half-integer-spin particles must be fermions—the
Spin-Statistics Theorem.

(c) The behavior of particles and antiparticles under symmetries such
as parity or gauge transformations are related. In particular the
electric charge of a particle is the opposite of that of the antiparti-
cle.

(vi) Stability:
The generalization of the canonical method to theories with higher

time derivatives shows that the Hamiltonian is in this case generically
linear in one of its variables. Such a Hamiltonian cannot be bounded
from below. Stability then implies that the Lagrangian must be a
function of at most one time derivative of the fields. This forbids the
appearance of more than quadratic powers of derivatives of fields in
practice.

(vii) Renormalizability:
Renormalizability may be summarized as the requirement that all
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parameters that appear in the Lagrangian must have positive dimen-
sion in powers of mass. (Our units have h̄ = c = 1.) That is to say,
if the operator O appears in L with a coefficient c:

L = c O (1.49)

then c must have dimension Md for d ≥ 0. Since all of the con-
stituents, Aα(x) and ∂µ, of O each have dimension Mp for p > 0 and
L has dimension M4, this severely limits the allowed interactions to
only include operators for which d ≤ 4.

1.3 Free field theory

In this book we will generally be interested in theories which, at least on
some energy scale, can be described in terms of weakly coupled particles; that
is, by a Hamiltonian which is dominated by a “free theory” piece H0, with
interactions HI which can be treated by perturbation theory. The standard
model turns out to be such a theory, and most of the tools we have available,
to study quantum field theories, are based on this assumption. In most of
this book we will only treat corrections to the free theory approximation at
the leading order, that is, at the lowest power in the interaction Hamiltonian
HI at which the phenomena of interest happen.

To proceed with this project we first need to see what the most general
free field theories can look like. We focus on particles with spins zero through
one since all known non-gravitational experiments appear to be describable
in terms of these, and since renormalizability seems to require an interacting
field theory to be composed of such particles.

Recall that the Hamiltonian for a system of free particles is given by

H0 = E0 +
∑

i

∫
d3p

2Ep(2π)3
Epa∗piapi (1.50)

which is quadratic in the operators api. We wish to construct the corre-
sponding Lagrangian in terms of the fields, Aα(x). Since the fields are linear
in the creation and annihilation operators the desired Lagrangian density,
L0, must also be at most quadratic in the Aα’s and their derivatives.

The discussion will use properties of the Lorentz group, which are reviewed
in appendix C.
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1.3.1 Spin-zero particles

Spin-Zero particles are described by fields that transform as scalars under
Lorentz transformations. That is,

U(ω) φ(x) U(ω)∗ = φ(Λ · x) , (1.51)

where Λµ
ν = (expω)µ

ν is a Lorentz-transformation matrix. In terms of
creation and annihilation operators,

φ(x) =
∫

d3p
2Ep(2π)3

[
ap eipx + a∗p e−ipx

]
, (1.52)

in which

Ep =
√

p2 + m2 (1.53)

and px = −Epx0 + p · x. The field φ(x) has been chosen real, as may be
done without loss of generality because any complex field can always be de-
composed into its real and imaginary parts. The energy relation, Eq. (1.53),
implies that the four-momentum pµ satisfies

pµpµ = −E2
p + p2 = −m2 (1.54)

which becomes the Klein-Gordon equation,

(−∂µ∂µφ + m2φ) = 0 , (1.55)

in position space. In the canonical approach these conditions are derived as
equations of motion from the action rather than the representation theory
of the Poincaré group.

We now consider the most general possible theory of several scalars, and
show that it always reduces to a set of independent scalars, with potentially
different masses. Consider then, a system of N types of spinless particles.
Such a system may be described in terms of N real fields, φi(x), with i =
1, ..., N . The most general Lagrangian that is Poincaré invariant, involves
only two time derivatives (Stability), and is quadratic in these N fields, is

L0 = −1
2
Aij ∂µφi∂µφj − 1

2
Bij φiφj − C . (1.56)

A sum from 1 to N is implied over repeated indices.
A term such as

Dijφ
i∂µ∂µφj

is not included since it is equivalent to

−Dij∂
µφi∂µφj
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after an integration by parts. This Lagrangian is real (Unitarity) provided
that the (symmetric) coefficients Aij , Bij and C all are.

The corresponding conjugate momentum and Hamiltonian are:

πi(x) =
∂L0

∂φ̇i
= Aijφ̇

j(x) (1.57)

so H0 = πiφ̇
i − L0

= +
1
2

[
Aijφ̇

iφ̇j + Aij∇φi · ∇φj + Bijφ
iφj

]
+ C. (1.58)

This Hamiltonian is bounded below provided that the matrices Aij and Bij

are non-negative definite. We assume in what follows that Aij is strictly pos-
itive definite, since there would otherwise be a particle without any kinetic
energy.

There are considerably more parameters appearing in the Lagrangian,
Eq. (1.56), than appeared in the Hamiltonian, Eq. (1.50). This is because
many of the constants in Eq. (1.56) may be absorbed into redefinitions of
the field variables by putting L0 into canonical form. Only linear transfor-
mations

φi = M i
jφ
′j ≡ (Mφ′)i (1.59)

need be considered since these are the only ones that ensure that L0 remains
quadratic when expressed in terms of the new variable, φ′j . We use this
freedom to put Aij and Bij into standard form.

Since Aij is assumed positive definite, its eigenvalues a1, . . . , aN are all
positive and its square root and inverse exist. If we define the new fields φ′i

as

φi = (A−1/2φ′)i , (1.60)

then L0 becomes

L0 = −1
2
∂µφ′i∂µφ′i − 1

2
B′

ijφ
′iφ′j − C , (1.61)

where

B′
ij ≡ (A−1/2BA−1/2)ij . (1.62)

This does not exhaust the freedom (1.59) to redefine fields. Indeed, the
transformation φ′ = Oϕ in which OTO = I preserves the form (1.61). Recall
now that any real symmetric matrix can be diagonalized by an orthogonal
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transformation:

OT B′O =




b1

b2

bN


 (1.63)

with bk ≥ 0 from stability. The redefinition φ′ = Oϕ with this O then
diagonalizes the mass matrix, B′

ij , giving:

L0 = −1
2
∂µϕi∂µϕi − 1

2
biϕ

iϕi − C (1.64)

and H0 =
1
2
ϕ̇iϕ̇i +

1
2
(∇ϕi) · (∇ϕi) +

1
2
biϕ

iϕi + C . (1.65)

Unless some of the eigenvalues of the matrix Bij are degenerate, this
exhausts our freedom to redefine fields. Eq. (1.64) is then the standard form
for L0. The equations of motion are

(−∂µ∂µ + bi)ϕi = 0 . (1.66)

The parameters appearing in L0 may be related to the physical vacuum
energy, E0, and masses, mi, by expressing the total Hamiltonian, Eq. (1.65),
in terms of api and comparing to Eq. (1.50):

H0 =
∫

d3x H(x)

= E0 +
N∑

i=1

∫
d3p

2Ep(2π)3
Epa∗piapi (1.67)

with Ep =
√

p2 + bi (1.68)

and E0 = C

∫
d3x +

∑

i

1
2

∫
d3p

(2π)3
Ep(2π)3δ3(p) . (1.69)

Clearly the eigenvalues bi = m2
i give the square of the particle masses.

The vacuum energy is more delicate since it diverges at both long and short
distances. The long distance divergence may be regularized by putting the
system within a space of finite, but large, volume Ω. The divergence of E0 as
Ω →∞ merely indicates that the total energy is not the quantity of physical
interest, since the total energy is by construction an extensive variable that
grows with the size of the system. The well behaved quantity in this limit
is the energy density, ρ = E0/Ω. Using

(2π)3δ3(p = 0) =
∫

Ω
d3 xei(p=0)·x = Ω , (1.70)
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the energy density is

E0

Ω
= C +

N∑

i=1

∫ Λ

0

1
2

d3p

(2π)3
Ep

= C +
1

16π2

N∑

i=1

[
Λ4 + m2

i Λ
2 − 1

4
m4

i log

(
Λ2

m2
i

)
+ o

(
m2

i

Λ2

)]
. (1.71)

The short distance divergence has been regulated by cutting off the in-
tegration at a maximum momentum, Λ. The Λ-dependence can then be
renormalized by canceling it with a Λ-dependent constant C.

1.3.2 Spin-half particles

We assume familiarity with the Dirac equation and the Lorentz group in the
following; readers unfamiliar with one or both may consult appendix C.

Spin-half particle states are labelled by |p, σ〉, in which the label σ=± 1
2

represents the projection of intrinsic angular momentum along some axis.
Representation theory of the Poincaré group implies that spin–1

2 particles
are most easily represented by spinor fields. Four component spinor fields
transform as follows under Lorentz transformations:

U(ω) ψ(x) U(ω)∗ = D(−ω) ψ(Λ · x) , (1.72)

in which D(ω) is the four-by-four matrix given explicitly by

D(ω) = exp
[

i

2
ωµνJ µν

]
, (1.73)

with the matrices J µν given, in the chiral basis which will be used through-
out this book, by

Jk =
1
2
εklmJ lm =

(
1
2σk 0
0 1

2σk

)
(1.74)

Kk = Jk0 =

(
− i

2σk 0
0 i

2σk

)
. (1.75)

Here the two-by-two matrices, σk with k = 1, 2, 3, denote the usual Pauli
spin matrices.

It is clear that this representation is block-diagonal and so is reducible.
That is, the upper two components of a spinor field never “mix” with the
lower two components under any Poincaré transformation. Therefore, it is
consistent to consider quantum field theories in which only the upper or
lower components of a spinor exist as fields of the theory. Though this does
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not happen for quantum electrodynamics–the electron can be represented
by a 4 component Dirac spinor–it turns out that it does happen for every
spinor field in the standard model.

There are two equivalent choices of notation to handle such fields, which
we will now list.

(i) Weyl Spinors:
A Weyl spinor is one for which the upper two or lower two compo-

nents are zero. That is, define left-handed and right-handed spinors
by:

ψL =
1
2
(1+γ5)ψ = PL ψ =

(
ξ

0

)
(1.76)

ψR =
1
2
(1−γ5)ψ = PR ψ =

(
0
χ

)
(1.77)

in which ξ and χ are two-component objects and γ5 is the following
four-by-four matrix:

γ5 =

(
I 0
0 −I

)
(= −iγ0γ1γ2γ3) . (1.78)

I here denotes the two-by-two unit matrix.
(ii) Majorana Spinors:

Alternately, we may work in terms of 4-component spinors where
the bottom two components are not independent but are determined
by the upper two components. Specifically, first define a two-by-two,
real antisymmetric matrix ε,

ε ≡ iσ2 =

[
0 1

−1 0

]
. (1.79)

Now note that if ξ is left-handed under Lorentz transformations, then
χ = εξ∗ is right-handed. This follows from the property,

ε σ∗i = −σi ε . (1.80)

With this in mind, a Majorana spinor is then defined by:

ψM =

(
ξ

εξ∗

)
. (1.81)

These two formulations of fermions with two independent components are
equivalent, and the choice of which one to use, to formulate a theory, is a
matter of taste. It is our preference in this book to work with the Majorana
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notation, mostly because it is simple to make contact with the 4 component
γ-matrix algebra in which calculations are generally performed.

The relation between a Majorana spinor field and the creation and anni-
hilation operators is:

ψ(x) =
∑

σ=± 1
2

∫
d3p

2Ep(2π)3
[
u(p, σ)apσeipx + v(p, σ)a∗pσe−ipx

]
. (1.82)

In this expression ψ(x), u(p, σ) and v(p, σ) are all four-component objects
with v(p, σ) defined in terms of u(p, σ) by:

v(p, σ = ±1
2
) = ±γ5u(p, σ = ∓1

2
). (1.83)

It turns out that for this decomposition to be consistent with Lorentz
invariance, the spinor u in the rest frame, p = 0, must satisfy,

mβu(p = 0, σ = ±1
2
) = m u(p = 0, σ = ±1

2
) , (1.84)

where β denotes the following matrix:

β =

(
0 I

I 0

) (
= iγ0

)
. (1.85)

The finite p generalization of Eq. (1.84) can be found by applying a boost,
using Eq. (1.73). The mass m on the righthand side is really the 4-vector pµ,
which in the rest frame has a single component, E = m. The matrix −iβ is
really the time component of a 4-vector of matrices, the Dirac matrices γµ,
so Eq. (1.84) in a general frame becomes,

(i/p + m)u(p, σ) = 0 , (1.86)

with /p defined by /p = γµpµ (and in general /a ≡ γµaµ). Eq. (1.73) uniquely
determines the Dirac matrices:

γ0 =

(
0 −i

−i 0

)
, γk =

(
0 −iσk

iσk 0

)
. (1.87)

In position space, Eq. (1.86) is the Dirac equation:

(/∂ + m)ψ = 0. (1.88)

The Dirac or gamma matrices γµ used here differ by a factor of i from the
form they would take if we adopted a ηµν = Diag[+−−−] Lorentz metric
notation. The reader should be aware of this potential notation discrepancy.
This is discussed in appendix E.

The matrix γ0 = −iβ is anti-Hermitian, while the spatial γ matrices
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are Hermitian. Therefore the Dirac matrices have inconsistent transforma-
tion properties under Hermitian conjugation. Similarly, the matrices Jk

which perform rotations are Hermitian, while the matrices Kk which per-
form boosts are anti-Hermitian; so D†(ω) does not equal D−1(ω) in general.
However, the matrix β satisfies,

β = β† = βT = β−1 , βγ†µ = −γµβ , βγ5 = −γ5β . (1.89)

Also, since J µν = −i[γµ, γν ]/4, these imply that

K†kβ = βKk , J †
k β = βJk . (1.90)

Because of these properties of β, it is convenient to define the Dirac conjugate

of a spinor, ψ, as

ψ ≡ ψ†β , (1.91)

which transforms under Lorentz transformations as

U(ω)ψ(x)U(ω)∗ = ψ(Λ · x)D−1(−ω) . (1.92)

Therefore ψψ transforms as a Lorentz scalar. As can be readily checked,
D−1(ω)γµD(ω) = Λµ

νγ
ν , so ψγµψ transforms as a vector.

It is also convenient to introduce the charge conjugation matrix C, as the
matrix which relates a Majorana spinor to its Dirac conjugate:

C =

(
−ε 0
0 ε

)
(= γ2β) , so ψM = Cψ

T

M , and ψT
M = −ψMC .

(1.93)
Its properties are,

−C = C† = C−1 = CT , γT
µC = −Cγµ , Cβ = −βC , Cγ5 = γ5C .

(1.94)
Returning to Eq. (1.86), we can solve explicitly for the spinor u(p, σ),

giving,

u(p, σ) =
1√
2

(
A+ −A−σ · p̂ 0

0 A+ + A−σ · p̂

) (
χ(σ)
χ(σ)

)
, (1.95)

where

χ

(
σ = +

1
2

)
=

(
1
0

)
and χ

(
σ = −1

2

)
=

(
0
1

)
, (1.96)

p̂ is the unit vector p̂ = p/|p|, and the coefficients A± are the following
functions of the particle energy Ep =

√
p2 + m2:

A±(p) =
√

Ep ±m. (1.97)
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As defined by Eq. (1.95), u(p, σ) satisfies the normalization condition

u(p, σ′)u(p, σ) = 2m δσσ′ . (1.98)

uu and vv are often encountered in calculations. They can be thought of
as matrices, with values

u(p, σ)u(p, σ) =
1
2
(m− i/p)(1 + iγ5s/) (1.99)

and

v(p, σ)v(p, σ) = −1
2
(m + i/p)(1 + iγ5s/) . (1.100)

In these expressions sµ(σ) is the spin four-vector. It is defined in the fol-
lowing way. Suppose the spin projection, σ = ±1

2 , is measured along the
direction defined by the unit vector e in the particle rest frame. Define sµ

in this frame by s0 = 0 and s = ±e in which the sign ± denotes the sign
of σ. The result in any other frame is found by performing the appropriate
Lorentz boost. Notice that this definition implies the following invariant
properties:

s2 = sµsµ = +1 and s · p = sµpµ = 0. (1.101)

Now we repeat the exercise of showing that it is always possible to write a
free theory of spin-half particles in a canonical form. Consider the Lagran-
gian description of a system of N noninteracting spin-half particles. Just as
there is no loss in choosing our scalar fields to be real, we may always take
our spinor fields to be Majorana. The Lagrangian must then be a Lorentz-
invariant function of N Majorana spinors, ψm, that is at most quadratic in
the fields and involves the fewest (nonzero) number of derivatives. The most
general such Lagrangian is:

L0 = −1
2
Amnψ

m/∂ψn− i

2
Bmnψ

m
γ5/∂ψn− 1

2
Cmnψ

m
ψn− i

2
Dmnψ

m
γ5ψ

n−E.

(1.102)
The Lagrangian must be Hermitian; together with the results of problem 1,
this implies that Amn, Bmn, Cmn, Dmn and E must all be real. We may
also take the matrices A, C and D symmetric and B antisymmetric, since
the operators multiplying them have the same property.

As usual, most of the parameters in this Lagrangian may be eliminated by
performing field redefinitions. The purpose of the remainder of this section
is to use this freedom to put the Lagrangian (1.3.47) into a standard form in
which all parameters have an obvious physical significance. Consider then
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the following field redefinition:

ψm = V m
nψ′n + iUm

nγ5ψ
′n, (1.103)

with real matrices V and U . This is the most general transformation that
preserves the Majorana character of the spinors and the quadratic form of
the Lagrangian. It is convenient in what follows to handle the left- and
right-handed parts of the fields separately. We therefore rewrite Eq. (1.102)
and Eq. (1.103) as

PL ψm = (V + iU)m
nPL ψ′n, (1.104)

PR ψm = (V − iU)m
nPR ψ′n. (1.105)

L0 = −1
2
[(A+ iB)mnψ

m
PL /∂ψn +

1
2
(C + iD)mnψ

m
PL ψn]+h.c.−E, (1.106)

Define the complex matricesA = (A+iB), C = (C+iD) and V = (V +iU).
The properties of A, B, C and D then imply that A is Hermitian and C is
symmetric. For stability we require that A be positive definite. In terms of
the new variables the Lagrangian is then:

L0 = −1
2
[(VTAV∗)mnψ

′m
PL /∂ψ′n− 1

2
(VTCV)mnψ

′m
PL ψ′n]+h.c.−E (1.107)

In order to simplify L0 choose V as follows:

V = (A∗)− 1
2M , (1.108)

in which M is the unitary matrix that satisfies the following property:

MTC′M =




c1

c2

cN


. (1.109)

C′ is the complex symmetric matrix C′ = [A− 1
2C(A∗)− 1

2 ]. For any such
matrix, a unitary matrix, M, always exists (see exercise). In fact, M may
always be chosen such that the numbers ck, k = 1, ..., N are all real and non-
negative. It must be emphasized that since Eq. (1.109) is not a similarity
transformation, the ck are not the eigenvalues of the matrix C or C′. Instead,
c2
k turn out to be the eigenvalues of the Hermitian matrix C′†C′.
Having made this redefinition, the Lagrangian is in canonical form:

L0 = −1
2
ψ

m/∂ψm − 1
2
cmψ

m
ψm − E. (1.110)
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The equations of motion for this action are

(/∂ + cm)ψm = 0 , (1.111)

which is recognized as the Dirac equation with mass cm. To confirm this
connection we compare the resulting free Hamiltonian with the general form
(1.50):

H0 =
∫

d3x ψ
m(γ · ∇+ cm)ψm (1.112)

= E0 +
N∑

m=1

∑

σ=± 1
2

∫
d3p

2Ep(2π)3
Epa∗pσmapσm

with E0 = E

∫
d3x−

∑
m

∑
σ

1
2

∫
d3p

(2π)3
Ep(2π)3δ3(p = 0) .(1.113)

The corresponding vacuum energy density is:

E0

Ω
= E − 1

8π2

N∑

i=1

[
Λ4 + m2

i Λ
2 − 1

4
m4

i log

(
Λ2

m2
i

)
+ o

(
m2

i

Λ2

)]
. (1.114)

Notice the relative factor of −2 between the zero-point energy, Eq. (1.114)
of free spin-half Majorana fermions and that, Eq. (1.71) of free real scalars.

1.3.3 Spin-one particles

The fields that are most convenient for representing spin-one particles differ
for massive and massless particles. This is as might have been expected
given that massive and massless spin-one particles have differing numbers
of spin states. The particle states are labelled by |p, λ〉 in which λ = ±1 for
massless particles and λ = 0,±1 for massive ones.

1.3.3.1 Massive spin-one particles

Massive particles are most conveniently represented in terms of a four-vector
field, V µ. This transforms under Lorentz transformation according to

U(ω) V µ(x) U(ω)∗ = (Λ−1)µ
ν V ν(Λ · x). (1.115)

The relation between such a field and the creation and annihilation oper-
ators for a massive spin-one particle is,

V µ(x) =
1∑

λ=−1

∫
d3p

2Ep(2π)3
[
εµ(p, λ)apλeipx + εµ∗(p, λ)apλe−ipx

]
. (1.116)

Here the three four-vectors εµ(p, λ) denote the three linearly independent
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directions that correspond to each polarization λ. For example, for linearly
polarized particles these would correspond to the three unit vectors ex, ey

and ez in the particle rest frame. For circularly polarized particles choose
instead the combinations ez and e± = 1√

2
(ex ± iey). These polarization

vectors are all characterized by the covariant constraint that is the analogue
of Eq. (1.101):

pµεµ(p, λ) = 0 . (1.117)

They satisfy the normalization condition,

εµ∗(p, λ)εµ(p, λ′) = δλλ′ , (1.118)

and completeness relation,

1∑

λ=−1

εµ(p, λ)εν
∗(p, λ) = ηµν +

pµpν

m2
. (1.119)

Together with the condition p2 + m2 = 0, Eq. (1.115) implies that in
position space V µ(x) must satisfy

(−∂2 + m2)V µ = 0 and ∂µVµ = 0. (1.120)

These are the conditions that V µ must satisfy in order to represent massive
spin-one particles.

Turn now to the Lagrangian formulation of a system of free massive
spin-one particles. We must construct the most general quadratic, Lorentz-
invariant etc. Lagrangian whose equations of motion imply Eq. (1.120). The
new feature here is that the condition that the equations of motion be equiv-
alent to Eq. (1.120) will be found to impose conditions on what form we may
entertain for the Lagrangian. This is unlike what we encountered for spin-
zero and spin-half particles where the most general Lagrangian automati-
cally implies the analogues of Eq. (1.120), i.e. the Klein-Gordon or Dirac
equations. This new feature arises because, unlike for scalar or spinor fields,
a four-vector may a priori represent particles of more than one spin. It
may correspond to either spin zero or spin one. (Schematically, a vector
represents a spin-zero particle when it is the gradient of a scalar.)

To see how this works consider the most general quadratic Lagrangian for
a single vector field, given by

L0 = −1
2
A∂µVν∂

µV ν − 1
2
B∂µVν∂

νV µ − 1
2
CV µVµ −D. (1.121)

The constants A, B, C and D must all be real. The equations of motion for
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such a Lagrangian are

A V µ + B∂µ∂νV
ν − CV µ = 0 . (1.122)

Taking the divergence of Eq. (1.122) gives the further equation,

[(A + B) − C]∂µVµ = 0 . (1.123)

These equations only imply that ∂ · V = 0 when A + B = 0 and C 6= 0. In
this case they are equivalent to Eq. (1.120). We may also always rescale V µ

to ensure that A = 1. The Lagrangian must therefore be

L0 = −1
2
(∂µVν∂

µV ν − ∂µVν∂
νV µ)− 1

2
C ′V µVµ −D

= −1
4
fµνf

µν − 1
2
C ′V µVµ −D , (1.124)

in which fµν = ∂µVν − ∂νVµ, which is called the field strength.
Comparison with Eq. (1.120) or the expression for the corresponding free

Hamiltonian implies that C ′ = C/A = m2 has the interpretation of the
squared mass of the particle being described. The vacuum energy is similarly

E0

Ω
= D +

3
16π2

N∑

i=1

[
Λ4 + m2

i Λ
2 − 1

4
m4

i log

(
Λ2

m2
i

)
+ o

(
m2

i

Λ2

)]
. (1.125)

For N massive spin-one particles the argument above, together with one
that exactly parallels that given for scalar fields, implies that the most gen-
eral Lagrangian,

L0 = −1
2
Aab∂µV a

ν ∂µV bν − 1
2
Bab∂µV a

ν ∂νV bµ − 1
2
CabV

aµV b
µ −D , (1.126)

may be rewritten as

L0 = −1
2
(∂µV a

ν ∂µV aν − ∂µV a
ν ∂νV aµ)− 1

2
C ′

aV
aµV a

µ −D

= −1
4
fa

µνf
aµν − 1

2
C ′

aV
aµV a

µ −D . (1.127)

1.3.3.2 Massless spin-one particles

Massless spin-one particles are, on the other hand, most conveniently repre-
sented in terms of an antisymmetric tensor field, fµν . The relation between
such a field and the creation and annihilation operators for a massless spin-
one particle are:

fµν(x) =
∑

λ=±1

∫
d3p

2Ep(2π)3
[
(ipµεν(p, λ)− ipνεµ(p, λ)) apλeipx + h.c.

]
.

(1.128)
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Here the two quantities εµ(p, λ) denote the linearly independent directions
that correspond to each polarization λ. Linearly polarized particles corre-
spond to the choice of the unit vectors ex and ey perpendicular to the particle
motion. The alternative combinations e± = 1√

2
(ex±iey) correspond instead

to circularly polarized particles.
Notice that Eq. (1.128) only determines the polarization vector, εµ, up to

the gauge freedom:

εµ(p, λ) → εµ(p, λ) + pµ. (1.129)

This freedom may be used to ensure that εµ satisfies the following Lorentz-
covariant properties:

pµεµ(p, λ) = pµεµ(p, λ) = 0 , (1.130)

in which pµ is a null vector pµpµ = pµpµ = 0 satisfying pµpµ = −1. The nor-
malization and completeness relations satisfied by such polarization vectors
are

εµ∗(p, λ)εµ(p, λ′) = δλλ′ (1.131)

and
∑

λ=±1

εµ(p, λ)εν
∗(p, λ) = ηµν + pµpν + pνpµ . (1.132)

Note that the null vector p is not unique; indeed, the substitution

pµ → pµ + aεµ +
a2

2
pµ , (1.133)

for any spacelike εµ satisfying ε · p = 0 = ε · p and ε∗µεµ = 1, yields a
new vector satisfying the required properties for p. However, if we choose
particular polarization vectors εµ(λ) and require p · ε(λ) = 0 for each λ, then
the choice is made unique.

In position space, the conditions, Eq. (1.128) through Eq. (1.130), imply
that

fµν = ∂µAν − ∂νAµ , (1.134)

Aµ(x) =
∑

λ=±1

∫
d3p

2Ep(2π)3
[
εµ(p, λ)apλeipx + ...

]
, (1.135)

in which the gauge potential, Aµ(x), is only defined up to the freedom,
Eq. (1.129):

Aµ → Aµ + ∂µω(x) , (1.136)
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where ω(x) is an arbitrary function. The mass-shell condition p2 = 0 then
becomes

∂µfµν = 0 (1.137)

or, using Eq. (1.136) to impose the gauge condition ∂µAµ = 0, equivalently:

Aµ = 0 . (1.138)

The corresponding free Lagrangian then is:

L0 = −1
4

N∑

a=1

fa
µνf

aµν . (1.139)

It is crucial to realize that, whereas the field-strength fµν defined in this
way is a tensor under Lorentz transformations, the gauge potential, Aµ, is
not a four-vector. Rather, it transforms as:

U(ω) Aµ(x) U(ω)∗ = Λµ
ν Aν(λ · x) + ∂µω(x), (1.140)

for some scalar field ω(x). That is, Aµ transforms as a four-vector only
up to a gauge transformation. This is a crucial observation because if we
wish to write down interactions between massless spin-one particles and
other particles that do not vanish in the zero-momentum limit (such as, for
example, the Coulomb interaction in electromagnetism) then we must build
our Lagrangian from the field Aµ rather than fµν . Since Aµ is only a Lorentz
four-vector up to gauge transformations, we see that Lorentz-invariance of
the Lagrangian requires that the interactions be invariant under the gauge
transformations of Eq. (1.136). In this way we see gauge invariance emerge
as a consequence of Lorentz-invariance for massless particles of high spin.
(A similar argument may be made for massless particles with spin 3

2 or 2,
leading to supersymmetry or general covariance.)

1.4 Implications of symmetries

We pause here for a short aside on the general symmetry features that may
arise in a Lagrangian. There are two motivations for this aside, correspond-
ing to the two roles played by symmetries in what follows. First, symmetries
are useful because they often allow us to make exact statements, even with-
out a detailed understanding of a theory’s dynamics. Namely, they can
provide general conservation laws and spectral degeneracies familiar from
quantum mechanics. Second, symmetries play a crucial role in the cou-
plings of massless (or light) spin-one particles, by virtue of the requirement
of gauge invariance that must be imposed. In this section we address the
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first of these roles in the first two subsections and return to the issue of
gauge invariance in the last subsection.

1.4.1 Symmetries and conservation laws

Perhaps the simplest example of the connection between symmetry and
a conservation law is given by the example of a discrete symmetry. For
example, suppose the Hamiltonian of a system has a symmetry, in the sense
that it remains unchanged after the replacement φ(x) → −φ(x); i.e.:

H(−φ,−∂µφ) = H(φ, ∂µφ) , (1.141)

identically for any field configuration φ(x). This ensures that there is a
conservation law, inasmuch as it is possible to define a unitary operator, X ,
which represents this replacement in the following sense:

X apX ∗ = −ap , (1.142)

and so

X φ(x)X ∗ = −φ(x) . (1.143)

Such an operator necessarily satisfies the symmetry property of a quantum
symmetry: XH = HX .

If any Hermitian operator, X , satisfies the condition [X ,H] = 0, it defines
a conservation law. (For instance, in the example being discussed the con-
dition X 2 = I together with the unitarity of X automatically ensures X is
Hermitian.) It defines a conservation law because the fact that X commutes
with H ensures that energy eigenstates may be labelled consistently by the
eigenvalues of X : X|E, x〉 = x|E, x〉. Furthermore, this label is conserved
because it cannot change under time evolution:

X|E, x; t〉 = X e−iHt|E, x〉 = e−iHtX|E, x〉 = x|E, x; t〉 . (1.144)

If it is true that X 2 = I, then the eigenvalues satisfy x = ±1.
It bears emphasis that this conservation is an exact statement, provided

only that X commutes with the exact Hamiltonian of the system, and so
can have very powerful consequences. It implies, for example, that the
lowest-energy state having eigenvalue x = −1 must be absolutely stable. It
must be stable since it cannot decay into lower energy states, since energy
conservation requires that any decay products have lower energy and yet
they must also share the eigenvalue x = −1. Since no states satisfy both
requirements, the decay cannot occur.
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1.4.2 Local conservation laws: continuous symmetries

A particularly important class of conservation laws arises in the case when
the theory has a continuous symmetry: U(g)H = HU(g), where U(g) is a
unitary operator and g is any element g ∈ G of a continuous group (which
are reviewed in appendix B). Since any element of the group g can be written
as g = exp(iεata) with ta the Lie algebra elements of the group, the unitary
operator can be written U(g) = exp(iεaQa). The operators Q defined in this
way satisfy both [Q,H] = 0 and Q∗ = Q, with the latter condition following
as a consequence of the unitarity of U(g).

This connection between a conserved charge, Q, and a symmetry holds
equally well regardless of whether one is interested in classical mechanics, ‘or-
dinary’ quantum mechanics of a few degrees of freedom, or field theory. For
example, the symmetries of time-translation, spatial translation or spatial
rotations imply the conservation of energy, linear- and angular-momentum
respectively.

A new feature which appears in field theories having continuous symme-
tries is that the resulting conservation law holds locally through the exis-
tence of a spacetime-dependent conserved current, according to Noether’s

theorem. This local conservation may be seen as follows: Suppose the La-
grangian density, L[φ, ∂µφ], is invariant with respect to the following local
transformations of the field variables, φi(x):

δφi(x) = εaF i
a[φ, ∂µφ;x], (1.145)

in which εa represent a set, a = 1, ..., N of spacetime independent infinitesi-
mal parameters and F i

a indicates a local functional of the fields. The invari-
ance of the action may be expressed as:

0 ≡ δL
=

∂L
∂φi(x)

εaF i
a +

∂L
∂(∂µφi(x))

εa∂µF i
a

=

[
∂L

∂φi(x)
− ∂µ

(
∂L

∂(∂µφi(x))

)]
εaF i

a + ∂µ

[
∂L

∂(∂µφi(x))
F i

a

]
εa.(1.146)

The first term in the final line of Eq. (1.146) vanishes once the equations
of motion for φi are used. The final line then shows that the equations of
motion imply that the four-vector Noether current,

jµ
a (x) ≡ − ∂L

∂(∂µφi(x))
F i

a , (1.147)

is conserved; ∂µjµ
a (x) = 0 for each a. (The overall minus sign is conven-

tional.) This last equation expresses conservation because it implies that
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the charge, Q, defined by

Qa(t) ≡
∫

d3x j0
a(x, t) =

∫

Σ
dΣµ jµ

a (x) , (1.148)

is time-independent: dQa/dt = 0. (Here
∫
Σ means an integration over any

spacelike surface which runs across all of spacetime, splitting it into a region
in the future of the surface Σ and a region in its past; dΣµ is the unit normal
of this surface.)

A symmetry for which the Lagrangian density is invariant as in Eq. (1.146)
is known as an internal symmetry. This is to distinguish it from spacetime
symmetries such as Poincaré transformations. In general, symmetries that
act on spacetime coordinates as well as the fields cannot leave the Lagrangian
density invariant because the Lagrangian density is not constant throughout
spacetime. In this case a slightly more general form for Noether’s theorem
is necessary.

Suppose, then, that under the transformations:

δφi(x) = εaF i
a[φ, ∂µφ; x]

δxµ = εaξµ
a (x), (1.149)

the Lagrangian density transforms into a total derivative (so the action∫ L d4x is invariant):

δL ≡ εa∂µV µ
a (1.150)

for some Lorentz-vector fields, V µ
a [φi, ∂ψ], that are local functionals of φi(x).

Repeating the arguments leading to Eq. (1.146) again implies conserved
currents, ∂µjµ

a (x) = 0, with jµ
a (x) given by

jµ
a (x) = − ∂L

∂(∂µφi(x))
F i

a + V µ
a (x) . (1.151)

Conservations laws such as these are significant because they are exact
results, and so allow conclusions even in the absence of a detailed under-
standing of the dynamics of a particular system. In a quantum theory the
conserved charges, Qa, are of particular interest since they are Hermitian and
commute with the system Hamiltonian (since they are conserved!). They are
therefore ideal operators for labelling the individual particle states. With
particle states labelled in this way, conservation laws imply general selec-
tion rules concerning how quantum numbers must be related before and
after collision processes.

It is often true that the symmetry transformation law given in the first
line of Eq. (1.149) is more general than is necessary for a particular physical
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situation. It is usually sufficient to consider symmetry transformations that
are linear in the field variables:

δφi(x) = iεa(Ta)i
jφ

j(x) . (1.152)

1.4.3 Spectral relations

The second major conclusion that may be drawn from symmetry properties
of the Lagrangian of a system concerns the system’s energy spectrum. The
general statement is that states that are related by a symmetry transforma-
tion must have the same energy. This is a simple consequence of the fact
that the conserved charge, Qa, commutes with the system Hamiltonian. If,
for instance, two energy eigenstates are related by |ψ〉 = Qa|χ〉, then

H|ψ〉 = H Qa |χ〉
= Qa H |χ〉
= Eχ Qa |χ〉
= Eχ |ψ〉. (1.153)

It follows that |ψ〉 and |χ〉 have the same energy eigenvalue, Eψ = Eχ, or
are degenerate.

In general, states in the Hilbert space fall into unitary representations of
the symmetry and all of the elements of a given representation must have
the same energy.

Now, in a field theory we would like to apply this reasoning to the single-
particle states in order to derive relations among the particle masses. This
can be done subject to a single caveat: The ground state of the theory
must be invariant under the symmetry transformations. That is to say,
if the symmetry transformations are represented in the Hilbert space by
the unitary transformations U(ε) = exp(iεaQa), then the invariance of the
ground state, |Ω〉, is expressed by: U(ε)|Ω〉 = |Ω〉 or, equivalently, Qa|Ω〉 =
0.

The connection between the invariance of the vacuum and symmetry re-
lations among particle masses arises because symmetry transformations in
field theory are usually defined as acting on the fields representing the vari-
ous particles. If the fields representing a particular two particles are related
by a symmetry transformation, it does not necessarily follow that the cor-
responding particle states are related by this same symmetry. It is this
link between the fields and the particles that relies on the invariance of the
ground state.
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To see this in some detail, suppose that the fields, φ1(x) and φ2(x), cor-
responding to particle types ‘1’ and ‘2’, are related by the action of some
symmetry:

φ1(x) = i[Q,φ2(x)] , (1.154)

where Q∗ = Q is Hermitian. Then the same is true for the corresponding
creation and annihilation operators:

a1 = i[Q, a2] . (1.155)

The particle states are therefore related as follows:

|1〉 = a∗1|0〉
= i[Q, a∗2]|0〉
= iQa∗2|0〉 − ia∗2Q|0〉
= iQ|2〉 − ia∗2Q|0〉. (1.156)

The particle states therefore satisfy |1〉 = iQ|2〉—if the no-particle state is
invariant: Q|0〉 = 0. Once it is known that the particle states are related
in this way, the arguments leading to Eq. (1.153) may be used to infer that
they have equal masses.

To summarize, the general quantum mechanical result which implies that
states which are related by symmetry transformations must be degenerate,
applies equally well within the field-theoretical context. It does not follow,
however, that particles whose representative fields are related by symmetry
transformations must be degenerate (i.e. have equal masses). This last im-
plication does hold, though, if the ground state of the system is invariant
under the action of the symmetry. It is a general feature of field theories
that the ground state need not be invariant with respect to symmetry trans-
formations. If the ground state is not invariant, the symmetry is said to be
spontaneously broken. For spontaneously broken symmetries it is generic
that naive symmetry relationships among masses fail.

The conserved currents discussed in the previous section, however, exist
regardless of whether a symmetry is spontaneously broken or not, because
Noether’s theorem only uses the invariance of the action. It is true, how-
ever, that spontaneous breaking of a symmetry makes it impossible to use
the corresponding charge to define conserved quantum numbers for particle
states.
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1.5 Renormalizable interactions

We now turn to the construction of general interactions involving particles
with spin zero, one-half or one. The goal is to construct the most general
form for these interactions that is consistent with the five principles outlined
in section 1.2. In this section the general form for renormalizable interactions
involving particles of spins zero through one is summarized, largely without
proof. The purpose is to outline the general features of these interactions.

1.5.1 Spin-zero and spin-half particles

In order to get started, consider first the most general renormalizable inter-
actions allowed for N interacting spin-zero particles. As outlined in subsec-
tion 1.3.1, we may without loss of generality represent these particles with
N real scalar fields, φi(x), i = 1, ..., N .

We are instructed to write down a Lorentz-invariant Lagrangian density,

Ls = L0 + Lint (1.157)

where L0 is the free Lagrangian of subsection 1.3.1 and Lint is the interaction
term that is by definition not quadratic or linear in the fields. Lint is to
be constructed solely from φi(x) and ∂µφi(x) subject to the requirement
(renormalizability) that it involve interactions of at most dimension four in
powers of mass. In order to do so it is necessary to compute the mass-
dimension of the fields, φi(x), themselves. This is easily done once the free
Lagrangian is put into canonical form.

Comparing with standard form, Eq. (1.64), shows that the scalar field
must have dimensions of m1 (when h̄ = c = 1) if L0 is to have dimension
m4. This may then be used to infer the restrictions imposed on Lint by renor-
malizability. It is easy to now show that the most general renormalizable
interactions possible among N spin-zero particles are:

Ls = L0 − V (φ)

= −1
2
∂µφi∂µφi − ρ− viφ

i − 1
2
µ2

ijφ
iφj − 1

3!
ξijkφ

iφjφk

− 1
4!

λijklφ
iφjφkφl . (1.158)

The generalization to include also spin-half particles is again straightfor-
ward. Inspection of the canonically normalized kinetic term, Eq. (1.110),
implies that a spinor field carries dimension m

3
2 . This implies that the most

general renormalizable Lagrangian involving spins zero and one-half must
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be:

Lm = Ls− 1
2
ψ

n/∂ψn− 1
2
mnψ

n
ψn−gmniψ

m
ψnφi− ihmniψ

m
γ5ψ

nφi. (1.159)

Here Ls is as in Eq. (1.158) and the new spin-half/spin-zero interaction
terms are known generically as Yukawa couplings.

1.5.2 Spin-one couplings: gauge invariance

We would like to write down a general set of renormalizable couplings in-
volving particles from spins zero through one. It turns out not to be possible
to do so for the massive spin-one particle (apart from one exception that is
a special case of the general situation considered below). We turn therefore
directly to the case of massless spin-one particles.

The straightforward thing to try is to couple massless spin-one particles to
other particles by writing down interactions that involve the field-strength,
fµν . Dimension counting again shows that this is impossible because the free
Lagrangian, Eq. (1.139), implies that fµν has dimensions of M2. The lowest-
dimension interaction possible would then be something like ψγµνψfµν which
has dimension M5 and so is not renormalizable.

The only remaining possibility then is to build couplings directly from the
gauge potential, Aµ(x). This is somewhat delicate, because as we have seen,
Aµ(x) does not transform as a four-vector—it is only a four-vector up to a
gauge transformation: Aµ → Aµ + ∂µω. It follows that the interaction La-
grangian itself will only be Lorentz-invariant provided that the interactions
are required to be gauge invariant.

It is beyond the scope of this book to work out the requirements of gauge
invariance in all of their detail. We content ourselves here with simply
motivating the construction and then quoting the final results.

Suppose, then, that we write down an interaction term:

Lint = Aµ(x)Jµ[φ], (1.160)

with Jµ[φ] some four-vector function of the other fields and possibly their
derivatives. Under a gauge transformation, δAµ(x) = ∂µω(x), if δφi = 0,
this interaction Lagrangian transforms to:

δLint(x) = ∂µω(x)Jµ[φ(x)]. (1.161)

We need to cancel Eq. (1.161) with the contribution from another term in the
Lagrangian. One can imagine doing so in one of two ways. Extra interaction
terms can be added, and/or the transformation rules can be altered. The
first of these options must fail in the present instance because the required
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term would have to be linear in the gauge potential in order to produce a
variation like Eq. (1.161), and Eq. (1.160) is already the most general such
Lagrangian.

The required transformation rule may be most easily seen by repeating
the steps leading to Eq. (1.146) in the proof of Noether’s theorem, with one
alteration. In the previous section Noether’s theorem was derived subject
to the condition that the transformation parameter, εa, be independent of
spacetime position, xµ. In the present case, however, the transformation
parameter, ω, cannot be spacetime independent because the gauge potential
transforms into its gradient. Consider, then, the variation of the Lagrangian
under a transformation as in Eq. (1.145):

δφi(x) = εa(x)F i
a[φ, ∂µφ; x], (1.162)

but with the transformation parameter a function of xµ. Suppose further
that the Lagrangian would be invariant if εa had been chosen as constant.
The Lagrangian in this case fails to be invariant with spacetime dependent
εa only because of its dependence on the derivatives, ∂µφi, of the fields. The
variation of the Lagrangian therefore becomes:

δL =
∂L

∂φi(x)
εa(x)F i

a[φ, ∂µφ; x] +
∂L

∂(∂µφi(x))
∂µ(εa(x)F i

a[φ, ∂µφ; x])

=
∂L

∂(∂µφi(x))
F i

a[φ, ∂µφ;x]∂µεa(x)

= −jµ
a (x)∂µεa(x). (1.163)

Comparing Eq. (1.161) with Eq. (1.163) shows that the gauge variation of
the spin-one coupling can cancel against the variation of the spin-zero and
spin-half ‘matter’ Lagrangian if

(i) the coefficient function, Jµ
a [φ], is identified with the conserved cur-

rent,

Jµ
a [φ] = jµ

a (x), (1.164)

associated with a symmetry of this matter Lagrangian, and
(ii) the gauge transformations are enlarged to include the transformation

of the matter fields with respect to this symmetry with a spacetime-
dependent parameter:

δAµ(x) = ∂µω(x) (1.165)

δφi(x) = ω(x)F i[φ, ∂µφ; x]. (1.166)
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This promotion of a spacetime independent symmetry of the matter La-
grangian to a spacetime dependent symmetry of the matter/spin-one La-
grangian is called the gauging of the symmetry. The corresponding spin-one
particles are known as gauge bosons.

More generally, if there are more than one spin-zero fields and if the
symmetries involved transform one spin-one particle into another, then the
conserved current, jµ

a (x), will itself depend on the Aa
µ(x)’s. This leads to

self-couplings of the gauge bosons amongst themselves. Such a symmetry is
called a nonabelian symmetry, and will require a generalization of the above
discussion. We here summarize the results of such a generalization.

Consider a (renormalizable) Lagrangian, Lm[φ], depending on a collection
of spin-zero and spin-half ‘matter’ fields. Suppose that Lm is invariant
with respect to the following global (i.e. spacetime-independent) symmetry
transformations:

δφi(x) = iωa(Ta)i
jφ

j(x). (1.167)

In general, repetition of several symmetry transformations produces fur-
ther symmetries so the transformations, Eq. (1.167), form a Lie algebra

and the matrices (Ta)i
j necessarily satisfy the commutation relations (see

appendix B):

[Ta, Tb] = if c
abTc (1.168)

where the coefficients f c
ab are a set of numbers that are characteristic of the

algebra involved. The good news is: all of the algebras of this type that are
of physical interest have been found and are cataloged once and for all.

The most general renormalizable way to couple this Lagrangian to a bunch
of spin-one particles is given by the following prescription:

(i) Associate each spin-one particle, Aa
µ(x), with one of the generators,

(Ta), of the symmetry algebra.
(ii) Replace ordinary spacetime derivatives everywhere in Lm with the

following covariant derivatives:

Dµφi(x) ≡ ∂µφi(x)− iAa
µ(x)(Ta)i

jφ
j(x). (1.169)

(iii) Add the following gauge-boson Lagrangian:

Lg ≡ −1
4
F a

µνF
aµν , (1.170)

with the covariant field strength, F a
µν(x), defined by:

F a
µν ≡ ∂µAa

ν − ∂νA
a
µ + fa

bcA
b
µAc

ν . (1.171)
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The total Lagrangian is then given by the sum: L = Lm[φ,Dµφ] +Lg. It
is invariant (in fact Lm and Lg are separately invariant) under the local or
gauged generalization of transformation, Eq. (1.167):

δAa
µ(x) = ∂µωa(x)− fa

bcω
b(x)Ac

µ(x), (1.172)

δφi(x) = iωa(x)(Ta)i
jφ

j(x). (1.173)

1.6 Some illustrative examples

Before proceeding it is useful to consider a few illustrative examples.

1.6.1 Quantum electrodynamics: an abelian gauge theory

Consider, first, the theory describing physics at scales below the mass of the
muon, mµ = 106 MeV. The elementary particles in this energy range are the
electron and the neutrinos, represented by a Dirac-spinor field, e, and three
Majorana spinor fields, νi(x); and the photon, represented by the gauge
potential, Aµ(x). We wish to write down the most general renormalizable
interactions of these particles, which should furnish a reasonable description
of their behavior at energies much less than 2mµ.

From the previous discussion, the coupling of the photon must be to some
conserved current—in this case electric charge. The current is

Jµ
em(x) = −ie eγµe(x), (1.174)

(where unfortunately the electric coupling and the electron field have the
same symbol e and must be told apart by context), and the corresponding
local symmetry transformation is therefore:

δe(x) = −ieω(x)e(x),

δνi(x) = 0,

δAµ(x) = ∂µω(x) . (1.175)

The most general renormalizable interaction must therefore be

L = −e( /D + me)e− νi(/∂ + mνi)νi − 1
4
FµνF

µν , (1.176)

in which

Fµν = ∂µAν − ∂νAµ

and: Dµe(x) = ∂µe(x) + ie Aµ(x)e(x). (1.177)

Eq. (1.176) has two features that are worth remarking on here. The first is
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that the Lagrangian has broken up into the sum of two terms: L = LQED+Lν

in which LQED is independent of the neutrino fields and Lν depends only
on the neutrino fields. Since Lν is quadratic this implies that the neutrinos
cannot interact at all with the other particles through renormalizable inter-
actions. This is the major part of the present understanding of why it is that
neutrinos couple so feebly to the rest of matter. The other observation is that
the part of the Lagrangian, LQED, that depends on electrons and photons
is precisely the standard Lagrangian for Quantum Electrodynamics (QED).
This Lagrangian is indeed known to give an extremely precise description
of the interactions of electrons and photons. We here have the beginnings
of an explanation of why it must have the form that it does. To the extent
that any theory at higher energies has the observed spectrum of particles
and preserves the conservation of electric charge, it must reproduce QED
at energies, E, well below the mass of the muon, up to nonrenormalizable
corrections that are suppressed by powers of (E/mµ).

1.6.2 Scalar electrodynamics: spontaneous symmetry breaking

The gauge invariant Lagrangian of the previous sections appears to have the
serious drawback that it can only describe the interactions of massless spin-
one particles. This turns out not to be true, as we shall demonstrate using a
less orthodox example, called the abelian Higgs model. The theory consists
of a single charged spinless particle, with complex field φ(x), coupled to
electromagnetism, Aµ(x).

The most general renormalizable matter Lagrangian that is invariant un-
der the global rephasing (or U(1)) symmetry φ → eieωφ (and is analytic in
φ) is

Lφ = −∂µφ∗∂µφ− a(φ∗φ)2 − b(φ∗φ)− c . (1.178)

Gauging this symmetry and coupling to the photon gives the Lagrangian,

L = −1
4
FµνF

µν −Dµφ∗Dµφ− a(φ∗φ)2 − b(φ∗φ)− c , (1.179)

in which

Dµφ = ∂µφ− ie Aµφ , (1.180)

and the field strength is as in Eq. (1.177). Although stability implies that
the real constant a = λ2 must be nonnegative, the sign of b is arbitrary.

We wish to extract the spectrum of this theory for weak couplings: e ¿ 1
and λ2 ¿ 1. There are two qualitatively different possibilities, depending on
the sign of b. If b = µ2 is positive, then the unperturbed Lagrangian simply
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consists of those terms that are quadratic in the fields. The spectrum for this
unperturbed theory was worked out in the previous sections and consists of a
massless spin-one photon and a charged, spinless particle with mass m2

φ = µ2

(see the sentence following Eq. (1.69)).
Things are different if it should happen that b = −µ2 were negative. In

this case a naive repetition of the steps outlined earlier would have us identify
the quadratic part of Eq. (1.179) as the unperturbed Lagrangian. One sign
that this cannot be quite right is that the mass of the spinless particle in this
unperturbed theory would then be imaginary: m2

φ = −µ2. A tachyonic mass
such as this is the sign that the assumed ground-state field configuration—in
this case φ = 0—is unstable, since a negative squared-mass implies that the
field modes with |p| < µ have a complex energy: E =

√
p2 − µ2 = Er− iEi,

and so have a runaway time dependence: exp(−iEt) = exp[+Eit− iErt].
More properly, since we are interested in the energies of the lowest exci-

tations about the ground state—i.e. the vacuum—we must first check that
we have properly identified the ground state. The weak-coupling limit we
are interested in may be used to justify doing so semiclassically. In the
semiclassical limit the ground state is just described by its classical field
configuration. Being a ground state, this configuration must by definition
minimize the energy. Furthermore, the energy of the configuration is semi-
classically dominated by the classical energy which is easily computable from
the system’s Lagrangian. In the present instance the energy density is

H =
∂φ

∂t

∗∂φ

∂t
+ Dφ∗ ·Dφ + λ2(φ∗φ)2 + bφ∗φ + c +

1
2
(E2 + B2) . (1.181)

Since this is a sum of non-negative terms, it is minimized by minimizing
each term separately. The electromagnetic field energy is minimized at zero
field, B = E = 0, and the gradient terms in the scalar energy are smallest
for constant fields, ∂φ/∂t = ∇φ = 0. If b ≥ 0 then the potential energy
is also minimized by zero field, φ = 0, as was implicitly assumed above. If
b = −µ2, however, then the scalar field energy is minimized when φ∗φ ≡
v∗v = µ2/(2λ2).

The low-energy excitations are found semiclassically by perturbing about
this stable field configuration. The unperturbed system consists of all terms
that are quadratic or less in the fluctuations about the minimum-energy
field configuration. Since the ground state constructed in this way is by
construction stable, tachyonic modes never appear in such an expansion.
When b ≥ 0 and the ground state configuration is zero, this agrees with the
naive treatment outlined earlier.

For b < 0 we must expand instead in powers of the difference: ϕ ≡ φ− v.
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Doing so with the Lagrangian of Eq. (1.179) gives the following unperturbed
result:

L0 = −1
4
FµνF

µν − ∂µϕ∗∂µϕ + ie Aµ(v∂µϕ∗ − v∗∂µϕ)− e2v∗v AµAµ

−V0 − λ2(v∗ϕ + vϕ∗)2. (1.182)

The constant V0 contains all of the ϕ-independent terms and so represents
the ground-state energy density.

Unfortunately, because of the terms that mix the vector with scalar fields,
we cannot directly use the results of the previous chapter to read off the
particle spectrum. Happily enough, gauge invariance now comes to our aid.
Recall that the Lagrangian, and so all of the physics, is unchanged by the
gauge transformation

Aµ(x) → Aµ(x) + ∂µω(x)

φ(x) → exp[ieω(x)]φ(x) . (1.183)

We may therefore use this freedom to redefine fields to put the Lagrangian
into a particularly convenient form. A particularly useful choice for the
present purposes is to use the transformations of Eq. (1.183) to make the
scalar field everywhere real, φ∗(x) = φ(x) for all x. The utility of this choice
arises from the observation that the Aµ∂µϕ-cross terms then vanish.

The spectrum may now be directly read off as before. The quadratic terms
in the electromagnetic potential describe a spin-one particle with mass M2

A =
2e2v2. The photon is no longer massless! The spin-zero sector now consists
of a single real scalar of mass m2

ϕ = 4λ2v2 = 2µ2. Since the gauge condition
completely eliminates the imaginary part of the scalar field, an entire scalar
degree of freedom has been ‘removed’ from the spectrum. This degree of
freedom has re-emerged as the longitudinal spin state of the massive spin-
one particle. This process, in which a vector field ‘eats’ a scalar one in the
process of becoming massive, is known as the Higgs mechanism.

The process of using the gauge freedom to impose conditions on the fields
is known as ‘choosing a gauge’. The choice made here is known as ‘unitary’
or ‘physical’ gauge since it makes the spectrum of the theory easy to identify.

The lesson to be learned is that a gauge symmetry need not imply that the
corresponding spin-one gauge particle need be massless. This is the second
time we’ve encountered an exception to a general symmetry consequence for
the particle spectrum. The circumstances here are similar to those described
in subsection 1.4.3. In both cases the root cause lies in the fact that the
ground state is not invariant under the symmetry in question, and it is
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this non-invariance that ruins the symmetry predictions for the spectrum
of fluctuations about that ground state. This is again the phenomenon of
spontaneous symmetry breaking.

To see that the ground state indeed breaks the relevant symmetry in the
present example, notice that any ground state field configuration φ = v is
not invariant under the transformations of Eq. (1.183). This condition is
intimately related to what was our working definition of spontaneous sym-
metry breaking in subsection 1.4.3. There we defined it by the condition
that the conserved charge, Q, not annihilate the ground state, Q|Ω〉 6= 0.
The one condition is a consequence of the other, since 〈Ω|φ|Ω〉 = v 6= 0 im-
plies that the commutator 〈Ω|[Q,φ]|Ω〉 cannot be zero as would be required
if Q|Ω〉 = 0.

1.6.3 QCD: an SU(3) gauge theory

To a good approximation, the theory of nuclei and their constituents is
QCD, a gauge theory with group SUc(3). We review it here in some detail,
because it is a good lesson in how nonabelian gauge theories work, as well
as being directly a component of the standard model.

The theory of QCD contains several types of Dirac fermions called quarks,
labeled u, d, s, . . . for up, down, strange, . . .. (There are 6 altogether, named
u, d, s, c, b, and t, but only u, d, s are light.) However, when we say there
is “a” quark u, we really mean there are three quark fields, written ur, ug,
and ub (rgb for “red,” “green,” and “blue”), which have exactly the same
mass; similarly, d, s, . . . are replicated in triplicate, also labeled r, g, b. It is
convenient to group these three fields in a column vector, [ur ug ub]T , or ua in
index notation. It is customary when possible to suppress this index (matrix
notation), and it is important to appreciate that the index a is not the
spinorial index we have already met–each ur, ug, ub has 4 spinor components.
When one writes uu, it really means uaua with the a sum implicit and where
the spinor indices are summed over for each color separately (spinorial and
color indices are independent). The free Lagrangian for the up quarks is,

L0,u = −ua(/∂ + mu)ua ≡ u(/∂ + mu)u , (1.184)

and the Lagrangians for the d, s quarks are similar.
At the free theory level, nothing would change if we made the replacement,

[ur ug ub]T → [ug −ur ub]T , exchanging the role of red and green quarks.
More generally, nothing is changed by making an arbitrary unitary rotation
ua → Ũabub, Ũ † = Ũ−1, under which the free Lagrangian changes to

−ua(/∂ + mu)ua → −ubŨ
†
ba(/∂ + mu)Ũacuc = −ua(/∂ + mu)ua . (1.185)



44 Field theory review

At the free level, the theory has a symmetry under U(3) (3 × 3 unitary
matrix) rotations between the u quarks—and separately under independent
U(3) rotations of each other quark type. This U(3) matrix can be decom-
posed as Ũ = eiθU , with U ∈ SU(3) a special unitary matrix, that is,
unitary matrix of determinant 1. Any U(3) matrix can be exponentiated
as Ũ = exp(iM̃) with M̃ a Hermitian 3 × 3 matrix, and U = exp(iM),
with M Hermitian and traceless. An N × N complex Hermitian matrix
has N2 independent entries, and the tracelessness condition removes one,
so there are 8 independent parameters to describe M . Such matrices can
always be written in terms of a standard basis of traceless Hermitian ma-
trices, U = exp(iωαλα/2), with ωα some coefficients and λα the Gell-Mann
matrices, explicitly,

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i

0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i

0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (1.186)

chosen to be orthogonal and satisfy trλ2
α = 2. (Do not confuse the index α

with the indices a, b earlier: the α index runs over the 8 independent such
matrices, while a, b are row and column indices for these matrices and run
over 3 values.) The Gell-Mann matrices satisfy an algebra,

[
λα

2
,

λβ

2

]
= ifγ

αβ
λγ

2
, (1.187)

where fγ
αβ, the structure constants of the group SU(3), are real and anti-

symmetric in all 3 indices.
As an interacting theory, the rotations in which u, d, s, . . . are each rotated

by the same SU(3) matrix are gauged. (The gauge interactions break all the
remaining symmetries except each U(1) symmetry associated with rotating
each quark species. We return to this issue in section 2.5.) The derivative
in Eq. (1.184) must be made covariant,

Lu = −u( /D + mu)u , Dµ = ∂µ − ig3G
α
µ

λα

2
. (1.188)

Here Gα
µ are eight gauge fields, called gluon fields, with the sum on α implicit
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and g3 a coupling constant analogous to the electric charge of QED, called
the strong coupling (frequently written gs). (Remember that we suppress
matrix indices: λ is a 3× 3 matrix multiplying the column vector u, so λαu

means (λα)abub.) Under an infinitesimal gauge transformation,

u →
(

1 + ig3ω
α λα

2

)
u , (1.189)

and taking Gα
µ to change to Gα

µ + δGα
µ under gauge transformations, this

Lagrangian changes to,

Lu → u

(
1− ig3ω

α λ†α
2

) [
mu + γµ

(
∂µ − ig3(Gβ

µ + δGβ
µ)

λβ

2

)]
×

(
1 + ig3ω

γ λγ

2

)
u

= u

[
mu + γµ

(
∂µ − ig3G

α
µ

λα

2
− ig3δG

α
µ

λα

2

+ig3(∂µωα)
λα

2
+ ig2

3f
α

βγGβ
µωγ λα

2

)]
u , (1.190)

(at linear order in infinitesimal ω), which is unchanged only if we identify
the change under gauge transformations of the field G as

δGα
µ = ∂µωα − gfα

βγωβGγ
µ . (1.191)

The combination ∂µGα
ν − ∂νG

α
µ transforms quite nontrivially under this

gauge transformation rule, and is not the correct object to identify as a
field strength. However,

Gα
µν ≡ ∂µGα

ν − ∂νG
α
µ + gfα

βγGβ
µGγ

ν (1.192)

transforms as

Gα
µν → Gα

µν − fα
βγωβGγ

µν , (1.193)

and therefore the combination Gα
µνG

αµν is invariant. It appears in the La-
grangian with coefficient −1/4.

The physics of this theory is quite nontrivial and occupies chapter 8 and
chapter 9.

1.7 Problems

[1.1] Identities for Majorana spinors
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Prove the following useful relations for Majorana spinors ψ1, ψ2,

ψ1ψ2 = + ψ2ψ1 ,

ψ1γ
5ψ2 = + ψ2γ

5ψ1 ,

ψ1γ
µψ2 = − ψ2γ

µψ1 ,

ψ1γ
µγ5ψ2 = + ψ2γ

µγ5ψ1 ,

ψ1[γ
µ, γν ]ψ2 = − ψ2[γ

µ, γν ]ψ1 .

Hint: it is possible to invert the order of a series of matrices which con-
tract a column vector on the right and row vector on the left, cM1M2v =
vT MT

2 MT
1 cT , for instance. However, since the operators ψ1, ψ2 are anti-

commuting objects, there is a factor of -1 when doing so here; so ψ1ψ2 =
−ψT

2 ψ
T

1 . Use this manipulation, and the identities in Eq. (1.93) and
Eq. (1.94).

Next, show that for any spinors, Hermitian conjugation takes the form,
(
ψ1ψ2

)†
= +ψ2ψ1 ,

(
ψ1γ

5ψ2

)†
= −ψ2γ

5ψ1 ,
(
ψ1γ

µψ2

)†
= −ψ2γ

µψ1 ,
(
ψ1γ

µγ5ψ2

)†
= −ψ2γ

µγ5ψ1 ,
(
ψ1[γ

µ , γν ]ψ2

)†
= −ψ2[γ

µ , γν ]ψ1 ,

by using repeatedly Eq. (1.90). Note that Hermitian conjugation involves
a reversal of the order of operators, so (ψ†1ψ2)† = ψ†2ψ1 without a minus
sign.

Combine these to get the following relations for Majorana spinors:
(
ψ1ψ2

)†
= + ψ1ψ2 ,

(
ψ1γ

5ψ2

)†
= − ψ1γ

5ψ2 ,
(
ψ1γ

µψ2

)†
= + ψ1γ

µψ2 ,
(
ψ1γ

µγ5ψ2

)†
= − ψ1γ

µγ5ψ2 ,
(
ψ1[γ

µ, γν ]ψ2

)†
= + ψ1[γ

µ, γν ]ψ2 .

Use these to justify the requirements on the coefficients A, B, C, D, and
E mentioned under Eq. (1.102).
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[1.2] O(N) scalar theories
The kinetic term 1

2∂µϕi∂
µϕi for N real scalar fields is invariant under

a symmetry ϕi → Oijϕj , where OTO = 1, i, j = 1, ..., N . These form the
group of N ×N real orthogonal matrices O(N). When N is even, O(N)
contains as a subgroup the group of (N/2)× (N/2) complex unitary ma-
trices, U(N/2). When the interactions respect only this subgroup rather
than the full O(N) group, it is often convenient to use complex fields.

[1.2.1] Example 1: N=2.

(i) Write down the most general renormalizable Lagrangian for two
real scalar fields, ϕ1 and ϕ2, subject to the discrete symmetries
ϕ1 → −ϕ1, ϕ2 → ϕ2 and ϕ1 → ϕ1, ϕ2 → −ϕ2.

(ii) Re-express this Lagrangian in terms of the complex variables
ψ = 1√

2
(ϕ1 + iϕ2) and ψ∗ = 1√

2
(ϕ1 − iϕ2).

(iii) In this case the groups O(2) and U(1) are equivalent to one
another. If the O(2) transformations are written

O(θ) =

(
cos θ sin θ

− sin θ cos θ

)
,

find the transformation rules for ψ and ψ∗.
(iv) What further restrictions are placed on the Lagrangian by re-

quiring that it be O(2) invariant (including interaction terms)?
Write the resulting Lagrangian in terms of both the variables
(ϕ1, ϕ2) and (ψ, ψ∗).

(v) Assuming the coupling to be weak, allowing a semiclassical ap-
proximation, what is the ground state (i.e. background value for
the fields) and spectrum (i.e. masses) of this O(2)-symmetric
model if the coefficient of the quadratic term of the potential is
positive? What are the ground states and spectrum if the coef-
ficient of the quadratic term is negative? Which field represents
the Goldstone boson?

[1.2.2] Example 2: N=4.

(i) What is the most general form for a renormalizable theory of
four real scalars, (assuming as above invariance under separate
reflections of each field)?

(ii) In this case the maximal symmetry group is O(4) which consists
of 4 × 4 real orthogonal matrices. These by definition are the
group that leaves φT φ = (φ1)2 + (φ2)2+ (φ3)2 + (φ4)2 invariant.
As a group O(4) is equivalent to SU(2) × SU(2). This can be
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seen as follows: Define the complex fields ϕ = 1√
2
(φ1 + iφ2) and

ψ = 1√
2
(φ3 + iφ4) together with their complex conjugates and

construct the 2 × 2 matrix whose columns are χ ≡
(

ϕ

ψ

)
and

χ̄ ≡ εχ∗ =

(
ψ∗

−ϕ∗

)
, i.e.

Φ =

(
ϕ ψ∗

ψ −ϕ∗

)
.

Then Φ satisfies:

Φ̄ ≡ εΦ∗ε = Φ , (1.194)

detΦ = −(ϕ∗ϕ + ψ∗ψ) = −1
2

4∑

i=1

φ2
i = −1

2
φT φ . (1.195)

The group O(4) can therefore be described as those linear trans-
formations of Φ that preserve Eq. (1.194) and Eq. (1.195). Show
that these conditions are satisfied by

(a) Φ → UΦ; or
(b) Φ → ΦV

for U and V arbitrary 2×2 complex unitary matrices with
unit determinant. Transformations (A) and (B) each form
an SU(2) group and O(4) ≈ SU(2)× SU(2).

(iii) The complex variable χ =

(
ϕ

ψ

)
is convenient if invariance

under only one of the SU(2)’s is required. Choosing this to be the
SU(2) formed by multiplication on the left, χ and χ̄ transform
as doublets: χ → Uχ, χ̄ → Uχ̄. Construct the most general
Lagrangian consistent with invariance under a single SU(2). Did
you include the invariant term

3∑

a=1

(χ+τaχ)(χ+τaχ)

with τa being the Pauli matrices? Should you? Which terms, if
any, are not invariant under the “other” SU(2)?

(iv) For the SU(2)-invariant model, give the ground state and spec-
trum in the semi-classical approximation for both choices of sign
for the coefficient of the quadratic term of the potential. When
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the background field is non-zero, what subgroup of the original
invariance group leaves the background fields invariant? What
is the dimension of this subgroup? What is the dimension of the
original symmetry group? How many massless states are there?

[1.3] Vacuum energies
Consider the model consisting of one free Majorana fermion and one

complex scalar field:

L = −1
2
ψ̄(/∂ + m)ψ − (∂µϕ)∗(∂µϕ)− µ2ϕ∗ϕ.

The Hamiltonian density for this model is

H(x) = ϕ̇∗ϕ̇ + (∇ϕ)∗(∇ϕ) + µ2ϕ∗ϕ

+
1
2
ψ̄(γ · ∇+ m)ψ

Use the mode expansions,

ϕ(x) =
1√
2

[
ϕ(1) + iϕ(2)

]

ϕ(i)(x) =
∫

d3p
(2π)32Ep

[
eipxa(i)

p + e−ipxa∗(i)p

]

ψ(x) =
∑

σ=± 1
2

∫
d3p

(2π)32Ep

[
up,σeipxbp,σ + vp,σe−ipxb∗p,σ

]

to express the total energy, H, in terms of the creation and annihilation
operators a

(i)
p and bp,σ. What is the zero-point energy in this theory?

What is the zero-point energy when µ = m? Assume the standard order-
ing convention: AB → 1

2(AB + BA) ≡ 1
2{A, B} when quantizing. Also

assume the standard relations:

[a(i)
p , a

∗(j)
p′ ] = 2Ep(2π)3δ3(p− p′)δij

{
bp,σ,b

∗
p′,σ′

}
= δσ,σ′2Ep(2π)3δ3(p− p′)

and [
a(i)
p , bp′,σ

]
= 0 etc.
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[1.4] Symmetries and Yukawa interactions
Consider a theory with one Majorana fermion, and two real scalar fields

ϕ, χ subject to the symmetry:

δψ = iωγ5ψ

δϕ = 2ωχ

δχ = −2ωϕ

for ω an infinitesimal, spatially constant parameter.

[1.4.1] Write down the most general renormalizable Lagrangian coupling
the scalars to each other and to the fermion. Identify the vacuum
field configuration and mass spectrum both in the broken and unbroken
phases (i.e. for both choices of sign for the coefficient of the quadratic
term of the potential).

[1.4.2] Couple a spin-one particle to this symmetry; i.e., write down co-
variant derivatives for the fields ψ, χ and ϕ and construct an action
invariant with respect to these transformations with ∂µω 6= 0. Again
identify the spectrum in both broken and unbroken phases.

[1.5] Spinor identities
Derive the following formulae concerning the spin 1

2 wave function:

u(p, σ)ū(p, σ) =
1
2
(m− i 6p)(1 + iγ5 6s)

and
∑

σ=± 1
2

u(p, σ)ū(p, σ) = (m− i 6p).

In which pµ is the particle four-momentum and sµ is a four vector whose
components in the rest frame are s◦ = 0, s = 2σe where e is the unit
vector in the direction along which the spin components, σ = ±1

2 , are
measured. (Choose e to lie along the positive x3-axis.) Notice these imply
the frame-independent conditions: sµsµ = +1 and sµpµ = 0. Recall, also
that (i 6p + m)u(p, σ) = 0 and pµpµ = −m2.

Hint: Since u(p, σ)ū(p, σ) is a 4 × 4 matrix, expand it in terms of the
basis matrices S, P, V, A and T , defined as S = 1, P = γ5, V = γµ,
A = γµγ5, and T = [γµ, γν ]. Since Epuū transforms covariantly un-
der Lorentz transformations, the coefficients of these matrices are scalars,
pseudoscalars, vectors, etc. Evaluate the coefficients by taking traces after
multiplying by an appropriate matrix. It may prove convenient to eval-
uate those coefficients that transform as vectors and tensors in the rest
frame of the particle.

Is the resulting expression well behaved in the zero-mass limit?
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[1.6] Fermion Mass Matrix Diagonalization
Prove the theorem that, for any complex, symmetric matrix, A, there

exists a unitary matrix, U , for which:

UT AU = M

is real, diagonal and non-negative. (Recall we used this theorem to show
that the spin-1

2 mass matrix could always be put into standard form.)
(Hint: Notice that this would be trivial if [A,A†] = 0 because then if

we break A into its real and imaginary parts, A = R + iS for R, S real
and symmetric, we see that [A, A†] = 2i[S, R] = 0. Since S and R are
both real and symmetric and commute, they can both be diagonalized by
the same real orthogonal matrix, O. This implies that OT AO = diag.

and we could define U = OD with D being a diagonal matrix whose
elements are phases that can be chosen to make the entries of M real and
non-negative. In the general case when [A,A†] 6= 0, we know that A†A
is Hermitian and so is diagonalizable by a unitary matrix, V . Define the
new matrix B ≡ V T AV and show that B = BT and [B, B†] = 0.)

[1.7] A Dirac Matrix Identity
Prove the identity which shows that γµνγ5 is not linearly independent

of εµνλργ
λρ:

εµνλργ
λρ = 2i γµν γ5 . (1.196)

Here γµν = 1
2 [γµ, γν ].

[1.8] More useful identities: Prove the following identities:

[1.8.1]

γµγνγλγρPR = (ηµνηλρ − ηµληνρ + ηµρηλν − iεµνλρ)PR (1.197)

+(ηµνγλρ − ηµλγνρ + ηµργνλ − ηνλγρµ + ηνργλµ − ηλργνµ)PR .

Here PR = 1
2(1 − γ5) is the usual projection matrix onto left-handed

spinors and γµν = 1
2 [γµ, γν ] is half of the commutator of two Dirac

matrices.
[1.8.2] For X and Y any product of an odd number of gamma matrices

prove the following trace formula:

Tr[XY PR ] =
1
2

Tr[XγµPR ] Tr[Y γµPL ]. (1.198)

PR is as before and PL = 1
2(1 + γ5).
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[1.9] Fiertz Rearrangements
The sixteen Dirac matrices I, γ5, γµ, γµγ5 and γµν = 1

2 [γµ, γν ] provide
a basis in terms of which any 4-by-4 complex matrix can be expressed
(prove this). Given this property, show that this provides the following
useful way to rewrite a dyadic product of two anti-commuting spinors:

PL [ψ1ψ2]PR = − 1
4

[ψ2γ
µPL ψ1] γµPR

PR [ψ1ψ2]PL = − 1
4

[ψ2γ
µPR ψ1] γµPL (1.199)

PL [ψ1ψ2]PL = − 1
2

[ψ2PL ψ1] PL − 1
8

[ψ2γ
µνPL ψ1] γµνPL

PR [ψ1ψ2]PR = − 1
2

[ψ2PR ψ1] PR − 1
8

[ψ2γ
µνPR ψ1] γµνPR .
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The standard model: general features

The last section developed the general principles for writing down a rela-
tivistic quantum field theory. It showed what types of fields are possible, and
explained that spin-1 fields can only appear in an interacting, renormalizable
theory if they are coupled via the gauge principle.

In this section, we write down specifically what the field content of the
standard model is. The interactions will then follow as the most general set
of renormalizable interactions, compatible with that field content. We then
explore what the vacuum and the particle content are, and write down the
complete interaction Hamiltonian in the particle basis.

We will not attempt to motivate theoretically, why the particle content
of the standard model is what it is. We have no deep understanding of
why the gauge group is SUc(3) × SUL(2) × UY (1), for instance. We just
take the field content as observed fact, and present it. The exception is
the Higgs boson, which has not been observed. This is the weakest part
of our understanding of the standard model. Note however that the field
content of the standard model is not completely arbitrary; once the gauge
group is known, the fermionic field content is somewhat constrained by the
requirement of anomaly cancellation, which we discuss at the end of the
chapter.

2.1 Particle content

The strong, weak and electromagnetic interactions are understood as arising
due to the exchange of various spin-one bosons amongst the spin-1/2 par-
ticles that make up matter. The gauged symmetry group of the standard
model is SUc(3) × SUL(2) × UY (1). The specific gauge bosons associated

53
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with the generators of the algebra of the group are:

SUc(3)
↓

8 Gα
µ

α = 1, . . . , 8

× SUL(2)
↓

3 W a
µ

a = 1, 2, 3

× UY (1)
↓

Bµ

(2.1)

The eight spin-one particles, Gα
µ(x), associated with the factor SUc(3) are

called gluons and the associated subscript ‘c’ is meant to denote ‘color’.
Gluons are thought to be massless. Any particle that transforms with re-
spect to this factor of the gauge group, and so which couples to the gluons,
is said to be colored or to carry color. This interaction is also called the
“strong interaction,” and any particle which couples to the gluons is said to
be “strongly interacting.” Three spin-one particles, W a

µ (x), are associated
with the factor SUL(2), and one, Bµ(x), with the factor UY (1). The sub-
script ‘L’ is meant to indicate that only the left-handed fermions turn out to
carry this quantum number. The subscript ‘Y ’ is meant to distinguish the
group associated with the quantum number (defined below) of weak hyper-

charge, denoted Y , from the group associated with ordinary electric charge,
denoted Q. The electromagnetic group will be written as Uem(1). The four
spin-one bosons associated with the factors SUL(2) × UY (1) are related to
the physical bosons that mediate the weak interactions: W± and Z0, and
the familiar photon from QED, in a way we will explain in section 2.3.

Apart from spin-one particles we are aware of a number of fundamental
spin-half particles. Our knowledge to date about the character of the in-
teractions of these fermions may be compactly summarized by giving their
transformation properties with respect to the gauge group SUc(3)×SUL(2)×
UY (1). The fermions transform in a relatively complicated way with respect
to this symmetry group. There are three copies (or families) of particles,
each copy of which couples identically to all spin-one particles.

Leptons are, by definition, those spin-half particles which do not take part
in the strong interactions. Six leptons are known to date. They are denoted
by e, µ, τ, νe, νµ and ντ , and collectively by `.

Hadrons, on the other hand, are defined as those particles that do take
part in the strong interactions. The spectrum of known hadrons is rich and
varied but, as we shall see, appears to be accounted for as the bound states
of six quarks u, d, s, c, b and t, denoted collectively as q.

Because of the relatively large number of spin-half fields involved, a few
words on notation may be appropriate. Spinors written in capital letters
L,E,D, U,Q or script letters E ,U ,D, and neutrinos νi are taken as Majorana
spinors. The left and right handed components of these spinors are denoted



2.1 Particle content 55

by subscripts L, R. Spinors written in lower case Roman letters li, ui, di,
e, u, c, t, d, s, b or by µ, τ are Dirac spinors, which we will introduce in turn.

For example, the electron field is represented in quantum electrodynamics
by the Dirac spinor, e(x). Denote the left- and right-handed components of
this spinor by eL and eR respectively:

e =

(
eL

eR

)
. (2.2)

In the standard model, however, the electron is represented by two Majorana
fields, E(x) and E(x), that are defined to contain the left- and right- handed
parts of e(x) respectively. That is,

E =

(
eL

εe∗L

)
, E =

(
−εe∗R
eR

)
, (2.3)

where the 2 × 2 matrix ε is defined in Eq. (1.79). The Dirac spinor, e, is
therefore related to the Majorana fields, E and E, by projecting onto the
left- or right-handed part:

e = PL E + PR E. (2.4)

The ‘left-handed’ electron field, E , itself appears within an SUL(2)-doublet
with the field, ν, whose left-handed part contains the left-handed electron-
neutrino. This doublet is denoted L(x):

L =

(
ν

E

)
. (2.5)

The notation here is somewhat confusing; the matrix structure shown for L

above does not show spinorial matrix structure, but shows matrix structure
under the group SUL(2); each component, ν and E , is a 4-component Ma-
jorana spinor. Generally, when possible spinorial structure is suppressed in
what follows.

Members of successive generations are denoted by a generation index, m,
that runs from 1 to 3. The generations are numbered in increasing order
with respect to the mass of the corresponding charged lepton:

νm denotes ν1 = νe, ν2 = νµ, ν3 = ντ

em denotes e1 = e, e2 = µ, e3 = τ

um denotes u1 = u, u2 = c, u3 = t

and dm denotes d1 = d, d2 = s and d3 = b. (2.6)

The transformation properties of the fermions are summarized by giving
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the representation of the gauge group in which they transform. A standard
way to label the representations of SUL(2) and SUc(3) is with their dimen-
sion. So the two-dimensional spinor representation of SUL(2) is written 2
(familiar from the physics of spin as the spin 1

2 representation) and the two
three-dimensional representations of SUc(3) would be 3 or 3. The trivial
(invariant) representation is written as 1. The transformation properties of
the known fermions with respect to UY (1) may be specified by giving the
corresponding eigenvalue of the generator, Y , called the weak hypercharge.
Y is normalized so that the action of UY (1) on a field with eigenvalue y is
given by: ψ → exp(iω(x)y)ψ.

With these conventions the particle content of the standard model may
be summarized as follows:

PL Lm =

(
PL νm

PL Em

)
transforms as

(
1,2,−1

2

)

PR Em

(
1,1,−1

)

PL Qm =

(
PLUm

PLDm

) (
3,2, +

1
6

)
(2.7)

PR Um

(
3,1, +

2
3

)

PR Dm

(
3,1,−1

3

)

Here the first number represents the SUc(3)-representation, the second num-
ber is the SUL(2)-representation and the final number is the eigenvalue
of the weak hypercharge, Y . In the case of SUL(2) doublets, we have
named their upper and lower SUL(2)components, Lm = (PL νm PL Em)T

and Qm = (PLUm PLDm)T . We could in principle do this for the three
separate colors of the Q, U , and D fields; but it turns out to be useful to do
so for the SUL(2) content but not for the SUc(3) content.

Since the left- and right-handed pieces of a Majorana spinor are the com-
plex conjugates of one another, they must transform in complex-conjugate
representations. It follows then that:

PR Lm =

(
PR νm

PR Em

)
transforms as

(
1,2,+

1
2

)

PL Em

(
1,1,+1

)
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PR Qm =

(
PR Um

PRDm

) (
3,2,−1

6

)
(2.8)

PL Um

(
3,1,−2

3

)

PL Dm

(
3,1,+

1
3

)

We note in passing that if the standard model were to be supplemented to
include a right-handed neutrino field, Nm, this field would be a singlet,

PR Nm transforms as: (1,1, 0) , (2.9)

with respect to the gauge group SUc(3)× SUL(2)× UY (1). We will discuss
such a singlet some more in chapter 10, see also problem 3.

Apart from fermions, the Lagrangian must also involve the fields repre-
senting the spin-one gauge bosons. These fields and their transformation
rules are denoted as follows:

Gα
µ transforms as: (8,1, 0)

W a
µ (1,3, 0)

Bµ (1,1, 0) . (2.10)

This representation content is merely a short form for the invariance of
the Lagrangian under the following symmetries:

δLm =
[(
− i

2
ω1(x) +

i

2
ωa

2(x)τa

)
PL +

(
i

2
ω1(x)− i

2
ωa

2(x)τ∗a

)
PR

]
Lm

δEm = [iω1(x)PL − iω1(x)PR ]Em

δQm =
[(

i

6
ω1(x) +

i

2
ωa

2(x)τa +
i

2
ωα

3 (x)λα

)
PL +

+
(
− i

6
ω1(x)− i

2
ωa

2(x)τ∗a −
i

2
ωα

3 (x)λ∗α

)
PR

]
Qm

δUm =
[(
−2i

3
ω1(x)− i

2
ωα

3 (x)λ∗α

)
PL +

(
2i

3
ω1(x)+

i

2
ωα

3 (x)λα

)
PR

]
Um

δDm =
[(

i

3
ω1(x)− i

2
ωα

3 (x)λ∗α

)
PL +

(
− i

3
ω1(x) +

i

2
ωα

3 (x)λα

)
PR

]
Dm

δGα
µ = ∂µωα

3 (x)− fα
βγ ωβ

3 (x) Gγ
µ

δW a
µ = ∂µωa

2(x)− εabc ωb
2(x) W c

µ

δBµ = ∂µω1(x). (2.11)

In these expressions the generators of SUL(2) have been explicitly written
as Ta = 1

2τa where τa, a = 1, 2, 3 denotes the two-by-two Pauli matrices that
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act on the SUL(2)-indices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0
0 −1

)
. (2.12)

(The same matrices appeared in discussing the spin structure of fermions in
section 1.3. We use the notation τi when they act on SUL(2) indices and σi

when they act on spinorial indices.) Similarly, the generators of SUc(3) are
given explicitly by Tα = 1

2λα where λα, α = 1, ..., 8 denote the three-by-three
Gell-Mann matrices given in Eq. (1.186).

The electric charge Q of a field is defined in terms of the hypercharge
Y and the SUL(2)charge’s T3 component, according to Q = T3 + Y . Note
that the electromagnetic group is not directly the UY (1)component of the
standard model gauge group, and electric charge Q is not one of the basic
charges particles carry under SUc(3)×SUL(2)×UY (1); rather it is a derived
quantity.

2.2 The lagrangian

The most general renormalizable Lagrangian involving these fields is

Lfg = − 1
4
Gα

µνG
αµν − 1

4
W aµνW a

µν −
1
4
BµνB

µν − g2
3Θ3

64π2
εµνλρG

αµνGαλρ

− g2
2Θ2

64π2
εµνλρW

aµνW aλρ − g2
1Θ1

64π2
εµνλρB

µνBλρ − 1
2
Lm /DLm

− 1
2
Em /DEm − 1

2
Qm /DQm − 1

2
Um /DUm − 1

2
Dm /DDm, (2.13)

in which the gauge field-strengths are given by

Gα
µν = ∂µGα

ν − ∂νG
α
µ + g3f

α
βγGβ

µGγ
ν , (2.14)

W a
µν = ∂µW a

ν − ∂νW
a
µ + g2εabcW

b
µW c

ν , (2.15)

Bµν = ∂µBν − ∂νBµ . (2.16)

The gauge covariant derivatives are:

DµLm = ∂µLm +
[

i

2
g1Bµ − i

2
g2W

a
µτa

]
PL Lm

+
[
− i

2
g1Bµ +

i

2
g2W

a
µτ∗a

]
PR Lm , (2.17)

DµEm = ∂µEm + ig1Bµ(PR Em)− ig1Bµ(PL Em) , (2.18)

DµQm = ∂µQm +
[
− i

2
g3G

α
µλα − i

2
g2W

a
µτa − i

6
g1Bµ

]
PL Qm
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+
[

i

2
g3G

α
µλ∗α +

i

2
g2W

a
µτ∗a +

i

6
g1Bµ

]
PR Qm , (2.19)

DµUm = ∂µUm +
[
− i

2
g3G

α
µλα − 2i

3
g1Bµ

]
PR Um

+
[

i

2
g3G

α
µλ∗α +

2i

3
g1Bµ

]
PL Um , (2.20)

DµDm = ∂µDm +
[
− i

2
g3G

α
µλα +

i

3
g1Bµ

]
PR Dm

+
[
+

i

2
g3G

α
µλ∗α −

i

3
g1Bµ

]
PL Dm . (2.21)

It is worth emphasizing at this point why certain terms do not appear
in Lfg, particularly mass terms for the fermionic fields. The reason is that
only terms which are singlets under SUc(3) × SUL(2) × UY (1) can appear
in the Lagrangian–otherwise it would not respect gauge invariance, that is,
it would change under a gauge transformation. The rules for telling if a
combination of fields is a singlet under SUc(3) or SUL(2) are summarized
in appendix B; basically the rule is that all color and SUL(2) indices must
“tie off” against each other. The rule for UY (1) is even easier; the charges
of the fields must add to zero.

Consider for instance the would-be mass term for the E field,

Lwould−be = −mmn

2
EmEn .

Write EmEn = EmPL En + EmPR En, and just consider the PR term. PR E

has hypercharge -1. The hypercharge of EPR is also -1. To see this, note
that

EPR = E†βPR = E†PL β (2.22)

is actually the conjugate field of PL E, and has the opposite charge as PL E.
Therefore, the combination EPR E is hypercharge -2 and is not a gauge sin-
glet. The combination EPL E is hypercharge 2 and is also not allowed. One
can quickly check that no combination of two spinor fields is hypercharge
neutral, so no such mass is permitted. The kinetic terms are invariant be-
cause PL γµ = γµPR ; so the left handed component of a field couples to the
Hermitian conjugate of the left handed component and the gauge depen-
dence does cancel.

The spectrum of this theory may be analyzed by perturbing in the gauge
couplings, gi, i = 1, 2, 3. (We return to the accuracy of this approximation
in more detail later.) The unperturbed part of the Lagrangian becomes
in this case those terms that are quadratic in the fields. The spectrum of
this unperturbed theory is therefore that of a system of free spin-half and
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spin-one particles, as was described in the previous chapter. Following the
discussion leading up to Eq. (1.110)–Eq. (1.125), their masses may be read
off from the Lagrangian and are zero!

Since the perturbative semiclassical analysis should apply to at least the
electroweak part of the theory, the Lagrangian, Eq. (2.13), cannot be the
whole story. In fact, as is clear from the discussion of subsection 1.6.2,
the vanishing of the masses is a consequence of the SUc(3) × SUL(2) ×
UY (1) invariance of the theory and can be evaded only if this symmetry
is spontaneously broken by the ground state. We must couple the known
particles to some hitherto undiscovered sector whose ground state is not
SUL(2)× UY (1) invariant.

The simplest way to do so is to add a weakly-coupled spin-zero particle
to the theory with a potential that is minimized at a non-zero field value.
The transformation properties of this scalar field are largely determined if
we require that no new spin-half fields are to be included. Since the scalar
field is supposed to produce a mass for the fermions after it develops a v.e.v.
it must have Yukawa couplings with the fermions. But all of the fermions
are either singlets or doublets under SUL(2) so the new scalar field must
itself be either a doublet or a triplet if it is to combine with two fermions
into a gauge invariant Yukawa interaction. It turns out that a scalar triplet
cannot by itself couple in a way that can generate masses for all the known
massive fermions, but a scalar doublet can. The simplest choice is therefore
to add a single (complex) scalar doublet, called the Higgs field:

φ =

(
φ+

φ0

)
, (2.23)

transforming as (1,2, 1/2). Its complex conjugate,

φ̃ ≡
(

φ0∗

−φ+∗

)
= εφ∗, (2.24)

then transforms as (1,2,−1/2). It must be emphasized that apart from the
conditions that the appropriate masses be generated, there is precious little
known about this symmetry-breaking sector. Although the Higgs-doublet
model we are using is the simplest, its foundations are much less firm than
are those of the rest of the theory. This is explored further in the problem
section of this chapter.

The new terms that may then appear in L are

LHiggs = − (Dµφ)†(Dµφ)− V (φ†φ) (2.25)

−(fmnL̄mPR Enφ + hmnQ̄mPR Dnφ + gmnQ̄mPR Unφ̃ + h.c. ) ,
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in which

V (φ†φ) = λ
[
φ†φ− µ2/2λ

]2
(2.26)

= λ(φ†φ)2 − µ2φ†φ + µ4/4λ .

Unitarity requires that the constants λ and µ2 be real and stability demands
that λ be positive. In order to ensure that the ground state not be SUL(2)×
UY (1)invariant we further require that µ2 be positive.

The gauge transformation rules for φ are explicitly

δφ =
i

2
ωa

2τaφ +
i

2
ω1φ, (2.27)

so its covariant derivative must be

Dµφ = ∂µφ− i

2
g2W

a
µτaφ− i

2
g1Bµφ . (2.28)

The complete Standard Model Lagrangian then becomes

LSM = Lfg + LHiggs . (2.29)

The following general features of LSM bear special mention:

(i) Lfg, LHiggs and LSM are the most general Lagrangian consistent with
the given particle content and invariance under SUc(3) × SUL(2) ×
UY (1) . If the predictions made from such an L are wrong, then either
the particle-content or renormalizability or the gauge group is wrong.

(ii) Because of SUc(3)× SUL(2)×UY (1) invariance, all masses vanish in
the absence of LHiggs.

(iii) There are six parameters in Lfg of which only four enter into physical
predictions (since Θ1 and Θ2 turn out to be removable by suitable
fermion phase redefinitions, which we will not discuss). LHiggs, on
the other hand, contains no less than 15 parameters (as we shall see
these may be taken to be the 10 masses, the Higgs self-coupling and
the 4 Kobayashi Maskawa angles). In this sense LHiggs parameterizes
most of our ignorance and is the part of the theory that is the least
understood. All of the couplings also turn out to be small (mod-
ulo some restrictions to which we return for g3), allowing the use of
perturbation theory to calculate the predictions of L .

2.3 The perturbative spectrum

The first step in analyzing the consequences of the standard model is to find
its spectrum. We do so semiclassically, following the procedure of subsec-
tion 1.6.2. For these purposes it is convenient here, as it was there, to use
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the gauge freedom to transform to unitary gauge. In the present context
unitary gauge is defined by the following condition:

φ =

(
0

1√
2
(v + H(x))

)
, (2.30)

where H(x) is a real field and v is a real constant that minimizes the scalar
potential. It may be shown that it is always possible to reach Eq. (2.30)
from an arbitrary initial field configuration via a gauge transformation. The
motivation for this gauge choice is that it ensures that no vector-scalar cross
terms survive in the quadratic terms once we expand about the ground
state. It is worth noting in passing that the gauge, Eq. (2.30), does not fix
those gauge invariances that leave the Higgs v.e.v. invariant. In the present
context, as is shown later in this section, this means that the electromagnetic
gauge invariance still remains to be fixed.

v is determined by minimizing the potential in Eq. (2.26) and satisfies

v2 = µ2/λ . (2.31)

In order to read off the particle masses we must identify the unperturbed
Lagrangian, L0. This is equal to that part of LSM that is quadratic in
the fluctuations. The expansion of Lfg is trivial and just contributes the
spin-half and spin-one kinetic terms to L0. Everything else comes from the
expansion of LHiggs. Using the following result,

Dµφ =
1√
2

(
0

∂µH

)
− i

2
√

2

(
g2W

3
µ+g1Bµ g2W

1
µ−ig2W

2
µ

g2W
1
µ+ig2W

2
µ −g2W

3
µ+g1Bµ

) (
0

v+H

)
,

(2.32)
the expansion of the scalar-field kinetic term becomes:

−(Dµφ)†(Dµφ) = −1
2
∂µH∂µH − 1

8
(v+H)2g2

2(W
1
µ−iW 2

µ)(W 1µ+iW 2µ)

−1
8
(v+H)2(−g2W

3µ+g1B
µ)(−g2W3µ+g1Bµ) . (2.33)

The scalar potential term contributes

V =
λ

4

[
(v + H)2 − µ2/λ

]2

=
λ

4
(2vH + H2)2

= λv2H2 + λvH3 +
λ

4
H4 . (2.34)
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The Yukawa couplings may be expanded in an identical way:

L̄mPR Enφ =
1√
2

(
ν̄m

Ēm

)T

PR En

(
0

v + H

)

=
1√
2
(v + H) ĒmPR En , (2.35)

and similarly for Q, d, and D, and

Q̄mPR Unφ̃ =
1√
2

(
Ūm

D̄m

)
PR Un

(
v + H

0

)

=
1√
2
(v + H) ŪmPR Un . (2.36)

Combining all of these results gives the expansion of LHiggs to be:

LHiggs = − 1
2
∂µH∂µH − λv2H2 − λvH3 − λ

4
H4

− 1
8
g2
2(v + H)2|W 1

µ − iW 2
µ |2

− 1
8
(v + H)2(−g2W

3
µ + g1Bµ)2

− 1√
2
(v + H)

[
fmnĒmPR En + h.c.

]

− 1√
2
(v + H)

[
gmnŪmPR Un + h.c.

]

− 1√
2
(v + H)

[
hmnD̄mPR Dn + h.c.

]
. (2.37)

2.3.1 Boson masses

LHiggs contains all of the mass terms, although some of these are not diag-
onal. They are, in more detail:

2.3.1.1 Spin-zero particles

Comparing the H2 term of LHiggs with the standard form, − 1
2m2

HH2, gives

m2
H = 2λv2 = 2µ2 . (2.38)

2.3.1.2 Spin-one particles

The relevant terms in this case are:

−1
8
g2
2v

2|W 1
µ − iW 2

µ |2 −
1
8
v2(− g2W

3
µ + g1Bµ)2 . (2.39)
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The fields W 1
µ and W 2

µ only appear in the combination Wµ
1 W1µ +Wµ

2 W2µ

and do not mix with any other fields. Their masses can therefore be read
by inspection. Comparing this term to

− 1
2
M2

1 W 1
µW 1µ − 1

2
M2

2 W 2
µW 2µ , (2.40)

gives the masses:

M2
1 = M2

2 =
1
4
g2
2v

2 . (2.41)

It is not an accident that these masses are equal. They are equal because
the particles W1 and W2 are related by a symmetry that is not spontaneously
broken, even when v 6= 0 . To see this, consider performing a constant gauge
transformation, ∂µωa = 0. The ground-state scalar field configuration then
transforms as

δ

(
0
v

)
=

i

2
ωa

2τa

(
0
v

)
+

i

2
ω1

(
0
v

)

=
i

2

(
[ω1

2 − iω2
2]v

[ω1 − ω3
2]v

)
, (2.42)

which vanishes provided that ω1
2 = ω2

2 = 0 and ω1 = ω3
2 ≡ ω . This particular

combination of SUL(2)× UY (1)-transformations is therefore a symmetry of
the ground state.

Under this symmetry the W fields transform according to Eq. (2.11):

δW a
µ = −εabcωb

2W
c
µ , or , δ

(
W 1

µ

W 2
µ

)
= ω

(
0 1

−1 0

) (
W 1

µ

W 2
µ

)
. (2.43)

This shows that W 1
µ and W 2

µ transform into one another under this sym-
metry. The condition ω3

2 = ω1 implies that the generator of this unbroken
symmetry is T3+Y . Now we saw earlier that the electric charge, Q, of a field
is related to the SUL(2)× UY (1)-generators by Q = T3 + Y . It is precisely
the electromagnetic gauge invariance, Uem(1), which is unbroken by the vac-
uum. W 1

µ and W 2
µ must therefore correspond to the two degrees of freedom

associated with the distinct particle and antiparticle states required for an
electrically charged particle. It is convenient in these cases to deal with
fields that diagonalize the generator of electric charge. This corresponds, in
the present case, to writing W1 and W2 as the real and imaginary parts of
a complex, charged field:

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) , (2.44)
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which satisfies δW±
µ = ±iωW±

µ under electromagnetic gauge transforma-
tions, Eq. (2.43).

The mass term appropriate to such a charged field is −M2
W W+

µ W−µ.
Comparing with the Lagrangian, Eq. (1.121), therefore gives the W± mass
to be

MW = M1 = M2 =
1
2
g2v. (2.45)

The remaining vector fields that appear in the mass term are W 3
µ and Bµ.

They also only appear in one particular combination, g1Bµ − g2W
3
µ . We

may normalize this combination (in order not to alter the standard form for
the kinetic terms) to define the mass eigenstate:

Zµ ≡ −g1Bµ + g2W
3
µ√

g2
1 + g2

2

≡ W 3
µ cos θW −Bµ sin θW . (2.46)

This last equation defines the weak-mixing angle or Weinberg angle, θW ,
given by

cos θW =
g2√

g2
1 + g2

2

sin θW =
g1√

g2
1 + g2

2

. (2.47)

In terms of this field the mass term, Eq. (1.122), is

−1
8
v2(g2

1 + g2
2)ZµZµ , (2.48)

from which the mass may be read off:

M2
Z =

1
4
(g2

1 + g2
2)v

2. (2.49)

The final mass eigenstate is the combination of W 3
µ and Bµ that is or-

thogonal to Zµ :

Aµ = W 3
µ sin θW + Bµ cos θW =

g1W
3
µ + g2Bµ√
g2
1 + g2

2

. (2.50)

This is massless, as are the gluons, Gα
µ , that gauge SUc(3) . The massless-

ness of Aµ corresponds to the fact that the linear combination Q = T3 + Y

is unbroken even when v 6= 0. Aµ is the corresponding massless gauge bo-
son required for this unbroken symmetry. Since Q is the electric charge, we
expect Aµ to have the couplings of the usual photon.
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To summarize the relations between field bases, writing cW ≡ cos θW and
sW ≡ sin θW ,

W 3
µ = cW Zµ + sW Aµ Zµ = cW W 3

µ − sW Bµ

Bµ = −sW Zµ + cW Aµ Aµ = sW W 3
µ + cW Bµ ,

√
2 W+

µ = W 1
µ − iW 2

µ

√
2 W 1

µ = W+
µ + W−

µ√
2 W+

µ = W 1
µ + iW 2

µ

√
2 W 2

µ = iW+
µ − iW−

µ ,

√
g2+g′2 W 3

µ = gZµ + g′Aµ

√
g2+g′2 Zµ = gW 3

µ − g′Bµ√
g2+g′2 Bµ = −g′Zµ + gAµ

√
g2+g′2 Aµ = g′W 3

µ + gBµ .
(2.51)

2.3.2 The custodial SU(2)

Notice that there is a relation amongst the three quantities MW , MZ and
θW :

MW

MZ

=
g2√

g2
1 + g2

2

= cos θW . (2.52)

It is natural to ask how much this relation depends on the details of how
the symmetry SUL(2) × UY (1) is broken, since any information that can
restrict the arbitrariness in the symmetry breaking sector is welcome. Con-
sider therefore the most general form for the spin-one mass matrix that is
consistent with the symmetry-breaking pattern SUL(2)× UY (1)→Uem(1):




M2
W

M2
W

M2
3 m2

m2 M2
0


 . (2.53)

This form has a simple explanation. As we saw above, unbroken electromag-
netic gauge invariance dictates that the upper left two-by-two block of the
matrix be proportional to the unit matrix: M2

W I2×2. It similarly implies
that the upper-right and the lower-left blocks must vanish. The lower-right
two-by-two block is a-priori an arbitrary symmetric matrix, subject to the
one constraint that one of its eigenvalues must vanish. The vanishing of one
of the eigenvalues corresponds to the masslessness of the photon. It is a
general consequence of the fact that the electromagnetic gauge invariance is
unbroken.

The requirement that one eigenvalue be zero is equivalent to the vanishing
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of the determinant:

det

(
M2

3 m2

m2 M2
0

)
= M2

3 M2
0 −m4 = 0 , (2.54)

implying the condition m2 = |M0M3|. The corresponding zero eigenvector
may be written as (

− sin θW

cos θW

)
. (2.55)

Eq. (2.55) defines the mixing angle, θW , in the general case. We may now
eliminate M2

0 in favor of θW . The required relation is

tan θW =
m2

M2
3

=
∣∣∣∣
M0

M3

∣∣∣∣ . (2.56)

The nonzero eigenvalue, MZ , is then given in terms of M3 and θW by

M2
Z = tr

(
M2

3 m2

m2 M2
0

)

= M2
0 + M2

3 = M2
3 (1 + tan2 θW ) = M2

3 sec2θW . (2.57)

The mass relation implied by the symmetry breaking pattern SUL(2) ×
UY (1)→Uem(1) is therefore M3 = MZ cos θW . An alternative way of ex-
pressing the mass formula, Eq. (2.52), is therefore: M1 = M2 = M3 = MW .

The equality of M3 and MW within the standard model is a consequence of
using a scalar SUL(2)-doublet, φ, to break SUL(2)×UY (1). The connection
arises because of an accidental symmetry of the scalar self-couplings that
determine the symmetry-breaking pattern that in turn determines the gauge
boson mass matrix. The Higgs doublet, φ, may be thought of as four real
scalar fields, corresponding to the real and imaginary parts of φ0 and φ+ in
Eq. (2.23). An alternative way to write these four real fields would be as a
column vector:

Φ =




φ1

φ2

φ3

φ4


 . (2.58)

As we saw in subsection 1.3.1, the kinetic terms for four real scalar fields
can be written as ∂µΦT ∂µΦ and so is always invariant under the multi-
plication of Φ by an arbitrary four-by-four orthogonal matrix, O ∈ O(4).
Now, in general the interaction terms of the Lagrangian break this symme-
try completely. However, for the standard model, the two requirements of
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gauge invariance and renormalizability imply that the only possible scalar
self-couplings are of form V = V (φ†φ) = V (ΦT Φ). Even though it was
not required to be so, this potential is therefore also invariant under these
general O(4) transformations. Any such global symmetry that appears as
a simple consequence of gauge invariance and renormalizability is known as
an accidental symmetry.

Once Φ develops a v.e.v.,

〈Φ〉 =




v

0
0
0


 , (2.59)

this O(4)-invariance gets broken to the three-by-three orthogonal, O(3),
transformations that shuffle the lower three components amongst them-
selves. Since this O(3) is unbroken, it constrains the form that the mass
matrix may take. The φ gauge couplings that ultimately produce the gauge
boson mass matrix are also invariant under these O(3) transformations if
the W a

µ ’s transform as a three-dimensional vector. Invariance of the mass
matrix under this three-by-three transformation therefore implies that the
upper-left three-by-three block of the spin-one mass matrix, Eq. (2.53), must
be proportional to the unit matrix, implying M3 = M1 = M2 = MW as re-
quired.

Since the group O(3) is locally isomorphic to the group SU(2), it is said
that the symmetry-breaking sector has an accidental custodial SU(2) invari-
ance that is responsible for the mass formula, Eq. (2.52).

The utility of having such a symmetry understanding of this mass formula
is that it points to the circumstances under which it might be altered and
to how big the corrections might be. In fact, some of the interactions in
the standard model, like the φ−Bµ coupling and the Yukawa couplings, do
not respect this custodial symmetry. We may expect, then, that radiative
(quantum) corrections that involve these interactions can alter the mass
relation. This is discussed in subsection 7.5.1. Experimental verification of
this relation is clearly of great importance since deviations point to detailed
effects within the standard model, and potentially to indications of new
physics.
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2.3.3 Fermion masses

The terms quadratic in the fermion fields come from the Yukawa couplings
after the shifting of the scalar field by v. The relevant terms are

L = − v√
2

[
fmnĒmPR En + gmnŪmPR Un + hmnD̄mPR Dn + h.c.

]
. (2.60)

(It now becomes clear why it was convenient to label separately the different
SUL(2) components of the fields L and Q; the fact that the v.e.v. of the Higgs
field breaks SUL(2) symmetry means that a Yukawa coupling introduces a
mass which picks out one or the other component.)

The mass terms induced by the Yukawa couplings of fermions to the Higgs
v.e.v. are in general not diagonal in the generation indices, m and n. They
may be diagonalized following the procedure outlined in subsection 1.3.2.
To this end, redefine the spin-half fields as follows:

PL Em = U (e)
mnPL E ′n , PR Em = V (e)

mnPR E′
n ,

PLUm = U (u)
mnPLU ′n , PR Um = V (u)

mn PR U ′
n ,

PLDm = U (d)
mnPLD′n , PR Dn = V (d)

mnPR D′
n , (2.61)

where the matrices U (e), U (u), U (d), V (e), V (u), V (d) act on the generation in-
dices (e.g. connect e to µ to τ) and must be unitary in order to preserve the
canonical form for the kinetic terms.

As argued in subsection 1.3.2, it is always possible to choose U (e) =
V (e)∗, U (u) = V (u)∗, U (d) = V (d)∗ and then choose U (e) to ensure that the
new mass matrices are diagonal:

U (e)†fV (e) = V (e)T
fV (e) = diag (fe, fu, fτ ) , (2.62)

with fe, fµ, fτ real and non-negative. The same may be done for V (u)T
gV (u)

and V (d)T
hV (d) . The resulting mass terms then become (dropping the

primes on the new fields)

L = − 1√
2
v

[
fmĒmPR Em + gmŪmPR Um + hmD̄mPR Dm + h.c.

]
. (2.63)

This has a simple expression in terms of the Dirac spinors, em, dm and
um, defined as

em ≡ PL Em + PR Em ,

dm ≡ PLDm + PR Dm ,

um ≡ PLUm + PR Um . (2.64)
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To see this, use

ĒmPR Em + h.c. = ĒmPR Em + ĒmPL Em

= ĒmPR Em + ĒmPL Em

= ēmPR em + ēmPL em

= ēmem . (2.65)

(The derivation of the identities used here was the subject of problem 1 of
chapter 1.)

In terms of these Dirac spinors, the final form for the mass terms is

L = − 1√
2
v(fmēmem + gmūmum + hmd̄mdm) , (2.66)

which, when compared to the standard mass term, −mψ̄ψ, gives the fermion
masses as:

m(e)
n =

1√
2
fnv, m(u)

n =
1√
2
gnv, m(d)

n =
1√
2
hnv. (2.67)

Notice that there is a separate Yukawa parameter, fn, for every independent
mass, mn, so there are no mass formulae along the lines of Eq. (2.52) for
the fermions. The numerical values of these fermion masses are presented
in appendix A.

Note that no mass term for the neutrinos is generated. If only renor-
malizable interactions and the minimal field content of the standard model
are included, then this is exactly true, not just at the semiclassical level.
A neutrino mass could appear if we extended the theory to include right
handed neutrinos Nm, because this would allow another Yukawa matrix be-
tween L and N . However, nothing forbids a mass term mmN̄mNm for such
right handed neutrinos. One interpretation of the recent evidence for neu-
trino masses is that such right handed neutrinos exist but their mass is very
heavy. This is discussed in more detail in chapter 10 and in problem 3 of
this chapter.

2.3.4 Hadrons

What we have just presented is the perturbative spectrum, that is, the spec-
trum assuming all interactions are weak. As we will discuss in section 7.4,
this is a valid approximation except for the SUc(3) (“strong”) interactions,
which become strong at scales of order 500 MeV. The result is that quarks
and gluons do not appear as actual particles of the spectrum. Rather, the
particles we observe are bound states of quarks and gluons, in appropriate
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combinations to be color singlets. Such bound states are called hadrons.
This is discussed in much more detail in chapter 8. Here, we will just briefly
explain the results and the nomenclature.

There are three ways to form a colorless combination of quarks and gluons.
One is to have a bound state made purely of two or more gluons, called
a “glueball.” It is believed that such states should be heavy and highly
unstable, making their identification difficult. The next way is to have a
bound state made up of a quark and an antiquark, qq̄ (possibly together
with gluons and more qq̄ pairs). Such bound states exist and are called
mesons; the lightest meson is the pion, made up of a ud̄ (π+), a dū (π−), or
(uū− dd̄)/

√
2 (π0). The final way is to have a bound state of three quarks

(possibly together with gluons and more qq̄ pairs). Such a three quark
state is called a baryon, and its antiparticle, with three antiquarks, is an
antibaryon. The lightest two baryons are the familiar proton and neutron,
made up of uud and udd respectively. There is no straightforward way to
relate the masses of the hadrons to the masses of the constituent quarks and
gluons, because the binding energies involved are of order 500 MeV. In the
case of the b and c containing hadrons, however, the mass is dominated by
the mass of the heavy quark.

When energies are large compared to the hadronic binding energy, the lan-
guage of quarks and gluons can be appropriate–within limits. For instance,
in computing Z boson decays in chapter 4, we will see that the total rate
of decay into hadrons is given, up to small corrections, by the rate of decay
into quarks; how the quarks stick together into hadrons determines what
the actual final state is, but not the likelihood for the Z boson to create the
quarks. Similarly, when a hadron is one of the particles participating in a
collision, then at high energies we can describe the collision in terms of the
quarks and gluons residing within the hadron, as discussed in chapter 9.

2.4 Interactions

We have determined the particle masses in terms of the various parameters
of the Lagrangian. The predictive nature of the theory only appears once
we identify how these parameters determine the strengths of particle inter-
actions and compare the interactions we see with those that are predicted.

This section is largely bookkeeping. The most important parts to un-
derstand are the charged and neutral current interactions and the necessity
of the Kobayashi-Maskawa matrix. Most of the content of this section is
contained in the Feynman rules presented in section 5.4.
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2.4.1 Higgs couplings

The couplings of the Higgs boson are found in the expansion of the Higgs
Lagrangian, LHiggs, of Eq. (2.37):

LHiggs = − 1
2
∂µH∂µH − λv2H2 − λvH3 − 1

4
λH4

− 1
8
g2
2(v + H)2|W 1

µ − iW 2
µ |2

− 1
8
(v + H)2(−g2W

3
µ + g1Bµ)2

− 1√
2
(v + H)

[
fmnĒmPR En + h.c.

]

− 1√
2
(v + H)

[
gmnŪmPR Un + h.c.

]

− 1√
2
(v + H)

[
hmnD̄mPR Dn + h.c.

]
.

This Lagrangian completely specifies the Higgs couplings to other parti-
cles.

2.4.1.1 Higgs self-couplings

The couplings of the Higgs to itself are easily read from the potential in
Eq. (2.37):

LH−H = −λvH3 − 1
4
λH4

= −m2
H

2v
H3 − m2

H

8v2
H4 . (2.68)

2.4.1.2 Higgs–gauge boson couplings

The Higgs—gauge boson couplings are similarly given by

LH−g = − 1
8
g2
2(2vH+H2)|W 1

µ−iW 2
µ |2 −

1
8
(2vH+H2)(−g2W

3
µ+g1Bµ)2

= −
(

H

v
+

H2

2v2

) (
2M2

W W+
µ W−µ + M2

ZZµZµ
)

. (2.69)

2.4.1.3 Higgs–fermion couplings

The final Higgs interactions consist of Yukawa couplings between the Higgs
scalar and the various fermions:

LH−f = − 1√
2
H(fmēmem + gmūmum + hmd̄mdm)
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= −
∑

f

mf

v
f̄f H . (2.70)

Here and in the following we use f (for fermion) to run over the nine Dirac
and three Majorana species labels ei, ui, di, νi; but the mν are zero.

Several points about these couplings are worth noting:

(i) Notice first that all other particles couple to the Higgs boson with
strength m/v, in which m is the mass of the particle in question
and v (which turns out to equal 246 GeV) is the symmetry-breaking
vacuum expectation value. This ratio is small provided that m ¿
v, which is true for all known particles, though only marginally so
for the top quark, t. H must therefore couple weakly to all of the
particles that have been discovered to date, and must furthermore
couple preferentially to the heavier particles.

(ii) The Higgs-fermion couplings are automatically flavor diagonal when
expressed in terms of mass eigenstates. That is to say, the act of
emission of a Higgs particle by a fermion does not convert one type
(or ‘flavor’) of fermion into another. This is an important property
of the model since there are very strong limits on the existence of any
transitions of this type. The only known interactions that can change
fermion flavor are the W± interactions we meet later. The strongest
limits on these types of flavor-changing couplings arise for those that
involve the strange quark, Hs̄d for example. Such an interaction
would contribute to the extremely well measured mass difference,
mKL −mKS = (3.490± 0.006) · 10−12 MeV, between the two neutral
kaons, KL and KS, or to flavor-changing neutral-current processes
such as the decay KL → µ+e−, which has never been observed to
occur. More quantitatively, this last process is known to happen less
frequently than once in every 5 · 1012 KL-decays.

This property need not be preserved if the symmetry-breaking sec-
tor is more complicated, so it serves as a useful clue to the unknown
nature of this sector.

(iii) As will be shown in section 2.5, these Higgs couplings also conserve
the discrete symmetries of charge conjugation, C, parity, P, and time
reversal, T. This property is also not a general feature of more com-
plicated symmetry-breaking sectors.

(iv) The Higgs boson itself has not been seen (as of 2005), so its mass
is undetermined. Since the Higgs self-coupling is 2λ = (mH/v)2 and
the accuracy of the perturbative series is governed by the combina-
tion λ2/(16π2), we expect perturbation theory to fail unless mH ¿
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8πv ≈ 1.2 TeV. This is often expressed more precisely as a unitar-
ity limit: lowest order perturbation theory in λ violates unitarity if
mH

>∼ 500 GeV.
More generally, numerical results concerning the triviality of scalar

field theories indicate that, if a Higgs particle exists, it must have a
mass <∼ 1 TeV, even for strong couplings. At the time of writing,
the lower limit on the Higgs boson mass (assuming that the standard
model is correct) was 114 GeV, and the upper bound inferred from
radiative effects of the Higgs boson on electroweak observables (and
assuming that the standard model is correct) was about 200 GeV.

2.4.2 Strong interactions

The strong interactions are by definition those that involve the spin-one
gluons. The relevant terms in L are

Lstrong = −1
4
Gα

µνG
αµν − g2

3Θ3

64π2
εµνλρG

αµνGαλρ

−1
2
Qm /DQm − 1

2
Um /DUm − 1

2
Dm /DDm . (2.71)

2.4.2.1 Gluon self-couplings

The Gα
µνG

αµν term describes the couplings of the gluons among themselves:

Lgl−gl = −1
4
Gα

µνGαµν − g3

2
fα

βγGα
µνG

βµGγν − g2
3

4
fα

βγfα
δε Gβ

µGγ
ν GδµGεν ,

(2.72)
plus the Θ3 term which we have not written out. Here, Gα

µν denotes the
linearized field strength, ∂µGα

ν − ∂νG
α
µ. The Θ3 term has almost no impact

in the following, because it has no effect on any perturbative calculation,
and because Θ3 is numerically almost exactly zero. The latter is a mystery,
discussed in subsection 11.4.2.

2.4.2.2 Gluon–fermion couplings

The couplings between gluons and fermions may be read from Eq. (2.71):

Lgl−f = +
ig3

2

∑
q

Gα
µ q̄γµλαq , (2.73)

in which the sum is over the six Dirac spinors representing the different
flavors of quarks, q = um, dm.

The emission of a gluon by a fermion causes a transition in the fermion’s
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color quantum numbers. We return to these couplings in more detail later.
In the meantime some features of these couplings bear comment.

(i) Because the standard model gauge group, SUc(3)× SUL(2)×UY (1),
is the product of a strong-interaction factor, SUc(3), with an elec-
troweak factor, SUL(2)×UY (1), all of the particles of the theory can
be divided into two classes according to whether or not they carry
strong-interaction quantum numbers. Quarks and gluons do and elec-
trons, neutrinos, the Higgs particle and the electroweak gauge bosons,
W,Z, A, do not. This is the origin of the classification of elemen-
tary particles as hadrons or leptons. Hadrons involve the quarks and
gluons and so participate in the strong interactions. For historical
reasons only the spin-half particles that do not interact strongly are
called leptons, and these therefore consist of the electron-type and
neutrino-type fermions.

(ii) Gluon interactions are called ‘strong’, as will be pursued in more
detail in subsequent chapters, because unlike the electroweak in-
teractions, the spectrum of strongly interacting particles cannot be
described perturbatively in the gluon coupling, g3. The observed
hadrons consist of bound states of the more elementary quarks and
gluons. This greatly complicates the interpretation of interactions
that involve hadrons as initial or final particles. As we shall see, it
turns out that it is nevertheless possible to accurately describe some
carefully chosen observables in hadron collisions at sufficiently high
energies within perturbation theory.

(iii) Just as was the case for the Higgs–fermion couplings, the emission
of a gluon by a fermion can never change the flavor of the fermion.
This may be seen from the above expressions, since the gluon–fermion
interactions always have the form Gq̄q and never involve two different
types of quark, such as Gq̄q′. As a result, flavor type is conserved
by the strong interactions. This has important consequences for the
interactions and spectrum of all strongly-interacting particles, which
will be explored in more detail later.

(iv) Apart from the Θ3 term, the strong interactions as given above are
invariant with respect to all three of the discrete symmetries, C, P
and T. (This conclusion is justified in more detail in section 2.5). The
present evidence for the invariance of the strong interactions under
these discrete symmetries (principally the current upper bound on the
neutron’s intrinsic electric dipole moment) implies that the strong-

CP parameter, |Θ3|, must be smaller than ≈ 10−9. The potential
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significance of this CP-violating parameter is taken up in more detail
in subsection 11.4.2.

(v) The strength of all strong interactions is governed by a single cou-
pling constant, g3, so the strong interactions have a universal strength
that is independent of the particle type that is participating in the
interaction. This is an important experimental fact that is explained
here as the natural consequence of the observation that the gluons
are gauge bosons, and that all of the strongly-interacting fermions
fall into the same representation (in this case triplets or antitriplets)
of the gauge group SUc(3).

2.4.3 Electroweak interactions

We next turn to the couplings that involve the electroweak gauge bosons—
those spin-one particles that correspond to the SUL(2) × UY (1) factor of
the gauge group. These come in two basic types. There are self-couplings
that arise due to the nonlinear terms in the gauge potentials within the
SUL(2)×UY (1) field strengths, and there are couplings with other particles
that arise due to the use of gauge covariant derivatives in the kinetic-energy
terms of the Lagrangian. We consider each of these in turn.

2.4.3.1 Electroweak boson self-interactions

There are both cubic and quartic self-couplings of the spin-one electroweak
gauge bosons. Both arise from the nonlinear terms in the SUL(2) gauge
boson field strength

L = −1
4
W a

µνW
aµν . (2.74)

The cubic terms are

Lcubic = −1
2
g2εabcWa

µνW
bµW cν = LWWγ + LWWZ , (2.75)

with the W -photon and W -Z trilinear couplings given in terms of the mass
eigenstates, W 1

µ = 1√
2
(W+

µ + W−
µ ), W 2

µ = −i√
2
(W−

µ − W+
µ ), and W 3

µ =
Zµ cos θW + Aµ sin θW , by

LWWγ = ig2 sin θW

[
W+

µνW
−µAν −W−

µνW
+µAν + W+

µ W−
ν Fµν

]
, (2.76)

LWWZ = ig2 cos θW

[
W+

µνW
−µZν −W−

µνW
+µZν + W+

µ W−
ν Zµν

]
. (2.77)

In these expressions, Wa
µν , W±

µν , Zµν and Fµν are the linear curls of the
gauge potentials W a

µ , W±
µ , Zµ and Aµ respectively.
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The interaction terms that are quartic in these fields are

Lquartic = −1
4
g2
2εabcεadeW

b
µW c

νW dµW eν

= −1
4
g2
2

[
(W a

µWµ
a )2 −WaµW a

ν Wµ
b W bν

]

= LWWWW + LWWZZ + LWWγγ + LWWZγ , (2.78)

which, using the relation W a
µW a

ν = W−
µ W+

ν + W+
µ W−

ν + W 3
µW 3

ν with W 3
µ =

Zµ cos θW + Aµ sin θW , gives,

Lquartic = −1
2
g2
2

[
(W+

µ W−µ)2 − (W+
µ W+µ)(W−

ν W−ν)
]

−g2
2

[
(W+

µ W−µ)XνX
ν − (W+

µ Xµ)(W−
ν Xν)

]
, (2.79)

so

LWWWW = −1
2
g2
2

[
(W+

µ W−µ)2 − (W+
µ W+µ)(W−

ν W−ν)
]

, (2.80)

LWWZZ = −g2
2 cos2 θW

[
(W+

µ W−µ)ZνZ
ν − (W+

µ Zµ)(W−
ν Zν)

]
, (2.81)

LWWγγ = −g2
2 sin2 θW

[
(W+

µ W−µ)(AνA
ν) − (W+

µ Aµ)(W−
ν Aν)

]
, (2.82)

LWWZγ = −g2
2 sin θW cos θW

[
2(W+

µ W−µ)(ZνA
ν)− (W+

µ Aµ)(W−
ν Zν)

− (W+
µ Zµ)(W−

ν Aν)
]

. (2.83)

Some brief comments:

(i) These self-interactions have been probed by the LEP-II experiment
at the 2–3% level. However, compared to the precision of the elec-
troweak interactions of the fermions, these measurements are com-
paratively poor.

(ii) The interactions of the W particles with the massless A boson only
involve the particular combination of couplings g2 sin θW . As will
become clear once the remainder of the A couplings are presented,
this combination has the interpretation of being the electromagnetic
coupling constant, e, as is appropriate for the interactions of the
photon, A, with a charged particle.

(iii) These interactions preserve C, P and T (see section 2.5).

2.4.3.2 ‘Charged current’ fermion interactions

The only other electroweak interactions in the theory are the couplings be-
tween the electroweak bosons and spin-half and spin-zero particles. Since
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the couplings with the Higgs boson are given in subsection 2.4.1, they need
not be reconsidered again here.

The W a
µ and Bµ–fermion couplings arise from the following kinetic terms:

L = −1
2
Lm /DLm−1

2
Em /DEm−1

2
Qm /DQm−1

2
Um /DUm−1

2
Dm /DDm . (2.84)

Expanding each field in terms of the mass eigenstates gives

Lew = +
i

4

(
ν̄m

Ēm

)T

γµPL

(
−g1Bµ+g2W

3
µ g2(W 1

µ−iW 2
µ)

g2(W 1
µ+iW 2

µ) −g1Bµ−g2W
3
µ

) (
νm

Em

)

+
i

4

(
Ūm

D̄m

)T

γµPL

(
1
3g1Bµ+g2W

3
µ g2(W 1

µ−iW 2
µ)

g2(W 1
µ+iW 2

µ) 1
3g1Bµ−g2W

3
µ

) (
Um

Dm

)

+
i

3
g1BµŪmγµPR Um − i

6
g1BµD̄mγµPR Dm

− i

2
g1BµĒmγµPR Em+ h.c. . (2.85)

The couplings between fermions and the charged spin-one particle, W+
µ ,

are called the charged current interactions. Because these interactions al-
ways involve projection operators PL or PR , we may replace the Majorana
fermions U ,D, E with the Dirac fermions u, d, e (since the spurious U,D, E

introduced in this substitution is removed by the projection operator), giv-
ing,

Lcc =
ig2√

2

[
W+

µ (ν̄mγµPL em+ūmγµPL dm) + W−
µ (ēmγµPL νm+d̄mγµPL um)

]
.

(2.86)
Unfortunately, as written this expression is correct in the generation basis we
had before making the field redefinitions described in subsection 2.3.3. To
learn what the interactions are in terms of the mass basis, we must perform
the same transformations, em = U

(e)
mne′n, um = U

(u)
mnu′n, and dm = U

(d)
mnd′n,

on this expression. Since there is no mass term for neutrinos, we are free
to also redefine the neutrino field by νm = U

(e)
mnν ′n, since this does not alter

their mass or kinetic terms. Defining

Vmn = (U (u)†U (d))mn , (2.87)

and introducing eW ≡ g2/2
√

2, gives the following expression:

Lcc = ieW

[
W+

µ (ν̄ ′mγµ(1+γ5)e′m + Vmnū′mγµ(1+γ5)d′n)

+W−
µ (ē′mγµ(1+γ5)ν ′1n + (V †)mnd̄′mγµ(1+γ5)u′n)

]
. (2.88)

Vmn is a 3 × 3 unitary matrix called the Kobayashi–Maskawa (KM)—or
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sometimes the Cabbibo–Kobayashi–Maskawa (CKM)—matrix. It arises due
to the necessity to perform different field redefinitions for up- and down-type
quarks. Since the group U(3) is nine-dimensional, any such matrix contains
nine real parameters. Not all of these nine parameters can be physically
significant, however, because they may be changed by performing a field
redefinition which has no other effects on the standard model Lagrangian.
The only field redefinitions which can alter Vmn but which do not affect any
other terms in the Lagrangian consist of multiplication of the various quark
fields, u′n and d′n by a phase. Notice that since an overall rotation of all
quarks by a common phase is a symmetry of the entire Lagrangian, and
so leaves Vmn unchanged, this freedom to redefine fields allows the removal
of at most five phases from Vmn. This would leave only four parameters of
potential physical significance. Since a real 3×3 unitary matrix is orthogonal
and since the group O(3) is three-dimensional, only one of the four physical
parameters is a phase.

The choice of how to use these phase redefinitions to rotate the KM matrix
is somewhat arbitrary. Partly for this reason, there are several different
conventional ways in which to parameterize the KM matrix. The principal
three are listed here for convenience. The parameterization advocated by
the Particle Data Group is:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 = (2.89)




c12c13 s12c13 s13e
−iδ13

−s12c23−c12s23s13e
iδ13 c12c23−s12s23s13e

iδ13 s23c13

s12s23−c12c23s13e
iδ13 −c12s23−s12c23s13e

iδ13 c23c13


 , (2.90)

in which cij and sij are shorthand for cos θij and sin θij respectively, and the
mixing angles, θij , are experimentally known to satisfy θ13 ¿ θ23 ¿ θ12 ¿ 1.
This implies that (for unknown reasons) charged-current interactions that
link fermions of differing generation are highly suppressed in the standard
model and so in particular Vmn is very close be being a unit matrix. We
return to the experimental constraints on the matrix Vmn shortly.

There are two other parameterizations of the KM matrix that are com-
monly used in the literature. Many of the older sources parameterize the
KM matrix in terms of the Euler angles of an O(3) rotation together with
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one phase:

V =




1 0 0
0 c2 −s2

0 s2 c2







c1 s1 0
−s1 c1 0

0 0 1







1 0 0
0 1 0
0 0 eiδ







1 0 0
0 c3 s3

0 −s3 c3




=




c1 s1c3 s1s3

−c2s1 c1c2c3 + s2s3e
iδ c1c2s3 − c3s2e

iδ

−s1s2 c1s2c3 − s3c2e
iδ c1s2s3 + c2c3e

iδ


 . (2.91)

Again ci = cos θi and si = sin θi denote trigonometric functions of the Euler
angles.

The third common parameterization is the Wolfenstein parameterization,
which indicates the size of each matrix element in a particularly simple way.
It is given, up to fourth order in the small quantity λ, by:

V =




1− 1
2λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 . (2.92)

The utility of this parameterization is that, since λ is found experimentally
to be a small quantity, λ ≈ 0.2, and A and ρ2 + η2 are o(1), Eq. (2.92)
summarizes the small size and hierarchy of the off-diagonal elements of Vmn.

It turns out (see subsection 2.5.1) that these interactions preserve time
reversal symmetry, T (or equivalently, CP) if the KM matrix can be made
real by suitably redefining fields. Hence, it is interesting to know under which
circumstances this is possible. In the generic case in which Vmn doesn’t take
any special form this can be decided by comparing the number of parameters
available in a real versus a complex unitary matrix.

It is instructive to make the argument for the case of N generations of
fermions. The counting goes as follows: the KM matrix is an N×N unitary
matrix and so generically contains N2 real parameters. If the KM matrix
were real then it would be an orthogonal matrix, which can be described in
terms of 1

2N(N−1) real parameters. The difference between these numbers,
N2− 1

2N(N − 1) = 1
2N(N +1), is therefore the number of complex ‘phases’

contained in Vmn. Not all of these phases, however, are physically significant,
since some may be removed by absorbing phases into the various quark fields.
Since such a redefinition does not affect any other term in the Lagrangian,
any phase that can be removed in this way cannot cause any physical effects.
Even though there are 2N species of quark fields, only 2N − 1 phases may
be removed in this way, since the overall multiplication of all quark fields
by a common phase is a symmetry of the Lagrangian and does not change
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Vmn. The number of remaining physical phases is therefore

P =
[
N2 − 1

2
N(N − 1)

]
− (2N − 1)

=
1
2
(N − 1)(N − 2) . (2.93)

Notice that if there were only two generations, then P = 0 and so the KM
matrix could be chosen to be a real 2× 2 orthogonal matrix:

Vmn =

(
cos θc sin θc

− sin θc cos θc

)
. (2.94)

It happens that the experimental values for the angles in the full KM matrix
are such that those parts of it that mix the first two generations are very
close to being of the form of Eq. (2.94). For historical reasons the first few
components of the KM matrix are therefore sometimes written in this way.
The Cabbibo angle is accordingly defined by: cos θc = Vud and sin θc = Vus.

Some comments:

(i) The charged-current interactions are the only ones within the model
that connect fermions with differing flavors. In the absence of these
charged-current interactions, the lightest species of fermion of any
flavor would be absolutely stable, since flavor would be conserved.
As a result, the charged-current interactions are the ones responsible
for the majority of particle decays that have been observed.

(ii) Since there is no Kobayashi Maskawa matrix in the leptonic com-
ponent of the charged-current interactions, all leptons participate in
these interactions with equal strength, determined by g2. Just as was
the case with the strong interactions, this result follows theoretically
from the spin-one and hence gauge nature of the W boson, and the
fact that all leptons that couple to the W boson are in doublets of
SUL(2). The experimentally observed property that all leptons par-
ticipate in charged-current weak interactions with equal strength is
called weak universality.

(iii) Weak universality does not hold for charged-current interactions in-
volving quarks, because of the appearance there of the Kobayashi
Maskawa matrix, although there will be relationships amongst vari-
ous hadronic charged-current interactions that follow from the uni-
tarity of the KM matrix.

(iv) As is shown in section 2.5, the charged current interactions violate
both C and P, since they involve only the left-handed components of
the various fermion fields. They can only violate T if the KM matrix



82 The standard model: general features

cannot be made real by a suitable choice of fields. It follows that
all charged-current lepton interactions must preserve T and that the
hadronic charged-current interactions can violate T only in a very
specific way and only if there are at least three generations. As of
this writing (2005), this source of T-violation is consistent with all of
the experimental evidence.

(v) Although the lepton sector of the standard model does not involve
a KM matrix and so cannot violate CP, this would not be so if the
model were enlarged in such a way as to generate a neutrino mass
matrix. As discussed in chapter 10, very small neutrino masses are
in fact observed. These suggest that CP violation in the neutrino
sector may be observable. The observation of CP violation is a major
experimental goal of modern neutrino physics.

2.4.3.3 ‘Neutral-current’ fermion interactions

It remains to write out the couplings of the two neutral gauge bosons, Aµ, Zµ,
of the electroweak gauge group, SUL(2)× UY (1). Using the expressions

(
W 3

µ

Bµ

)
=

(
cos θW sin θW

− sin θW cos θW

) (
Zµ

Aµ

)
, (2.95)

we see that these couplings are flavor-diagonal and of the form

Lnc =
∑

f

−Zµ

[
f̄γµPL

(
−ig2W

3
µT3−ig1BµYL

)
f + f̄γµPR (−ig1BµYR) f

]
,

(2.96)
where YL is the hypercharge of the left-handed fermion and YR is that of
the right-handed one, e.g., YL = −1/2 for PL em = PL Em and YR = −1 for
PR em = PR Em etc. Notice that YR agrees with the electric charge, Q, since
all right-handed fields are singlets under SUL(2) and so have T3 = 0 . This
then implies Q = T3 + YL = YR.

Now, define the combination of Dirac matrices, gauge potentials and group
generators, T3 and YL,R, that appear in Eq. (2.96) above as Mµ. It may be
reexpressed in the following form:

Mµ ≡ PL g2A
3
µT3 + PL g1BµYL + PR g1BµYR

= PL g2A
3
µT3 + PL g1Bµ(Q− T3) + PR g1BµQ

= T3PL (g2A
3
µ − g1Bµ) + g1BµQ

= T3PL [g2(Zµ cos θW + Aµ sin θW )− g1(Aµ cos θW − Zµ sin θW )]

+ g1(Aµ cos θW − Zµ sin θW )Q . (2.97)

This simplifies further if we use the following relations among the coupling
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constants:

g2 = cos θW

√
g2
1 + g2

2 and g1 = sin θW

√
g2
1 + g2

2 ,

so

g1 cos θW = g2 sin θW ≡ e ,

and

g2 cos θW + g1 sin θW =
√

g2
1 + g2

2 =
e

sin θW cos θW

.

Therefore,

Mµ =
e

sin θW cos θW

[
T3PL −Q sin2 θW

]
Zµ + eQAµ . (2.98)

It is easily verified that the form of these interactions are not changed by
the process of rotating to a basis of mass eigenstates for the fermion fields.

We may read from this the fermion couplings with the Z-boson and the
massless photon, A. The photon–fermion coupling is

Lem =
∑

f

ieAµf̄γµQf , (2.99)

in which the sum is over all fermion types, f = em, νm, dm, um, weighted
by their electric charge, Q. Since the neutrino is electrically neutral it does
not appear in the electromagnetic interactions. Comparing the interaction of
Eq. (2.99) with that of QED in Eq. (1.176), we see that it is the combination
e = g1 cos θW = g2 sin θW = sin θW cos θW

√
g2
1 + g2

2 that plays the role of the
electromagnetic coupling constant—i.e. the absolute value of the electron
charge—in this theory.

The Zµ—or neutral current—couplings are similarly given by

Lnc =
ie

sin θW cos θW

∑

f

Zµf̄γµ
[
PL T3 −Q sin2 θW

]
f

=
ie

sin θW cos θW

∑

f

Zµf̄γµ(gV + γ5gA)f , (2.100)

in which gV = 1
2T3 −Q sin2 θW and gA = 1

2T3. Here T3 refers to the charge,
under the third generator of SUL(2), of the left-handed constituent of f ,
that is, E , D, or U . The values of the charges gV , gA are given in table 2.1.

These interactions share several noteworthy properties:

(i) The couplings of the massless spin-one particle are precisely those
of Quantum Electrodynamics, justifying its identification with the
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Fermion type T3 Q gV gA

νe, νµ, ντ + 1
2 0 +0.25 +0.25

e, µ, τ − 1
2 −1 −0.0189 −0.25

u, c, t + 1
2 + 2

3 +0.0959 +0.25
d, s, b − 1

2 − 1
3 −0.1730 −0.25

Table 2.1. Neutral current charges of the fermions

photon. This is not an accident, but follows as a result of the re-
quirement that the symmetry-breaking order parameter not break
the gauge symmetry generated by the electric charge, Q.

(ii) The neutral current interactions that couple fermions to Z bosons
never involve fermions of more than one flavor at a time and so cannot
change flavor. As was indicated earlier for the Higgs and strong
interactions, the experimental absence of such flavor-changing neutral
currents was a strong clue to the structure of the standard model and
was even used to predict the existence of the fourth type of quark, c!

(iii) Electromagnetic interactions all conserve P, C and T separately.
(iv) The neutral-current interactions, on the other hand, violate both P

and C but do not break T (see section 2.5 for details).

This concludes the tabulation of the interactions that are contained in the
standard model Lagrangian.

2.5 Symmetry properties*

*(This section, while good for your teeth and bones, is not necessary for
most of the development of this book, and can be skipped in whole or in
part if necessary.)

When exploring the consequences for experiment of any potential theo-
retical model, it is always necessary to make use of various approximation
schemes. It is therefore of crucial importance to understand which of the
predictions of the model are of general validity, and which depend on more
details of the approximation scheme used. For this reason, the first step to
take in exploring any model is to identify the symmetries that it predicts,
since these can be used to draw exact conclusions concerning the existence of
conservation laws and of systematics (such as degeneracies) in the spectrum
of particles. Therefore, we will now discuss at some length the symmetries
of the standard model, and what exact conservation laws they predict.

One of the most beautiful features of the standard model is its success in
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reproducing precisely the conservation laws and symmetries that had been
distilled from experiment over the several decades before the discovery of
the model. This accomplishment is all the more remarkable in light of the
fact that the standard model is the most general theory consistent with a
few very general principles, together with the given particle content and the
requirement of renormalizability. As a result, none of the properties to be
discussed in this section are built into the model as assumptions, and so
they may be understood as general consequences of the basic principles of
section 1.2, together with the explicit particle content of the model.

Symmetries such as these, that are simply consequences of gauge invari-
ance, particle content and renormalizability, are known as accidental sym-
metries. One example that has already been encountered is the Custodial
SU(2) of the symmetry-breaking sector of subsection 2.3.2.

2.5.1 Discrete symmetries

There are three discrete transformations that naturally arise within the
quantum mechanics of any relativistic system. Two of these—parity, P, and
time reversal, T—are related to (i.e. automorphisms of) the Lorentz group
itself. The third discrete transformation—charge conjugation, C—consists
of the interchange of every particle with its antiparticle.

It turns out that none of these are symmetries of the standard model,
although the combined symmetry CPT is (and, in fact, is a symmetry of
any quantum field theory which satisfies the basic principles laid out in sec-
tion 1.2). Nevertheless, we will take some time to discuss them. The reasons
for doing so are, first, that the combined symmetry CP (or equivalently T)
is almost a symmetry of the standard model, broken by very small subtle
effects; and, second, that while C and P are very far from being symme-
tries of the standard model, at low energies E ¿ MW they turn out to be
accidental symmetries, as we will discuss in section 7.3.

2.5.1.1 Definitions: P and T

The existence of the operations of parity and time reversal is related to the
connectedness of the Lorentz group itself. The Lorentz group is reviewed
in appendix C. We show there that not all coordinate transformations per-
mitted in special relativity can be built infinitesimally from the identity. In
particular, two transformations of coordinates cannot: the parity transfor-
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mation,

xµ → Pµ
νx

ν , Pµ
ν =




+1
−1

−1
−1


 , (2.101)

which reflects each space coordinate, and the time reversal transformation,

xµ → Tµ
ν , Tµ

ν =




−1
+1

+1
+1


 , (2.102)

which reverses the sign of time.
Transformations P and T need not be symmetries of a given theory. If

they are symmetries, and if their representations in the theory’s Hilbert
space are denoted by P and T respectively, then P can always be chosen to
be a unitary operator and although T cannot be made unitary, it may always
be chosen to be anti-unitary (that is, an operator which flips the sign of i).
The reason is that H must transform under the symmetry into an operator
which still has a positive spectrum; this will be satisfied if PHP∗ = H and
T HT ∗ = H. On the other hand, time evolution by a positive amount of
time t, e−iHt, should be carried under time reversal to time evolution by a
negative amount of time −t, T e−iHtT ∗ = eiHt. The only way that both can
be true is if T is an anti-unitary operator, reversing the sign of i.

2.5.1.2 Definition: C

Charge conjugation is defined as the interchange of every particle with its
antiparticle. The unitary operator that represents this interchange in the
Hilbert space will be denoted by C.

Notice that the condition that a theory be charge-conjugation invariant
is stronger than the condition of crossing symmetry discussed in section 1.2.
Crossing symmetry is a general consequence of relativistic quantum mechan-
ics; it states that particles and antiparticles must appear in the action only
in the schematic combination (a + ā∗). This ensures that particles and an-
tiparticles appear in all interactions with the same strength but does not
imply that all interactions must be invariant with respect to interchange of
a with ā.

It is a theorem, though, that the combined action of all three of these dis-
crete transformations, CPT, must be a symmetry in any Lorentz invariant,
local field theory.
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2.5.1.3 Transformation rules

The action of P, T and C on particle states and on fields is determined (up
to a conventionally fixed freedom to redefine fields) by their transformation
properties under Lorentz transformations. Their action on a state, |p, σ〉,
that describes a particle of three-momentum, p, total spin, j, and third
component of angular momentum, σ, may be chosen to be:

P|p, σ〉 = αp| − p, σ〉 ,
T |p, σ〉 = αt(−)j−σ| − p,−σ〉 ,
C|p, σ〉 = αc|p, σ〉 . (2.103)

In these expressions, αp, αt and αc are phases that are characteristic of each
particle type, and the state | · · ·〉 denotes the antiparticle for the state | · · ·〉.
The transformation properties of the corresponding creation and annihila-
tion operators are determined by those of the particle states:

Pa∗p,σP∗ = αpa
∗
−p,σ

T a∗p,σT ∗ = αt(−)j−σa∗−p,−σ ,

Ca∗p,σC∗ = αcā
∗
p,σ . (2.104)

The transformation rules for the fields are then determined by their ex-
pansions in terms of creation and annihilation operators. Since these have
the generic form,

φ ∼
∑
p,σ

[u(p, σ)ap,σ + v(p, σ)ā∗p,σ] , (2.105)

the transformation rules for fields representing spin-zero particles become

Pφ(x)P∗ = α∗pφ(xp)

Cφ(x)C∗ = α∗cφ
∗(x) , (2.106)

in which xp = (−x, t) denotes the image of x = (x, t) under parity. (Since
invariance of the theory under the combination CPT is guaranteed on general
grounds, T-invariance is equivalent to CP-invariance. For this reason it
suffices to have explicit expressions for the transformation rules under C
and P in order to determine its symmetry properties.)

For spinor fields we have instead,

Pψ(x)P∗ = α∗pβψ(xp)

Cψ(x)C∗ = α∗cCψ
T (x) , (2.107)

in which β and C are the matrices defined in Eq. (1.85) and Eq. (1.93)
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respectively. (The factor β exchanges left and right handed components
and is necessary because parity flips handedness.)

Finally, for spin-one gauge potentials, V µ
a , that correspond to the gauge

generator, ta, we have (up to gauge transformations):

P[taV µ
a (x)]P∗ = Pµ

ν [taV ν
a (xp)]

C[taV µ
a (x)]C∗ = −[taV µ

a (x)]∗. (2.108)

The phase in the transformation rule for the gauge potentials is fixed by
the requirement that the covariant derivative, D = ∂ − iTaVa, transform
properly.

2.5.1.4 Invariance of the model

Using these transformation rules, we can test the standard model inter-
actions of the previous section for invariance under the three independent
symmetries of C, P and CP.

The typical interaction Lagrangian density is the sum of several local
operators, On(x), with some constant coefficients, cn: Lint =

∑
n cnOn(x).

The transformation properties of the operators, On(x), can be inferred in
terms of those of the various fields of the theory in terms of which they are
expressed. The resulting transformation rule for the interaction Lagrangian
is

PLintP∗ =
∑
n

(αn)pcnOn(xp) ,

CLintC∗ =
∑
n

(αn)ccnO∗n(x) ,

(CP)Lint(CP)∗ =
∑
n

(αn)p(αn)ccnO∗n(xp) . (2.109)

The phases (αn)p and (αn)c are products of the phases associated with the
transformation of each field.

Since the action is given by the integral of L(x) over spacetime, the con-
dition PL(x)P∗ = L(xp) suffices to ensure that the action is invariant. The
condition for parity invariance is therefore that there exist a choice of phases,
αp’s, for each of the fields for which

(αn)p = 1 for all n. (2.110)

This is a nontrivial condition because there can be more interactions, On,
than there are fields appearing within them.

The Lagrangian is also required by unitarity to be Hermitian, so the fol-
lowing relation among the operators is also true:

∑
n c∗nO∗n =

∑
n cnOn. The
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action is therefore charge-conjugation invariant provided that there exists a
choice of charge-conjugation phases, αc’s, for each of the fields for which the
coefficient of O∗n is unchanged:

(αn)ccn = c∗n for all n. (2.111)

CP-invariance is similarly ensured if phases can be chosen such that

(αn)c(αn)pcn = c∗n for all n. (2.112)

If we apply this formalism to the standard model Lagrangian then we find
the results quoted in section 2.4. The Higgs interactions, gluon interactions,
and electromagnetic interactions all respect each of the three discrete sym-
metries, C, P and CP. The neutral current couplings of the fermions to the
neutral Z boson break both C and P but in such a way that the combination
CP is unbroken. Finally, the charged-current coupling of the fermions to the
W boson not only violates C and P, but can also violate CP, provided that
there is not sufficient freedom to make the Kobayashi Maskawa-matrix real.

As an illustration we show the manipulations for the charged-current
quark interactions,

L =
ig2

2
√

2

[
VmnW+

µ ūmγµ(1+γ5)dn + (V †)mnW−
µ d̄mγµ(1+γ5)un

]
. (2.113)

In this case the transformation rules for the spin-one fields become CW±
µ C∗ =

−W∓
µ and PW±

µ P∗ = Pµ
νW

±
ν . Then, under charge conjugation, we have

C L C∗ =
ig2

2
√

2

{
(αum)c(αdn)∗cVmnW−

µ

[
d̄nγµ(1−γ5)um

]∗

+(αun)∗c(αdm)c(V †)mnW+
µ [ūnγµ(1−γ5)dm]∗

}
, (2.114)

and under parity transformations we get

P L P∗ =
ig2

2
√

2

[
(αum)p(αdn)∗pVmnW+

µ ūmγµ(1−γ5)dn

+(αdm)∗p(αun)p(V †)mnW−
µ d̄mγµ(1−γ5)un

]
. (2.115)

It is clear that there is no choice of phases for which the Lagrangian is
parity or charge-conjugation invariant, because any choice that would make
the term involving γµ invariant would make the γ5γ

µ term not invariant
(and vice versa). The point is that each operation replaces the projector
PL = (1+γ5)/2 with the projector PR = (1−γ5)/2.
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Combining both transformations, however, gives the following result:

(CP)L(CP)∗ =
ig2

2
√

2
×

{
(αum)c(αdn)∗c(αum)p(αdn)∗pVmnW−

µ

[
d̄nγµ(1+γ5)um

]∗

+ (αun)∗c(αdm)c(αun)∗p(αdm)p(V †)mnW+
µ [ūnγµ(1+γ5)dm]∗

}
. (2.116)

If the phases can be chosen to satisfy (αum)c(αdn)∗c(αum)p(αdn)∗p = 1, and
the KM matrix can be simultaneously chosen to be real, then this last equa-
tion would be precisely the complex conjugate of the original Lagrangian.
Inspection of the other terms in the Lagrangian confirms that the phase
choice can be made provided that the KM matrix may be chosen to be real.
Therefore, as claimed, the standard model fails to conserve CP invariance
only in that the KM matrix cannot be made purely real.

2.5.2 Continuous symmetries

It is of considerable interest to determine the continuous global symmetries
of the standard model Lagrangian. The purpose of this section is to identify
the exact, and some approximate, symmetries of this Lagrangian.

The starting point is the class of symmetries of the Lagrangian in the
absence of all interactions or mass terms. This will give the maximum
possible symmetry group which could exist, given the particle content of the
model. The interactions of the theory will not respect all of this symmetry.
We will consider each interaction in turn and see how it cuts down the size
of the actual symmetry group, until we find what symmetries remain.

As is discussed in chapter 1, when the basis of fields is chosen to be real (or
Majorana), this class consists of a general independent orthogonal rotation
among all of the bosonic fields of a given spin, as well as a unitary rotation
amongst the left-handed fermions. For the standard model the group of all
such transformations is Gmax = O(4)×O(12)×U(45), corresponding to the
4 real scalar fields, 12 gauge potentials and 3 generations of fermions each
containing 15 different species of fermion (one E, two from L, three each
from U , and D, and six from Q). We will write this group as Gmax = G0 ×
G 1

2
×G1, with G0 = O(4) the group of scalar transformations, G 1

2
= U(45)

the group of fermionic transformations, and G1 = O(12) the group of gauge
field transformations.

We wish to determine what subgroup of this group of transformations is
preserved once the interactions are turned on. One immediate subgroup of
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this type is the group of gauge transformations themselves: Gg ≡ SUc(3)×
SUL(2)× UY (1) ⊂ G.

2.5.2.1 Gauge self-interactions

We next describe conditions G must satisfy if it is not to be broken by the
gauge interactions.

Consider first the self-interactions of the twelve gauge bosons. As is dis-
cussed in more detail in chapter 1, the free kinetic terms for these fields are
invariant under the replacement of each field by an arbitrary linear combi-
nation of the fields, δV a

µ = Ma
bV

b
µ , provided that the 12 × 12 matrix Ma

b

is antisymmetric (and so its exponential, [exp(M)]ab, is orthogonal). The
group formed by these transformations is the group G1 = O(12). We wish
to determine what subgroup of these transformations are also symmetries of
the gauge boson self-interactions. In order to be an invariance of these inter-
actions, a candidate symmetry transformation must preserve the structure
constants of the gauge group:

M b
ac

c
bd + M b

dc
c
ab = M c

bc
b
ad. (2.117)

The algebra of infinitesimal symmetry transformations of the gauge boson
self interactions is given by that subalgebra of G1 that satisfies Eq. (2.117).
This subalgebra must include the Lie algebra of the gauge group itself, be-
cause infinitesimal gauge rotations, δV a

µ = εbca
bcV

c
µ , automatically satisfy

Eq. (2.117) by virtue of the Jacobi identity that is satisfied by the structure
constants, ca

bc.
An immediate consequence of Eq. (2.117) is that if the gauge group con-

sists of several mutually commuting factors, Gg = H1 ×H2 × · · · (as is the
case for the standard model), then Ma

b = 0 unless both a and b correspond
to generators that are in the same factor of Gg. It is a theorem of the the-
ory of compact semisimple Lie groups that the only Lie subgroup of G1 that
satisfies Eq. (2.117) is the gauge subgroup itself (i.e. G1 ∼ Gg consists of the
group of inner automorphisms of Gg). As a result, there are no accidental
global symmetries within the gauge boson sector of the theory.

2.5.2.2 Scalar–gauge and scalar self-couplings

The next simplest case is the scalar sector of the model. The Higgs doublet
consists of four real scalar fields, φi = φ∗i , and so the free kinetic terms
of these fields are invariant under arbitrary G0 = O(4) rotations, δφi =
iRi

jφ
j with R + RT = 0, of these fields into one another. As discussed in

subsection 2.5.2, this symmetry is not broken by the scalar self-interactions
as described by the scalar potential. We wish to know which subgroup of
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G0 is also a symmetry of the scalar-gauge interactions. Our answer to this
question is not specific to the example O(4) but applies more generally for
larger symmetry groups, G0.

Consider a group GR of symmetry transformations, with group generators
we will designate as R. If the generators of the gauge transformations are
ta, then the condition for the group of symmetry transformations to be
unbroken by the gauge transformations is

[ta, R] = Na
btb , (2.118)

for each R and each ta of the gauge group. The coefficients Na
b represent a

rotation among the gauge potentials of the theory that might be necessary
to compensate for the effects of the scalar rotation, R. For our application,
we are interested in the case where GR is a subgroup of G0.

Note that R and ta are all generators of the group G0; so Eq. (2.118) is
a special case of the Lie algebra of G0. Choose a basis for the generators of
G0 such that the structure constants fA

BC are totally antisymmetric. Then
[ta, R] = fB

aRgB, with gB one of the generators of G0. For Eq. (2.118) to
hold, either fB

aR vanishes, or gB must be one of the tb. But that would
imply that [ta, tb] ∝ R, which cannot be–the ta must be a subgroup of G0,
so their algebra should be closed. Therefore, R must either be a generator
of the group of gauge transformations, or it must commute with all of the
generators of the gauge group.

Since the solution in which R is a gauge transformation generator does not
represent a new, accidental, symmetry, we focus on the alternative for which
R commutes with all of the gauge transformations in Gg. By Schur’s lemma,
this implies that the transformations, R, cannot mix fields that transform
in different irreducible representations of the gauge group. The resulting
symmetry of the gauge interactions then becomes a product of orthogonal
groups, O(N1) × O(N2) × · · ·, in which each factor describes the rotations
of the Ni fields that all transform in the common representation, ri, of the
gauge group.

Since only a single irreducible representation of scalar fields appears in
the standard model, and since there is no subgroup of O(4) which commutes
with the SUL(2)×UY (1) subgroup, there are no accidental global symmetries
of the scalar gauge couplings. It is purely the UY (1) gauge couplings that
break the potential O(4) symmetry of the scalar sector. One way to see
this is to notice that the Lie algebra of O(4) is isomorphic to that of the
algebra SU(2)× SU(2), of which one of the SU(2) factors may be taken to
be the gauge group SUL(2). In the absence of the UY (1) gauge couplings to
the scalars, there would therefore be an entire SU(2) subgroup of G0 that
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commutes with the gauge group. This is the origin of the custodial SU(2)
symmetry of subsection 2.3.2.

Although the standard model is not invariant under the full O(4) invari-
ance, conclusions based on this symmetry do become correct in the limit
that the UY (1) gauge coupling—and, as we shall see, the Yukawa couplings—
vanish. Since this coupling is known to be experimentally small, it follows
that the O(4) symmetry is a good approximate symmetry of the standard
model. Such approximate symmetries can be almost as useful as exact sym-
metries if the noninvariant couplings are sufficiently small.

2.5.2.3 Fermion–gauge couplings

The only place left to look for accidental global symmetries is inside the
group G 1

2
= U(45) of transformations between the 45 species of left-handed

fermions. (The number 45 arises as 3 generations times one E, two L, three
U , three D, and six Q fields per generation. A quark species counts for 3
because of its 3 colors, L and Q count double because of the two flavors in
each.)

If we work with a basis of fermions which are in definite representations
of the gauge group—as opposed to being mass eigenstates—the condition
that the symmetry transformations be preserved by the fermion gauge in-
teractions is a direct analogue of Eq. (2.118). It follows that a subgroup of
G 1

2
preserves the fermion–gauge interactions if it is either the subgroup of

gauge transformations themselves, or it commutes with this gauge subgroup.
Since the 15 fermion species of a given generation transform under the gauge
group, SUc(3)× SUL(2)×UY (1), as

(
3,2, +1

6

)
⊕

(
3,1,−2

3

)
⊕

(
3,1,+1

3

)
⊕(

1,2,−1
2

)
⊕ (1,1, +1), and since none of these irreducible representations

is big enough to admit an internal potential symmetry that commutes with
the gauge group, there are no accidental symmetry transformations relating
the fermions within a single generation.

The accidental symmetries of the fermion–gauge couplings are therefore

Gf ≡ UQ(3)× UU(3)× UD(3)× UL(3)× UE(3) ⊂ G 1
2
. (2.119)

Each factor of this group corresponds to a unitary rotation in generation
space of the five types of irreducible SUc(3)×SUL(2)×UY (1) representations
of the model’s fermion content.

2.5.2.4 Yukawa interactions

From the previous paragraphs, the only exact non-gauge symmetries of the
gauge interactions of the standard model are Gf = [U(3)]5, representing
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independent transformations, in generation space, of each type of fermion
fields. The final issue is to determine which of these potential symmetries
also preserves the Yukawa interactions of the theory.

The conditions that must be satisfied in order for these transformations
to preserve the form of the Yukawa couplings of Eq. (2.25) are

(UT
L fUE)mn = fmn ,

(UT
QgUU)mn = gmn ,

(UT
QhUD)mn = hmn . (2.120)

These equations imply that the potential symmetry transformations must
also satisfy the following additional conditions, which each involve only left-
handed or only right-handed unitary transformations:

(U †
Ef †fUE)mn = (f †f)mn ,

(UT
L ff †U∗

L)mn = (ff †)mn ,

(U †
Ug†gUU)mn = (g†g)mn ,

(UT
Qgg†UQ)mn = (gg†)mn ,

(U †
Dh†hUD)mn = (h†h)mn ,

(UT
Qhh†UQ)mn = (hh†)mn . (2.121)

In order to analyze the implications of these conditions, it is convenient to
work with a basis of fields for which the fermion mass matrix, and so also the
Yukawa coupling matrices, are real and diagonal. (Since the transformation
to this basis introduces the Kobayashi Maskawa matrix into the charged-
current fermion gauge couplings, these couplings must be re-examined for
invariance at the end.)

In this basis, and taking the experimental information that none of the
eigenvalues of the Yukawa coupling matrices fmn, gmn and hmn vanish or
are degenerate, Eq. (2.121) implies that each of the unitary matrices must
be diagonal with phases along their diagonals. This reduces the candidate
symmetry group for the fermions to the multiplication of the left- and right-
handed parts of each mass eigenstate by an independent U(1) phase.

Using this form for the unitary transformations in the original condition
of Eq. (2.120) implies that the left- and right-handed transformations must
be equal for each type of fermion; that is: UQ = U∗

U = U∗
D and UL = U∗

E.
For leptons this is the end of the story, implying that the accidental sym-
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metry of the lepton sector is Ue(1)× Uµ(1)× Uτ (1):

UL = U∗
E =




eiθe

eiθµ

eiθτ


 . (2.122)

For quarks, we must also check that these phase transformations pre-
serve the form for the charged current gauge interactions when written in
terms of mass eigenstates as in Eq. (2.115). To be invariant, the candidate
transformation must therefore commute with the KM matrix. For a generic
unitary KM matrix the only combination of such transformations are those
that are proportional to the unit matrix in generation space, and so which
rotate all quarks by a common phase. Therefore, there is only a single U(1)
transformation left:

UQ = U∗
U = U∗

D =




eiθB/3

eiθB/3

eiθB/3


 . (2.123)

The corresponding group is UB(1). The factor of 1/3 is chosen so that the
charge of a quark under this U(1) is 1/3. Since bound states of quarks
always come in 3’s (see chapter 8), the bound states, baryons, carry charge
1 rather than charge 3.

The accidental global symmetry group of the standard model is therefore

G = Ue(1)× Uµ(1)× Uτ (1)× UB(1). (2.124)

Each of the four generators of this symmetry group corresponds to a
quantum number that appears to be experimentally conserved. They are:

(i) electron number: Le(e−) = L(νe) = +1, Le(e+) = L(νe) = −1,

Le = 0 for all others;
(ii) muon number: Lµ(µ−) = L(νµ) = +1, Lµ(µ+) = L(νµ) = −1,

Lµ = 0 for all others;
(iii) tau number: Lτ (τ−) = L(ντ ) = +1, Lτ (τ+) = L(ντ ) = −1, Lτ = 0

for all others;
(iv) baryon number: B(q) = 1

3 for all quarks, q, B(q) = −1
3 for antiquarks,

and B = 0 for all others.

The sum L = Le+Lµ+Lτ is also known as lepton number. It is one of the
triumphs of the standard model that its accidental symmetries correspond
exactly with those conserved quantum numbers that had been experimen-
tally observed.
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Conservation of these quantum numbers immediately implies the stability
of the lightest particles that carry nonzero values for them. Given that the
neutrinos are massless and the charged leptons are not, we conclude that
all neutrino types are absolutely stable in this theory. Similarly, the lightest
baryon, which turns out to be the proton, is also predicted to never decay.
The electron is similarly stable because it is the lightest particle in the theory
that carries electric charge.

These conservation laws similarly forbid processes such as the reaction
µ → eγ, since these do not conserve Le or Lµ. This agrees with the current
experimental upper bound on this decay, which at present indicates that it
must occur less frequently than once in every 1011 µ decays.

In fact, there is now evidence that the separate lepton numbers are not
conserved, and that neutrinos are not perfectly massless–though the effects
which violate lepton number are tiny and are of no bearing in conventional
particle physics experiments. As discussed in chapter 10, our current under-
standing is that this is probably a failure of renormalizability; it is necessary
to add a dimension 5 operator to the standard model Lagrangian. However,
since the required coefficient of the operator implies a new scale (the scale
where the standard model is incomplete) of at least 1014GeV, this is not a
serious problem.

As it happens, one of the puzzling features of the standard model is the
small size of the Yukawa couplings for almost all of the fermions of the the-
ory. An equivalent way to phrase the same puzzle is to ask why the fermion
masses (apart from that of the top quark) are all so small in comparison
to, say, the masses of the W and the Z. To the extent that these Yukawa
couplings can be ignored, there is a larger approximate flavor symmetry,
[UL(3)×UE(3)] for leptons and [UQ(2)×UU(2)×UD(3)] for quarks. A version
of these symmetries is very useful for analyzing the low-energy properties
of the strongly-interacting quark sector in which the implications of such
a chiral UL(3)× UR(3) symmetry provides otherwise unobtainable informa-
tion about the spectrum of the light strongly-interacting particles. These
approximate symmetries are considered in much more detail in chapter 8.

2.5.3 Anomalies

The discussion of the previous sections has dealt exclusively with the sym-
metries of the classical action of the model and has neglected quantum
considerations. We devote this section to a discussion of the potential com-
plications that arise when considering symmetries within a quantum, as
opposed to classical, field theory.
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In order to outline the issue at stake, recall that there are several uses to
which symmetries are applied. The most important place is in the coupling
of light spin-one particles. Here it was argued that these interactions could
only be Lorentz invariant and unitary if they were also invariant under
local gauge transformations. Another application was to use the existence
of global (or local) symmetries to infer the existence of local conservation
laws and symmetry relations amongst the energy eigenvalues of the system
concerned.

The logic used in all of these applications has been: (1) The invariance of
the classical action under a particular symmetry transformation ensures, by
Noether’s theorem, the existence of a set of currents, jµ

a , whose conservation,
∂µjµ

a = 0, follows from the equations of motion for the fields. (2) These con-
served currents may be used to construct conserved charges, Qa =

∫
j0
a d3x,

for which the equations of motion for the fields imply [H,Qa] = 0.
Unfortunately, such classical arguments do not always hold in a quantum

theory. The process of quantizing a given classical theory introduces ambi-
guities associated with the ordering of operators in the quantum theory. In
a field theory this operator-ordering ambiguity is intimately related with the
divergences at short distances, since operators only fail to commute when
their spacelike separations tend to zero. Since different operator orderings
for the system Hamiltonian give rise to different equations of motion, and
since the conservation of the Noether current depends on these equations of
motion, the form taken by the conserved current will in general depend on
how these operator-ordering issues are resolved.

It could potentially happen that there is no operator ordering under which
all would-be currents are conserved, even if they should be conserved at the
classical level. That is to say, it might happen that the existence of a sym-
metry of the classical action might not be sufficient for the existence of a
conserved quantum charge operator. Should this occur, we would lose the
exact results we hoped to derive from the existence of the symmetry. The
discovery that classical symmetries can fail in this way was so surprising
when it was discovered that this failure of a symmetry to survive quantiza-
tion was termed an anomaly. The purpose of the remainder of this section is
to summarize under what circumstances a symmetry is ‘anomalous’ in this
way.

Precisely such an anomaly can indeed occur for a current if the symmetry
at issue involves transformations on Majorana fermions. Since the distinc-
tion between right and left handed fields is essential here, the anomaly is
termed the chiral anomaly. While it is beyond the scope of this book to
derive how such an anomaly arises, the condition for the absence of a chiral
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anomaly may be fairly simply stated. Suppose that the generators of a clas-
sical symmetry acting on left-handed spinor fields are denoted by Ta. Then,
as is discussed in section 2.1, the action of the symmetry on a Majorana
spinor becomes δψm = iεa[(Ta)m

nPL − (T ∗a )m
nPR ]ψn. The classical sym-

metry survives quantization, and so is called anomaly free, if the anomaly

coefficients, Aabc, vanish for all a, b, and c. These coefficients are completely
symmetric under permutations of the indices a, b, and c, and are defined by

Aabc = tr(Ta{Tb, Tc}) . (2.125)

The curly brackets in this equation denote the anticommutator, {Tb, Tc} ≡
TbTc + TcTb, and the trace means that a sum is to be taken over all types of
fermions, e.g. every color of every flavor of quark and every lepton, in each
generation, with T denoting the action of the symmetry on that particular
particle type (so if Ta represents the action of one of the color generators,
it is λa/2 in color space when acting on a quark, and 0 when acting on a
lepton, since leptons are colorless and do not change under a color rotation).

In particular, when the anomaly coefficient Aabc does not vanish and the
indices b, c correspond to gauge symmetries, then the conservation of the
current Jµ

a is violated by

∂µJµ
a =

Aabc

64π2
εµναβgF b

µνgF c
αβ , (2.126)

with F the field strength corresponding to symmetry b and g the associated
gauge coupling.

A consequence of the structure of Eq. (2.125) is that there are no anoma-
lies for real (or pseudoreal) fermion representations. A (pseudo-) real rep-
resentation is defined to be one for which the generators iTa are real up
to a similarity transformation: T ∗a = −STaS

−1 for some invertible matrix
S. To see that this ensures freedom from anomalies, notice that since the
generators Ta are Hermitian it follows that T T

a = T ∗a . Then,

Aabc = tr(Ta{Tb, Tc})
= tr[(Ta{Tb, Tc})T ]

= tr({T T
c , T T

b }T T
a )

= tr({T ∗c , T ∗b }T ∗a )

= − tr(S{Tc, Tb}TaS
−1)

= − tr({Tc, Tb}Ta)

= −Aabc = 0 . (2.127)

This will make the calculation of several anomaly coefficients much easier.
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An important special case of this last result occurs when fermion number
is conserved and when the left- and right-handed fermions (as opposed to
antifermions) transform in the same representation, ta say, of the group
of interest. In this case the generator of this group acting on all of the
left-handed spinors (for fermions and antifermions) may be written in the
block-diagonal form:

Ta =

(
ta 0
0 −t∗a

)
. (2.128)

This is manifestly pseudoreal since T ∗a = −STaS
−1. It follows that any

symmetry that is left-right symmetric in this way must be anomaly free.
Because symmetries that are not left-right symmetric are known as chiral

symmetries (see subsection 1.3.2), these types of anomalies are sometimes
called chiral anomalies.

Because of the central role symmetries play in field theory, we must check
two things.

(i) First, since the gauge symmetries of the standard model are chiral in
the sense just described, we must verify that they are anomaly-free,
that is, that all anomalies involving three gauge symmetries vanish.
Otherwise, the gauge fields will not couple to conserved currents, and
the gauge interactions will not be simultaneously Lorentz invariant
and unitary. Since these are both basic principles of quantum field
theory, a theory with anomalous gauge symmetries does not exist (is
not a valid theory).

(ii) Next, we must see whether the exact and approximate global ‘ac-
cidental’ symmetries of the standard model have anomalies or not.
No issues of consistency need arise if they do have anomalies, since
these symmetries are not associated with the couplings of any spin-
one particles. It is nevertheless important to understand which are
anomalous, since anomalies negate the argument that would allow
these classical symmetries to imply the existence of exact conserva-
tion laws or spectral relations.

These two issues are the topics of the following two sections.

2.5.3.1 Cancellation of gauge anomalies

Let us verify that the anomaly coefficient, Aabc, vanishes in the standard
model when all of the indices, a, b, and c, correspond to gauge group gen-
erators. As we shall see, this anomaly cancellation relies on the detailed
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quantum numbers of the standard model fermions and requires all of the
members of a complete generation in order to work.

We consider each combination of generators in turn. We will use the nota-
tion ‘A(3,3,3)’ for the anomaly coefficient involving three SUc(3) generators
etc. We demonstrate that the contribution to the anomaly coefficient from
each generation separately vanishes.

(i) A(3,3,3): The SUc(3) representations are all left-right symmetric.
This anomaly coefficient must therefore vanish for the general reasons
given above.

(ii) A(3,3,2): These coefficients are all proportional to the trace of the
Pauli matrices since these furnish the two-dimensional SUL(2) rep-
resentations. Since the Pauli matrices are all traceless this anomaly
coefficient must vanish.

(iii) A(3,3,1): The three-dimensional SUc(3) generators are given by the
Gell-Mann matrices, λα/2, of Eq. (1.186). These are all tracefree and
satisfy the following property:

{λα, λβ} =
4
3
δαβ + 2dαβγλγ .

The trace over colors of δαβ will give 3, while the trace over dαβγλγ

gives zero; so A(3,3,1) is therefore proportional to the trace over all
left-handed colored fields (i.e. quarks) of the UY (1) generator—weak
hypercharge, Y . The anomaly coefficient therefore is

A(3, 3, 1) =
∑

quarks

Y = 3(2yQL
+ yUL + yDL)

= 3
[
2

(
1
6

)
+

(
−2

3

)
+

(
1
3

)]

= 0 . (2.129)

The overall factor of 3 is the number of generations. The factor of 2
on yQL

is because of the two SUL(2) flavors.
(iv) A(3,X,Y): This coefficient vanishes for X and Y equal to either 2 or

1 since it is proportional to the trace of a Gell-Mann matrix, which
vanishes.

(v) A(2,2,2): As observed above, the only nontrivial SUL(2) represen-
tations that appear within the standard model are doublets, and so
the generators are represented by the Pauli matrices. Since all three
Pauli matrices satisfy the following identity, τ∗a = −τ2τaτ2, it follows
that this representation is pseudoreal, and so the anomaly coefficient
must vanish by the general argument of Eq. (2.125).
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(vi) A(2,2,1): The Pauli matrices satisfy the identity similar to that sat-
isfied by the Gell-Mann matrices: {τa/2, τb/2} = δab/2, which is dou-
bled when summed over a doublet. This anomaly coefficient is there-
fore the sum over SUL(2) doublets of the weak hypercharge, Y :

A(2, 2, 1) =
∑

doublets

Y = 3(yLL + 3yQL
)

= 3
[(
−1

2

)
+ 3

(
1
6

)]

= 0 . (2.130)

The factor of 3 on the Q contribution arises from the trace on colors.
(vii) A(2,1,1): This coefficient vanishes simply because it is proportional

to the the trace of a single Pauli matrix, which is zero.
(viii) A(1,1,1): This coefficient is proportional to the sum over all left-

handed fermions of the cube of the weak hypercharge:

A(1, 1, 1) = 2
∑

all

Y 3 = 6(2y3
LL

+ y3
EL

+ 6y3
QL

+ 3y3
UL

+ 3y3
DL

)

= 6

(
2

(
−1

2

)3

+ (+1)3 + 6
(

1
6

)3

+ 3
(
−2

3

)3

+ 3
(

1
3

)3
)

= 0 . (2.131)

It is clear that anomaly cancellations in the standard model require non-
trivial relationships between the number of species of and the quantum
numbers for the quarks and leptons. It is also clear that the values of
the hypercharges of the different species are not accidental. The relations
YEL+YLL = 1/2, YDL+YQL

= 1/2, and YUL+YQL
= −1/2 are enforced by the

requirement that the Yukawa interaction terms be hypercharge-invariant.
However, until now, the fact that YEL = 1 and not, say, 1 + ε, has been
a ystery. This is important; if it were 1 + ε, the neutrinos would possess
electric charges of −ε. Similarly, YDL could be 1/3 + δ rather than 1/3,
in which case the neutron would be charged, and the electron and proton
charges would differ. (The proton charge is 2Qu + Qd.) In fact, limits on
neutrino and neutron charges and on proton–electron charge differences are
very strong; for instance, the electron and proton charges differ by no more
than a part in 1021. The reason is that Eq. (2.130) and Eq. (2.131) only
sum to zero if ε = δ = 0. Therefore the equality of the proton charge and
the electron charge, and the vanishing of the neutrino and neutron charges,
are exact identities within the standard model.

We next consider the potential anomalies that could arise in the Lorentz
algebra. The Lorentz group has been treated here as a global rather than a
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gauge symmetry and so might be treated in the following section. However,
the introduction of gravitational interactions requires it to be gauged, so
if gauge-Lorentz anomalies exist, then the theory of gravitation would be
inconsistent. Therefore we consider it here.

The only standard model particles that are in complex representations of
the Lorentz group are the fermions. Since the Lorentz generators on fermi-
ons (c.f. subsection 1.3.2) are essentially equivalent to SU(2) transforma-
tions, the anomaly cancellation arguments are similar to those for an SU(2)
gauge group. It follows that the only anomaly coefficient that does not van-
ish immediately due to the properties of the Pauli matrices is A(J,J,1), in
which J generically denotes the Lorentz generators. The condition that this
anomaly coefficient be zero is that the trace of the weak hypercharge over
all left-handed fermions vanish:

tr
all

Y = 2yLL + yEL + 6yQL
+ 3yUL + 3yDL

= 2
(
−1

2

)
+ (+1) + 6

(
1
6

)
+ 3

(
−2

3

)
+ 3

(
1
3

)

= 0 . (2.132)

2.5.3.2 Anomalies in global symmetries

We next compute the anomalies for the accidental global symmetries and
for some of the approximate global symmetries that were identified in the
previous sections.
For baryon number, B, the anomaly coefficients are:

A(3, 3, B) =
∑

quarks

B = 6
(

1
3

)
+ 3

(
−1

3

)
+ 3

(
−1

3

)
= 0;

A(2, 2, B) =
∑

doublets

B = 9
(

1
3

)
= 3;

A(1, 1, B) =
∑

all

2Y 2B

= 36
(

1
6

)2(1
3

)
+ 18

(
−2

3

)2(
−1

3

)
+ 18

(
1
3

)2(
−1

3

)
= −3;

A(1, B, B) =
∑

all

2Y B2

= 36
(

1
6

) (
1
3

)2

+ 18
(
−2

3

) (
−1

3

)2

+ 18
(

1
3

) (
−1

3

)2

= 0;

A(B,B,B) =
∑

all

B3 = (36− 18− 18)/27 = 0;
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A(J, J,B) =
∑

all

B = 0 . (2.133)

For lepton numbers, Le, Lµ, Lτ : each of these charges gets contributions
only from its own generation, so the factors of 3 from the generation sum in
the baryon results will be absent. It suffices to compute the anomalies for
one of them since the results are identical for the others. Anomalies between
lepton symmetries vanish.

A(2, 2, Le) =
∑

doublets

Le = 1 ;

A(1, 1, Le) =
∑

all

2Y 2Le = 4
(
−1

2

)2

(+1) + 2 (+1)2 (−1) = −1;

A(1, Le, Le) =
∑

all

2Y L2
e = 4

(
−1

2

)
(+1)2 + 2 (+1) (−1)2 = 0;

A(Le, Le, Le) =
∑

all

2L3
e = 0;

A(J, J, Le) =
∑

all

Le = 1 . (2.134)

Chiral U(3) is an approximate symmetry under which the three lightest left-
and right-handed quarks get shuffled amongst one another, UqL(3)×UqR(3).
It will be of interest in chapter 8, where we will need to know how much
of this approximate symmetry group is anomaly free. We consider here
only the quark sector since this is the case that is of most direct interest
in subsequent chapters. For brevity, we consider only the left-handed case
explicitly here. Denote a general UqL(3) generator by Ta and denote its
specific 3× 3 representation by ta. Then:

A(3, 3, Ta) ∝ tr ta;

A(2, 2, Ta) ∝ tr ta;

A(1, 1, Ta) ∝ tr ta;

A(1, Ta, Tb) ∝ tr(tatb) ∝ δab;

A(Ta, Tb, Tc) ∝ tr(ta{tb, tc});
A(J, J, Ta) ∝ tr ta . (2.135)

Some comments:

(i) Perhaps the most basic observation about these anomaly coefficients
is that they are not zero. It follows that the naive conclusions that
are based on the corresponding symmetries can break down and so
must be treated with caution. It turns out, however, that for physics



104 The standard model: general features

at temperatures low compared to the W boson mass (in fundamental
units with h̄ = c = kB = 1) any violation of the corresponding conser-
vation laws due to quantum effects are proportional to exp(−8π2/g2)
and so are negligibly small for weak couplings (g ¿ 1). The same
arguments indicate that those global symmetries that have anomalies
due to any strong interactions are strongly broken, and so should not
provide good approximations to the dynamics of the full quantum
theory.

As a result, all of the consequences of the exact global symmetries
are expected to hold for the standard model to an extremely good
approximation. Those symmetries having SUc(3) anomalies are ex-
pected to be strongly broken.

(ii) The only anomaly-free global symmetries of the standard model are
found by taking appropriate linear combinations of the anomalous
symmetries given above. The symmetries free of all anomalies, in-
cluding gravitational anomalies, are Le − Lµ, Le − Lτ , and Lµ − Lτ

(which is linearly dependent on the first two).

(iii) Notice that all of the anomalies except the Lorentz anomaly are the
same for baryon number, B, as they are for the total lepton number,
L = Le + Lµ + Lτ . The Lorentz anomalies would also agree if the
model were to be supplemented by a right-handed neutrino field per
generation. This suggests that the combination B − L would be
anomaly free, including gravitational effects, in the presence of right-
handed neutrinos.

(iv) It is clear from Eq. (2.135) that all of the chiral U(3) transformations
have anomalies of one type or another. Only those with a nonvanish-
ing trace receive SUc(3) anomalies, however, and so would be bona
fide symmetries to the extent that the electroweak interactions are
negligible. Now, since the group U(3) is generated by arbitrary 3× 3
Hermitian matrices, and since any such matrix may always be decom-
posed as a linear combination of traceless Gell-Mann matrices and the
unit matrix, it follows that the Lie algebra for U(3) is equivalent to
that of the product SU(3) × U(1). Since only the U(1) generator
has a nonvanishing trace, only it suffers from an SUc(3) anomaly.
As a result, the strong interactions break the approximate symmetry
UqL(3)×UqR(3) down to its subgroup SUqL(3)×SUqR(3)×UB(1). The
unbroken UB(1) is that combination of the U(1)’s that acts equally on
left- and right-handed quark fields, and so may be recognized simply
as baryon number.
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2.6 Problems

[2.1] Anomaly cancellation and charge assignments
Complete the proof that anomaly cancellation fixes the charges of the

standard model fermions.
First, take the hypercharge of the Higgs field φ to be exactly −1/2. This

can be considered as the definition of the normalization of g1. Then, write
the hypercharges of PL L and PL Q as qL ≡ −1/2− ε and qQ ≡ 1/6− δ.

Show that the hypercharges of the E, U , and D fields are fixed by the
requirement that the Yukawa interactions be gauge invariant, and find
expressions for qE, qD, and qU , the hypercharges of PL E, PL D, and PL U .

Then find expressions for the two anomaly conditions, Eq. (2.130) and
Eq. (2.131), in terms of δ and ε. Show that the only simultaneous solution
to both equations is ε = δ = 0.

[2.2] Muon decay
The muon µ decays via the reaction

µ− → e−νµν̄e .

However, the decay

µ− → e−γ ,

with γ a photon, has never been observed. Explain in terms of symmetries
why there is no obstacle in principle to the first decay, but the second
decay is forbidden and is expected to have a rate in the standard model
of zero.

[2.3] Right handed neutrinos
Suppose a right handed neutrino for each generation (invariant under

SUc(3)× SUL(2)× UY (1) ) is added to the standard model.

[2.3.1] Show that the only new renormalizable terms that can appear in
the Lagrangian are (also rewriting the kinetic term for the left handed
leptons):

L = −1
2
L̄m /DLm − 1

2
N̄m/∂Nm − 1

2
MmN̄mNm − (kmnL̄mPR Nnφ̃ + h.c.) ,

where Nm is the Majorana spinor whose right-handed piece is the right-
handed neutrino and Lm is the usual lepton doublet. Mm is a real mass
parameter and kmn are Yukawa coupling constants.

[2.3.2] Do any combinations of electron-number, muon-number and tau-
number remain conserved in the presence of these terms?
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[2.3.3] Argue that these new terms induce a neutrino mass. Specializing
to the case of one generation for simplicity, write down the neutrino
mass matrix and identify the basis of fields in which it is diagonal and
positive.

[2.3.4] Express the lepton-Higgs and lepton-gauge boson interactions in
terms of these mass eigenstates. (It is most convenient to keep using
Majorana spinors here because the mass matrix does not take a simple
form in terms of Dirac spinors.)

[2.4] Two Higgs doublet models
Suppose the Higgs doublet of the standard model is supplemented by

a second complex doublet, ψ, transforming as (1,2,−1
2) under SUc(3)×

SUL(2)× UY (1).

[2.4.1] If ψ is written ψ =

(
χ

ξ

)
, what are the electric charges of the

component fields χ and ξ?
[2.4.2] Write out the covariant derivative Dµψ explicitly in terms of the

gauge fields Gα
µ, W a

µ and Bµ.
[2.4.3] Assuming the potential must be a function of the invariants a =

φ†φ, b = ψ†ψ and c = φT εψ, where φ is the usual Higgs doublet,
what is the most general renormalizable form? How many independent
real parameters does it contain? Need the parameters appearing in
the potential be real? Is the combination d = φ†ψ SUL(2) × UY (1)
invariant?

[2.4.4] Suppose the parameters of the potential are such that it is mini-
mized when

φ = φmin =

(
0

v/
√

2

)

ψ = ψmin =

(
1√
2
(u + iw)

0

)

u, v, w all real. Do these values break the electromagnetic group Uem(1)
generated by the electric charge Q = T3 + Y ? Identify the terms in the
Lagrangian that are quadratic in the gauge fields and find their masses
in terms of u, v and w. Call the mass eigenstates W±

µ = 1√
2
(W 1

µ∓iW 2
µ),

Zµ = W 3
µ cos θ − Bµ sin θ and Aµ = Bµ cos θ + W 3

µ sin θ. Express cos θ

in terms of the gauge couplings g1 and g2. Is the usual mass relation
MW = MZ cos θ also true for this model?
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[2.4.5] What are the Yukawa couplings of the spin zero fields, φ and ψ,
to the fermions? Suppose the Lagrangian is required to be invariant
under the symmetry:

PR Em → eiθPR Em, PR Um → eiθPR Um, PR Dm → eiθPR Dm

φ → e−iθφ and ψ → e−iθψ

with θ a real constant and all other fields being invariant. What are
the resulting restrictions on the Yukawa couplings and Higgs potential,
V (φ, ψ)?

[2.5] Adjoint Higgs fields
Suppose that the standard model is supplemented by a second complex

Higgs field that transforms as a triplet of SUL(2) rather than as a doublet;
i.e.:

ψ =




ψ1

ψ2

ψ3




and

δ2ψ = iωa
2taψ

with

t1 =
1√
2




0 1 0
1 0 1
0 1 0


 , t2 =

1√
2




0 −i 0
i 0 −i

0 i 0


 , t3 =




1 0 0
0 0 0
0 0 −1


 .

(You can verify that t1, t2, t3 satisfy the algebra of SUL(2) generators.)
Suppose also that the hypercharge, Y, of the field ψ is zero.

[2.5.1] What is the electric charge of each component field, ψ1, ψ2 and
ψ3?

[2.5.2] Suppose the potential for ψ and the usual Higgs field, φ, is mini-
mized when

φ = φmin =

(
0

v/
√

2

)

ψ = ψmin =




0
1√
2
(u + iw)

0


 .

Do these values respect the electromagnetic gauge group Uem(1) gener-
ated by the electric charge Q = T3 + Y ?
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[2.5.3] Find the masses of the spin-one fields W±
µ , Zµ and Aµ, where, as

usual, Zµ = W 3
µ cos θ − Bµ sin θ and Aµ = Bµ cos θ + W 3

µ sin θ. What
is cos θ in terms of the gauge couplings? Is the mass relation MW =
MZ cos θ still valid?

[2.6] Gauged B − L coupling
Suppose the standard model is extended to contain an extra U(1) sym-

metry U(1)′, with gauge boson Fµ and gauge coupling g4. Suppose that
the Higgs boson has charge 0 under this gauge boson, but the left-handed
lepton doublet PL L has charge -1.

Also assume a complex scalar field χ, of charge +1 under the new
symmetry but uncharged under hypercharge, is added to the Lagrangian.
Write its effective potential as

V (χ) = λχ

(
χ∗χ− µ2

2

)2

(2.136)

so that when µ2 > 0, it develops a vacuum expectation value. (There can
also be an interaction term between the Higgs boson and χ, but assume
that such a term is absent.)

[2.6.1] Revisit problem 3, where a right handed neutrino N is added to
the standard model. What is the charge of PR N , and is the Majorana
neutrino mass MN̄N still allowed?

[2.6.2] Based on the requirement that the Yukawa couplings preserve
U(1)′ symmetry, and that all gauge anomalies cancel (in particular,
the (3, 3, 1′), (2, 2, 1′), (1, 1, 1′), (1, 1′, 1′), and (1′, 1′, 1′) anomaly coeffi-
cients are nontrivial), what must be the charges of the standard model
fermions? Show that anomaly cancellation actually demands that the
theory possess an N field.

[2.6.3] What linear combinations of baryon number and the 3 lepton num-
bers remain conserved? Are there any Yukawa couplings involving the
χ field?

[2.6.4] Argue that if µ2 < 0 so the χ field has no condensate, the F field
is massless. In analogy with the Coulomb interaction mediated by the
electromagnetic A field between charged particles, argue that there will
be a Coulomb-like interaction between the electron and the neutron. Is
it attractive or repulsive? How might it be observed or (very tightly!)
constrained?

[2.6.5] Suppose that µ2 > 0. What is the spectrum of bosons? Does the
normal relation between W and Z boson masses hold? Is there any
mixing between Fµ and Zµ, Aµ?
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[2.7] Colored scalar fields
Suppose the standard model is extended to include a complex scalar

field Ũ , transforming under the (3,1,+2
3) representation of SUc(3) ×

SUL(2)× UY (1);

δŨ =
(

2ig1

3
ω1+

ig3

2
λαωα

3

)
Ũ , DµŨ =

(
∂µ− ig3

2
Gα

µλα−2ig1

3
Bµ

)
Ũ .

(This is the same as the transformation property of PR U .)

[2.7.1] Show that Ũ∗ transforms under the (3,1,−2
3) representation of

SUc(3)×SUL(2)×UY (1)(which is the same as the transformation rule for
PL U , see Eq. (2.11) and Eq. (2.20)), and that Ũ †Ũ (with the contraction
over the color indices implicit; the † means that Ũ∗ is written as a row
vector) is an SUc(3)× SUL(2)× UY (1) invariant.

[2.7.2] Show that the following renormalizable interactions are allowed for
the Ũ field: a kinetic and gauge interaction term,

−(DµŨ)†(DµŨ) ,

a mass term,

−M2
Ũ
Ũ †Ũ ,

the following scalar interaction terms,

−λ′ (Ũ †Ũ)2 − λ′′ φ†φ Ũ †Ũ ,

and the following new Yukawa interactions:

−xmnQ̄mPR LnŨ − ymnD̄mPL EnŨ − zmnεrstŨ
rD̄s

mPR Dt
n + h.c. ,

in which r, s, t are color indices, εrst is the totally antisymmetric tensor
on color indices, color indices are implicitly summed in the other two
terms, and m,n are generation indices. Note that zmn must be odd in
m,n.
Argue that there are no other renormalizable interactions which are
gauge invariant and satisfy all of the basic principles.

[2.7.3] What is the mass squared of Ũ , including both the explicit effects
of its mass term and the effects of v the v.e.v. of the Higgs boson? Is
the mass of Ũ determined by its coupling to the Higgs boson, or is it
an independent free parameter of the model?

[2.7.4] Argue that there is no assignment of lepton or baryon number to
the Ũ field which leaves either B or L symmetry unbroken. Hence, the
addition of such a scalar field generically leads to the violation of B and
L symmetries.
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Show however that if the Lagrangian is required to be invariant under a
discrete symmetry, Ũ → −Ũ with all other fields unaffected, then none
of the Yukawa couplings are permitted and baryon and lepton numbers
can again be defined. Further, show that in this case there is a new
global U(1) symmetry Ũ → eiθU Ũ which ensures that the number of Ũ

particles is conserved.

[2.8] Adjoint representation fermions
Suppose that two Majorana fermions were added to the standard model;

W̃ , a triplet under SUL(2), transforming as (1,3, 0), and G̃, an octet under
SUc(3), transforming as (8,1, 0). That is, the transformation properties
are,

δPL W̃ a = −εabcω
b
2PL W̃ c , DµPL W̃ a =

(
∂µδac + g2εabcW

b
µ

)
PL W̃ c ,

and

δPL G̃α = −fαβγωβ
3 PL G̃γ , DµPL G̃α =

(
∂µδαγ + g3fαβγGβ

µ

)
PL G̃γ .

[2.8.1] Show that the reality of εabc and fαβγ cause PR W̃ and PR G̃ to have
the same transformation properties as PL W̃ and PL G̃.

[2.8.2] Show that, contrary to what happened with the fermions of the
standard model, the new fields W̃ and G̃ do have SUc(3) × SUL(2) ×
UY (1) invariant mass terms,

−mW̃

2
W̃W̃ − mG̃

2
G̃G̃ .

Therefore, these particles may possess masses independent of their cou-
pling to the Higgs boson.

[2.8.3] Show that the only new Yukawa interaction is

ym Lmτaφ̃PL W̃a + h.c. .
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Cross sections and lifetimes

Most of the applications of the standard model to experimental situations
are concerned with processes in which almost free particles interact briefly
and over short distances. These processes could be the collisions of various
elementary particles within an accelerator (chapter 6 and chapter 9) or they
could be the decay of an unstable elementary particle in flight (chapter 4
and chapter 5). Scattering (S-matrix) theory is the formalism that has been
devised to study these systems.

This chapter presents a whirlwind review of the quantum theory of scat-
tering. The purpose is to gather into one place all of the results that are
required in order to use the Lagrangian of chapter 2 to predict the outcomes
of experiments. The first section sets up the notion of scattering states,
which are meant to represent in a precise way the idea that the particles
involved do not interact except for a short time interval. This is followed by
a review of the calculation of scattering amplitudes using time-dependent
perturbation theory.

In later chapters this formalism is finally used to compute the Feynman
rules that describe the interactions contained within the standard model
Lagrangian.

Readers in a hurry, or who find themselves bogged down in this section,
should try to understand section 3.2 and will need to learn the results at
the end of section 3.3, particularly Eq. (3.40) and Eq. (3.43).

3.1 Scattering states and the S matrix

In a real scattering (or decay) process, the particles involved only interact
briefly because they physically move apart from one another. For instance,
in a scattering experiment, the initial particles are initially well separated
from one another, but moving with velocities which bring them into mutual

111
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contact. From the perspective of quantum mechanics, this means that these
initial states cannot be exact momentum eigenstates, since such states are
not spatially localized at all. Similarly, they cannot be exact energy eigen-
states to the extent that their profiles in position space change with time
(as opposed to simply being multiplied by an overall phase e−iEt). Instead,
the initial particles are usually given by wave packets which are somewhat
localized in both position and momentum (in a way which is consistent with
the uncertainty relations), with the packets describing the relative approach
of initially well-separated particles.

To the extent that the initially-colliding particles are not correlated with
one another and that the reactions do not depend on the environment within
which they occur, one expects the probability of any given reaction to fac-
torize into the product of the probability for the particles to meet, times the
probability for the reaction to occur given that the meeting has taken place.
Of these, the first factor can be expected to depend on the details of the
wave packets which describe the initial state, since this controls things like
how many particles are present and how quickly they approach one another.
The second factor, however, might be expected to be independent of the
details of the initial state and instead be more of an intrinsic property of the
interactions involved. Indeed, these expectations are borne out in practice
for collisions, and motivate the definition of initial-state-independent quan-
tities, like cross sections, which describe the part of the reaction which does
not depend on the details of how a particular reaction has been set up.

It is the inference of quantities like cross sections from experimental mea-
surements which is of practical interest, since these directly bear the in-
formation about the underlying interactions like those described in earlier
chapters. Because they are largely insensitive to the details of the wave
packets describing the initial states, it turns out to be possible to compute
quantities like cross sections directly in the limit that these initial states be-
come energy and momentum eigenstates, even though this is not the limit
within which real experiments take place. The idealized energy eigenstates
to which one is led in this way are called scattering states, and their definition
is the topic of this section.

Suppose, then, that the complete Hamiltonian, H, can be broken into
two pieces, H = H0 + V , in such a way that H0 describes the evolution
of the initial and final wave packets before and after the scattering. In the
simplest instance H0 might describe just the kinetic energy of moving free
particles, with all of the interactions being put into V . But more complicated
divisions of H are also possible, such as by including the strong and/or
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electromagnetic interactions in H0 while placing the weak interactions into
V .

In general the Hilbert space, H, for the full system divides into two parts,

H = B ⊕ S , (3.1)

for which S contains those states of the full system whose evolution in time
using H is well approximated at late or early times by evolution using H0.
That is, S are the states (particles) of the theory with Hamiltonian H0. It is
useful to define the origin of time so that the initial and final wave packets of
the interacting particles are sufficiently widely separated that H0 evolution
suffices outside of a region −T < t < T , for some appropriately large and
positive T . Not all states need reside in S, and those which do not live in B,
which we loosely call bound states. For example, if our system consisted of
electrons and protons interacting electromagnetically, then S might contain
freely-moving electrons and protons, but B might contain bound Hydrogen
atoms.

Let us denote the eigenstates of H0 by |α〉, with α collectively denoting all
of the labels which are required to describe single- and many-particle states
and H0|α〉 = Eα|α〉. We write a wave packet of such states as

|φg〉 ≡
∫

dα g(α)|α〉 , (3.2)

where g(α) defines an appropriately normalizable packet. The label α here is
treated as a continuous variable because we envisage it to include (possibly
among other labels) the momenta of the various particles included in the
state. We assume that H0 has the same spectrum on H as H does on
S, so the same labels, α, and energies, Eα, may be used to describe the
eigenstates of the full system, H|α〉〉 = Eα|α〉〉 (where the double angle 〉〉 is
used to denote a state under H).

To describe scattering processes we work within the Schrödinger picture,
where the burden of time evolution is carried by the state of the system. In
a scattering problem we imagine that the time evolution of states prepared
in appropriate wave packets, |φg〉, have essentially the same evolution in the
remote past and the remote future, |t| À T , using either H or H0. That
is, we require that there must exist an out state, |φg〉〉o, which at late times
evolves under H in the same way as does any properly normalizable packet
|φg〉 under H0:

lim
tÀT

e−iHt|φg〉〉o = lim
tÀT

e−iH0t|φg〉 . (3.3)

There must similarly exist an in state, |φg〉〉i, — in general different than
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|φg〉〉o — whose evolution under H agrees with the evolution of a packet |φg〉
under H0 in the remote past:

lim
t¿−T

e−iHt|φg〉〉i = lim
t¿−T

e−iH0t|φg〉 . (3.4)

By choosing the limiting case of appropriately peaked wave packets, g(α),
we may also formally define in this way idealized scattering eigenstates of
the full Hamiltonian, |α〉〉o,i, which satisfy

lim
tÀT

e−iHt|α〉〉o = lim
tÀT

e−iH0t|α〉 and lim
t¿−T

e−iHt|α〉〉i = lim
t¿−T

e−iH0t|α〉 .
(3.5)

In terms of these states a scattering event corresponds to the transition
from a state resembling a packet |φg〉 at asymptotically early times to one
resembling a different packet |φf 〉 at asymptotically late times. From the
above definitions the amplitude for a such a process is given by the overlap

o〈〈φf |φg〉〉i . (3.6)

Any such scattering event may therefore be found from the limiting ampli-
tude for the ideal process where the initial and final state are approximately
energy eigenstates, and the matrix of all possible such amplitudes,

Sβα := o〈〈β|α〉〉i , (3.7)

therefore plays an important role, and is called the S-matrix. It is also
convenient to define the operator, S, whose matrix elements between H0

eigenstates, |α〉, reproduce these transition amplitudes:

〈β|S|α〉 := Sβα . (3.8)

Our goal is to provide an explicit expression for S in terms of the known
operators H0 and V . A step towards this end is the definition of the Møller
wave operators

Ω(t) := eiHt e−iH0t , (3.9)

in terms of which we have

|α〉〉o = lim
tÀT

Ω(t)|α〉 and |α〉〉i = lim
t¿−T

Ω(t)|α〉 , (3.10)

Since |α〉 and |α〉〉o,i are normalized, Ω± = limt→±∞Ω(t) are isometric op-
erators. Notice, however, that the states |α〉〉o,i only span S, while |α〉 span
H, so Ω± can only be unitary if B = ∅ (i.e. there are no bound states).
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These operators are useful because the S matrix can be constructed from
them, using

S = lim
t→∞ lim

t′→−∞
Ω∗(t)Ω(t′) = (Ω+)∗Ω− . (3.11)

The limit t → ∓∞ must of course be defined with some care, using appro-
priately normalized wave packets. This complication is ignored here with
the understanding that a more careful treatment justifies the formal manip-
ulations we present.

3.2 Time-dependent perturbation theory

We now derive an approximate expression for S as powers of the interaction
V . In order to express S in a form that lends itself to such a perturbative
approximation, we rewrite the operator Ω∗(t)Ω(t′) by re-expressing it as
a solution to a first-order differential equation in the variable t. That is,
Ω∗(t)Ω(t′) satisfies

Ω∗(t)Ω(t′) = eiH0te−iHteiHt′e−iH0t′

= eiH0te−iH(t−t′)e−iH0t′ . (3.12)

Evidently,

i
d

dt

[
Ω∗(t)Ω(t′)

]
= eiH0t(H −H0)e−iH(t−t′)e−iH0t′

= (eiH0tV e−iH0t) Ω∗(t)Ω(t′)
= V (t)Ω∗(t)Ω(t′) , (3.13)

where this last equality defines the interaction picture V operator at time t,
V (t) := eiH0tV e−iH0t.

Solutions of this differential equation, together with the initial condition
Ω∗(t′)Ω(t′) = 1, are equivalent to solutions of the following integral equation:

Ω∗(t)Ω(t′) = 1− i

∫ t

t′
dτ V (τ)Ω∗(τ)Ω(t′) . (3.14)

This has the obvious iterative solution,

Ω∗(t)Ω(t′) =
∞∑

n=0

(−i)n
∫ t

t′
dτ1

∫ τ1

t′
dτ2 · · ·

∫ τn−1

t′
dτn V (τ1)V (τ2) · · ·V (τn) .

(3.15)
The S-matrix becomes

S = lim
t→+∞
t′→−∞

Ω∗(t)Ω(t′) (3.16)
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=
∞∑

n=0

(−i)n
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 · · ·

∫ τn−1

−∞
dτn V (τ1)V (τ2) · · ·V (τn) .

One of our goals is to make Lorentz invariance as manifest as possible,
so to this end it is desirable to rewrite this expression in a form where
the temporal integration is over the same range as any spatial integrations:
i.e. from −∞ to ∞. This can be done via the following trick. Define the
time-ordering operation by

T [V (t1) · · ·V (tn)] ≡ V (tlatest) · · ·V (tearliest) (3.17)

=
∑
Pn

V (tP1) · · ·V (tPn)θ(tP1 − tP2) · · · θ(tPn−1 − tPn) .

The sum here is over all permutations of the n times t1, ..., tn, and the
Heaviside step function,

θ(x) =
{

1, if x > 0;
0, otherwise ,

(3.18)

ensures that only the permutation in which tP1 > tP2 > ... > tPn contributes.
Consider, then, the integral,

I ≡
∫ ∞

−∞
dτ1 · · ·

∫ ∞

−∞
dτn T [V (τ1) · · ·V (τn)]

=
∑
Pn

∫ ∞

−∞
dτP1 · · ·

∫ ∞

−∞
dτPnV (τP1) · · ·V (τPn) θ(τP1−τP2) · · · θ(τPn−1−τPn)

= n!
∫ ∞

−∞
dτ1 · · ·

∫ τn−1

−∞
dτn V (τ1) · · ·V (τn) . (3.19)

Comparing the last line with the iterative expression for S, given above,
implies that

S =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dτ1 · · · dτn T [V (τ1) · · ·V (τn)] . (3.20)

This will be the final form for the perturbative expansion of the S-matrix
in time-dependent perturbation theory.

Eq. (3.20) has a particularly pretty form if the interaction Hamiltonian is
given as an integral over a local Hamiltonian density,

V (t) =
∫

d3x HI(x, t) , (3.21)

since in this case the S-matrix becomes

S =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · · d4xn T [HI(x1) · · ·HI(xn)] . (3.22)
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This last equation is one of the main results of this chapter.
If we use energy and momentum eigenstates it is convenient to factor out

an overall factor of four-momentum conservation, using the identity

〈β|O(x)|α〉 = 〈β|e−iP ·xO(x = 0) eiP ·x|α〉 = ei(pα−pβ)·x〈β|O(x = 0)|α〉 ,
(3.23)

to factor an overall energy-momentum conserving factor out of the S-matrix:

Sβα = δβα − iMβα (2π)4δ4(pβ − pα) . (3.24)

The quantity Mβα is called the Matrix element for the transition from state
α to state β. It is also conventional to define the T -matrix element, in which
only the energy conserving delta function is factored out:

Sβα = δβα − iTβα 2πδ(p0
β − p0

α) . (3.25)

We can read off the first few terms in the expansion of M directly from
Eq. (3.22):

Mβα = 〈β|HI(x = 0)|α〉+
(−i)2

2!

∫
d4x 〈β|T [HI(x)HI(x = 0)] |α〉+ · · · .

(3.26)
This is an important result because it gives the S-matrix in terms of quan-
tities that we know, namely the matrix elements of the interaction Hamil-
tonian density.

Eq. (3.22) or Eq. (3.26) do not quite appear Lorentz invariant, for two
reasons. One reason is the appearance of the time-ordering operation, which
leads to the functions θ(ti − tj) whose value may differ in different frames.
(Recall that different Lorentz observers can disagree on the ordering in time
of spacelike-separated events.) This turns out not to be important because
the operator ordering is only relevant for operators which do not commute.
Locality ensures that commutators vanish for spacelike separated points; it
is only for timelike or lightlike separated operators that the time ordering
operation is important, and for such operators the time ordering is the same
in all frames. Therefore, the time ordering operation on a product of local
operators is Lorentz invariant in a local theory, and Eq. (3.22) is Lorentz
invariant.

The other reason to doubt the Lorentz-invariance of the S matrix is be-
cause the integral of the Hamiltonian density need not be Lorentz invariant.
Note, however, that it is only the interaction part of the Hamiltonian den-
sity which appears in the above formulae, and to the extent that this does
not involve derivatives of the fields it is typically related to the interaction
part of the Lagrangian density by H = −L. When this is so we see that the
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Lorentz invariance of the S matrix and of M is manifest, since we know that∫
d4x L is Lorentz invariant by construction. As we see in later chapters

Lorentz-invariance also holds for interactions involving derivatives of fields,
although this invariance arises in a more subtle way.

We shall use these equations—Eq. (3.23), Eq. (3.24), and Eq. (3.26)—
extensively throughout what follows.

3.3 Decay rates and cross-sections

The expressions obtained above for the S-matrix are proportional to an
energy-conserving (and possibly to a momentum-conserving) delta function
when expressed in terms of energy eigenstates rather than wave-packets.
This means that the square of S-matrix elements — the transition prob-
abilities — are proportional to δ(0) and so must diverge. Physically, this
divergence reflects the fact discussed earlier that scattering processes nec-
essarily involve wave packets and cannot involve energy eigenstates. (It is
also related to the difficulty, in infinite volume, of correctly normalizing an
energy eigenstate.) If the initial and final states are energy and momentum
eigenstates then their interactions never really turn on and off, because their
wave-functions spread throughout all of space, which prevents their influ-
ence on one another from changing over time. As a result, if we insist on
using such eigenstates to compute the S matrix (as we shall for convenience
of calculation), we must more carefully sort out the relationship between
physical quantities and the S-matrix elements we find. This is the purpose
of the present section.

3.3.1 Wave packets

If the initial state is described by a wave packet, |φg〉〉i =
∫

dα g(α)|α〉〉i,
then the probability of finding the system in the final state labelled by β

becomes

Pg(β) = |o〈〈β|φg〉〉i|2 =
∫

dα dα′ g∗(α′) g(α) o〈〈β|α〉〉i i〈〈α′|β〉〉o . (3.27)

In most cases of practical interest, the initial state is prepared in such a way
that the function g(α) is peaked about some value α, and the width of the
wave packet is classical in the sense that the resolution of initial position
and momentum measurements are much too large to push the limits of
the uncertainty relations. It is also usually true that support of the initial
wave packet is chosen to be over a region of α, over which Sβα depends only
weakly on α. For instance, the energy width of a wave packet is usually small
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compared to the energy dependence of the scattering cross-section or particle
decay width. (Otherwise the experiment does a poor job in measuring the
S matrix, because it uses an inadequately resolved initial state.)

Under these circumstances (and assuming β is distinguishable from all of
the α in the support of g(α), so we may write Sβα = −iTβα 2π δ(Eβ −Eα)),
then eq. (3.27) is approximately given by

Pg(β) ≈ |Tβα|2
∫

dα̂ dα̂′ g∗(α′) g(α) . (3.28)

In this expression dα 2πδ(Eα − Eβ) = dα̂, and we use the fact that Tβα

is approximately independent of α within the domain of support of g(α)
to bring it outside of the integral. Notice that the energy-conserving delta
functions are no longer a problem since they are used to perform part of the
integration over α and α′.

We see that the probability in this case factorizes into a reaction dependent
factor (|Tβα|2) and a factor depending on the details of the experimental set-
up. Our interest in the remainder of this section is in precisely identifying a
convenient quantity which captures the initial-condition-independent factor.

3.3.2 The finite-volume trick

For the present purposes the important consequence of the previous sec-
tion is Eq. (3.28), which expresses how reaction probabilities factorize in the
situations of common practical interest. Since our interest is in finding a
convenient way to identify the |Tβα|2 factor in a calculation of Sβα based on
energy and momentum eigenstates, we may feel free to use any old speci-
fication of the initial state, provided it captures this factorization (involves
narrow ranges of energy and momentum). Obviously we should choose one
which makes the calculations convenient.

A particularly simple way of specifying states, and seeing how to handle
the subtleties associated with the delta functions in Sβα, is to imagine the
system being inside a box having large but finite volume Ω, and allowing the
interactions to last only over a large but finite time interval, T . In this case
we may simply use energy and momentum eigenstates, with the knowledge
that the divergences associated with squaring delta functions are regularized
by T and Ω. Once the regularization dependence cancels in the final physical
quantities of interest, we may drop the temporary theoretical contrivance of
the box.

In a finite volume box we use particles in momentum states, |p], that are
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normalized to 1 in the box,

[p|p′] = δp,p′ , (3.29)

which satisfy the completeness relation
∑
p

|p][p| = 1. (3.30)

This is to be distinguished from the continuum normalization we use in the
infinite-volume limit,

〈p|p′〉 = 2Ep(2π)3δ3(p− p′) , (3.31)

for which completeness is expressed by
∫

d3p
2Ep(2π)3

|p〉〈p| = 1 . (3.32)

For a cubic box of volume Ω, subject to periodic boundary conditions on
the walls, momentum eigenvalues take discrete values. There is one state
for each cube of volume (2π)3/Ω in momentum space. In the limit Ω →∞,
the spacing between momentum levels goes to zero and sums over momenta
go to integrals according to:

1
Ω

∑
p

f(p) →
∫

d3p
(2π)3

f(p) . (3.33)

Here f(p) represents an arbitrary function that satisfies the boundary con-
ditions at the edge of the box. Comparison with the completeness relations
shows that the states |p〉 = (2EΩ)1/2 |p] are the ones which have the desired
normalization for large Ω.

For a state, |α〉, involving Nα particle this implies |α〉 = (2EΩ)Nα/2 |α].
The box-normalized matrix element Sβα ≡ [β|S|α], is therefore related to
the continuum-normalized Sβα = 〈β|S|α〉 by

Sβα = (2EΩ)(Nα+Nβ)/2 Sβα . (3.34)

When particle energies differ, (2E)(Nα+Nβ)/2 is to be interpreted as the
square root of the product of the energies of the particles in the in and
out states.

At finite volume, in translationally-invariant theories, the T -matrix is

Tβα ≡Mβα (2π)3δ3
Ω(pβ − pα) , (3.35)

so the S-matrix is given by

Sβα = δ(β − α)− i(2π)4δ4
ΩT (pβ − pα)Mβα. (3.36)
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The delta functions express energy and momentum conservation and appear
in the form,

(2π)3δ3
Ω(pα − pβ) =

1
Ω

∫

Ω
d3x ei(pα−pβ)·x (3.37)

(2π)4δ4
ΩT (pα − pβ) =

1
ΩT

∫

ΩT
d4x ei(pα−pβ)·x. (3.38)

The spatial integration is over the volume, Ω, and the temporal integration
is from −T/2 to +T/2 respectively. As ΩT →∞, δΩT goes to the standard
delta-function but for finite T and Ω, (2π)4δΩT (0) = ΩT .

In a time-translationally invariant theory it is the transition probability
per unit time, or the transition rate, which is independent of time and so
is well behaved as T → ∞. Similarly, as Ω → ∞ the number of states in
any finite momentum range diverges, making the probability of a transition
to a specific state go to zero. It is therefore the rate, dΓ, for the state |α〉
to make a transition into any state in a small number, ∆β, of states in the
vicinity of |β〉 that is well behaved as ΩT →∞. Since the density of states
in momentum space is Ω/(2π)3, the number of states in an interval dβ for an
Nβ-particle state is ∆β = (2EΩ)Nβdβ. Here we have absorbed the powers
of 2π into the measure on dβ, so that dβ ≡ ∏

d3k/[(2π)32Ek]. With this
notational convention, the rate becomes

dΓ(α → β) =
dP (α → β)

T

=
|Sβα|2

T
∆β

=

[
|Sβα|2

T

(
1

2E Ω

)(Nα+Nβ)
]

∆β

=
1
T

(2π)4δ4
ΩT (pβ−pα) (2π)4δ4

ΩT (0) |Mβα|2
(

1
2EΩ

)Nα+Nβ

∆β

= Ω(2π)4δ4(pα − pβ)
1

(2EΩ)Nα
|M2

βα|dβ

= Ω1−Nα

[∏ 1
2Eα

]
|Mβα|2(2π)4δ4

ΩT (Pα − Pβ) dβ , (3.39)

where the product means a product over the particles in the initial state.
Notice that the δ-function ensures that the final integral over β runs over a
finite range of integration and so can never diverge unless Mβα is singular
for some momenta.

Consider now the cases of most present interest, with Nα = 1, Nα = 2,
and Nα > 2:
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3.3.2.1 Decay processes: Nα = 1

In the limit Ω → ∞ and T → ∞ the decay rate for a single particle is
explicitly independent of Ω and T , and is given by

dΓ(α → β) =
1

2Eα
|Mβα|2(2π)4δ4(Pα − Pβ) dβ ,

dβ ≡
∏

f∈β

d3kf

2Ekf
(2π)3

. (3.40)

This result is not quite Lorentz invariant, because of the 1/2Eα in front. But
indeed, it should not be Lorentz invariant, since a fast moving particle’s
lifetime should be extended by time dilation; the 1/2Eα factor precisely
generates this time dilation effect.

3.3.2.2 Two-body scattering: Nα = 2

When Nα = 2, dΓ is proportional to Ω−1. Since the single-particle states are
normalized with

∫
Ω d3x |ψ(x)|2 = 1, the number density of particles in the

box as seen by an incident particle is n = Ω−1. The fact that dΓ is inversely
proportional to the volume reflects the property that in the absence of initial-
state coherence the reaction rate is proportional to the number density of
target particles.

It is convenient and conventional to remove this dependence on the num-
ber of particles by dividing out a factor proportional to the incident flux of
particles. Define, then, the cross section, dσ, by

dσ(α → β) =
dΓ
F

(α → β). (3.41)

In this expression the denominator, F , is fixed by requiring that (a) dσ be
Lorentz-invariant; and (b) F , when evaluated in the rest-frame of either of
the particles, equals the particle flux: nvrel = vrel/Ω.

Our next task is to find the function, F , determined by these conditions.
Condition (a) implies that F must transform the same way as dΓ does under
Lorentz transformations. Because of our choice of state normalization and
integration measure dβ, the final state factors are already Lorentz invariant.
Invariance of the cross-section is therefore ensured if F = f/(4E1E2Ω),
where Ek denotes the energy of the particles in the initial two-particle state,
|α〉, and f is a Lorentz-invariant function chosen to satisfy condition (b).
Since the relative velocity of two particles,

vrel =

√
1− m2

1m
2
2

(p1 · p2)2
, (3.42)
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is Lorentz-invariant and the scalar −p1 · p2 equals E1E2 in the particle rest
frame the solution is f = 4vrel(−p1 · p2).

We are led in this way to the following expression for the two-body cross
section:

dσ(α → β) =
|Mβα|2

f
(2π)4δ4(pα − pβ) dβ (3.43)

with f = (−4p1 · p2)vrel = 4
√

(p1 · p2)2 −m2
1m

2
2 . (3.44)

To be completely explicit, and for later convenience, we pause here to
calculate the factor (2π)4δ4(pα−pβ) dβ for a two-body final state, Nβ = 2, in
the center-of-mass frame of the two bodies. Denote the final-state quantum
numbers by primes. In an arbitrary frame δ4(pα − pβ) dβ is:

(2π)4δ4(pα − pβ) dβ = (2π)4 δ4(pα − p′1 − p′2)
d3p′1d3p′2

(2π)64E′
1E

′
2

= 2πδ(Eα −E′
1 −E′

2)
d3p′1

(2π)34E′
1E

′
2

∣∣∣∣∣
p′2=pα−p′1

=
p′21 d2Ω′1

(2π)24E′
1E

′
2|d(E′

1 + E′
2)/dp′1|

=
p′31 d2Ω′1

16π2 (E′
2p
′
1−E′

1p
′
2) · p′1

. (3.45)

d2Ω′1 = sin θ′dθ′dφ′ is the element of solid angle where θ′ and φ′ give the
direction of the vector p′1. In the center-of-mass frame, p′1 = −p′2 and
E′

1 + E′
2 = Eα, so

(2π)4δ4(pα − pβ)dβ =
p′1 d2Ω′1
16π2Eα

(c.m.) . (3.46)

In this case, the final-state integral consists of the sum over the direction of
one of the two final-state particles.

3.3.2.3 Many-body collisions: Nα > 2

The reaction rate per unit volume, dΓ/Ω, is proportional to Ω−Nα . For
Nα distinct particles in the initial state this again represents the incident-
particle density that is expected for incoherent scattering:

Ω−Nα =
Nα∏

i=1

ni. (3.47)
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In this case the reaction rate per unit volume becomes

dΓ(α → β)
Ω

=
Nα∏

i=1

[
ni

2Ei

]
|Mβα|2(2π)4δ4(pα − pβ) dβ . (3.48)
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4

Elementary boson decays

We wish to put the formalism of the previous chapters to use to describe
the properties of the standard model particles. Since many of the properties
of the theory are simpler at higher energies we choose to do this by starting
with the properties of the heavy bosons of the theory and then working our
way down in energy towards more familiar particles. We also choose to focus
here on the properties of the elementary bosons since these furnish among
the simplest examples of the scattering formalism of the previous chapter.

Among the most basic particle properties are their masses and lifetimes.
The masses of the gauge bosons of the theory have been dealt with in previ-
ous (and in subsequent) chapters, so we concentrate here on their lifetimes.

4.1 Z0 decay

4.1.1 Z0 decay: preliminaries

We wish to compute within the standard model the decay lifetime of the
neutral electroweak gauge boson, Z0, as a function of the parameters of the
model. We do so using the perturbative framework of chapter 3. The basic
result of that chapter, for the present purposes, is given by Eq. (3.24) and
Eq. (3.26),

Sβα = δβα − i (2π)4δ4(pβ−pα)Mβα, with (4.1)

Mβα = 〈β|HI(0)|α〉+
(−i)2

2!

∫
d4x 〈β|T [HI(x)HI(0)] |α〉+ · · · .

We see that, in the absence of other effects, the dominant contribution to
Z0 decay will come from any interactions of the model for which the matrix
element

〈β|HI(0)|Z0〉 6= 0 (4.2)

127
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for some final state |β〉 into which the Z0 may kinematically decay. If there
is no such final state or interaction then the dominant contribution must
instead be second order, i.e.,

(−i)2

2!

∫
d4x 〈β|T [HI(x)HI(x = 0)] |Z0〉 6= 0 . (4.3)

We must continue in this way until a nonzero result is eventually obtained.
If the Z0 boson is to decay, it cannot appear in the final state. It follows

that, in order to contribute to the matrix element of Eq. (4.2), any can-
didate interaction must be strictly linear in the field Zµ(x). Inspection of
the Z0 couplings of section 2.4 shows that there are only a few candidate
interactions of this type. The candidates are LWWZ of Eq. (2.77), LWWZγ of
Eq. (2.83), and Lnc of Eq. (2.100). These would respectively describe the
processes Z0 → W+W−, Z0 → W+W−γ, and Z → ff̄ . Conservation of
four-momentum implies that the sum of the masses in any candidate final
state, |β〉, must be less than the mass of the Z0. This rules out the first two
processes, leaving only the decay of the Z0 into a fermion-antifermion pair
through a neutral-current weak interaction.

We now compute the resulting Z0 decay rate. We do so in some detail
in this section in order to develop some of the calculational tools that are
useful for general calculations of this sort. The first step is to identify the
interaction Hamiltonian that corresponds to Lnc. Since this term of the
Lagrangian does not involve any time derivatives it is tempting to conclude
that Hnc = −Lnc. This is not quite true in the present instance, however,
because of the appearance of the time component of the gauge potential,
Z0(x). The additional terms in Hnc that arise from this source are the
analogues of the contact Coulomb interaction of Quantum Electrodynamics
and are not even Lorentz invariant. At this point one might sensibly worry
that they could potentially ruin the Lorentz-invariance of the S-matrix being
computed. Happily, their effect turns out to precisely cancel another source
of Lorentz noninvariance that is encountered in section 5.2. The upshot is
that the naive relation, HI = −LI , may be used after all, so these terms are
therefore ignored in all of what follows.

The interaction Hamiltonian density therefore is

HI = −Lnc = −ieZ Zµfγµ(gV +gAγ5)f, (4.4)

in which the coupling constant is eZ = e/(sin θW cos θW ). The desired matrix
element then becomes

M(Z → ff̄) = 〈f(p, σ); f̄(q, ζ)|HI(0)|Z(k, λ)〉
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= −ieZ〈f(p, σ); f̄(q, ζ)|fγµ(gV +gAγ5)fZµ|Z(k, λ)〉
= −ieZ〈0|bp,σ b̄q,ζfγµ(gV +gAγ5)fZµa∗k,λ|0〉 . (4.5)

This matrix element may be evaluated once the fields appearing within the
interaction Hamiltonian are expressed in terms of creation and annihilation
operators. These are given in chapter 1 by Eq. (1.116) and Eq. (1.82):

Zµ(x) =
1∑

λ′=−1

∫
d3k′

2Ek′(2π)3
[
εµ(k′, λ′)ak′,λ′e

ik′x + h.c.
]

(4.6)

ψ(x) =
∑

σ′=± 1
2

∫
d3p′

2Ep′(2π)3
[
u(p′, σ′)bp′σ′eip′x + v(p′, σ′)b̄∗p′σ′e

−ip′x
]
. (4.7)

The matrix element, Eq. (4.5), clearly gets contributions only from those
terms in the expansion, Eq. (4.6) and Eq. (4.7), of the fields in which the
destruction operator, a, appearing in Zµ(x) destroys the incoming Z0 bo-
son, and the creation operators, b∗ from f̄(x) and b̄∗ from f(x), create the
fermion-antifermion pair. The matrix element then is

M(Z → ff̄) = −ieZ εµ(k, λ) ū(p, σ)γµ(gV +gAγ5)v(q, ζ) . (4.8)

The differential decay rate is related to this result by Eq. (3.40):

dΓ[Z(k, λ) → ff̄ ] =
∣∣M(Z → ff̄)

∣∣2 (2π)4δ4(k−p−q)
d3p d3q

4EpEq(2π)6

= e2
Z |εµūγµ(gV +gAγ5)v|2 ×

(2π)4δ4(k−p−q)
d3p d3q

4EpEq(2π)6
. (4.9)

The next step we must take is to evaluate the square of the matrix ele-
ments, |εµūγµ(gV +gAγ5)v|2, that arise in this last expression. The evaluation
proceeds differently depending on whether the particles involved are polar-
ized or unpolarized. We consider the two cases of polarized and unpolarized
initial Z0 bosons separately.

4.1.2 Unpolarized Z0 decay

Consider the decay of a sample of Z0’s that have no net polarization. We
take the initial density matrix in the 3× 3 spin space of the Z0 meson to be
the unit matrix:

ρ =
1
3

1∑

λ=−1

|Z(k, λ)〉〈Z(k, λ)| . (4.10)
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In order to proceed we need to generalize the S-matrix formalism slightly
to include the case for which the initial state is not a pure state, |α〉, but is
rather described by a density matrix, ρ. In this case the probability of there
being a transition to a final state, |β〉, is given by the following trace:

p(β) = tr (ρPβ) , (4.11)

in which Pβ = |β〉〈β| is the projection operator onto the subspace of Hilbert
space that is spanned by |β〉. In the special case where the initial state is a
pure state, ρ = |α〉〈α|, this reduces to the squared amplitude |〈β|α〉|2.

Using this expression, the differential decay rate for a sample of Z0’s that
is described by the density matrix of Eq. (4.10) is then given by averaging
the result of Eq. (4.9) over the initial Z0 spin, λ. If, as is usually the case,
the spins of the final fermions are not measured in the detector, then we
must also sum over all possible final-state polarizations:

dΓ[Z(k) → ff̄ ] =
1
3

1∑

λ=−1

∑

σ=± 1
2

∑

ζ=± 1
2

dΓ[Z(k, λ) → ff̄ ] . (4.12)

The spin sums may be evaluated using the polarization vector identity given
by Eq. (1.119) and the spinor identities given in Eq. (1.99) and Eq. (1.100).

That part of the squared amplitude which involves the Z0 polarization
then becomes

1∑

λ=−1

|εµūγµ(gV +gAγ5)v|2

=
1∑

λ=−1

εµ(k, λ)ε∗ν(k, λ)[ūγµ(gV +gAγ5)v][ūγν(gV +gAγ5)v]∗

=
[
ηµν +

kµkν

M2
Z

]
[ūγµ(gV +gAγ5)v][ūγν(gV +gAγ5)v]∗ . (4.13)

A similar manipulation may be performed for the fermion spinors, u and v,
once the trick of rewriting the spinor product as a trace over Dirac matrices
is used:

ūMu =
∑

ij

ūiMijuj = tr [M(uū)] . (4.14)

In this last expression, (uū) denotes the dyadic matrix whose matrix ele-
ments are given by (uū)ij = uiūj . Using this trick gives

[ūγµ(gV +gAγ5)v][ūγν(gV +gAγ5)v]∗

= −[ūγµ(gV +gAγ5)v][v̄γν(gV +gAγ5)u]
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= − tr [γµ(gV +gAγ5)vv̄γν(gV +gAγ5)uū] . (4.15)

The utility of this way of writing things is that the dyadics uū and vv̄ have
simple expressions, given by Eq. (1.99) and Eq. (1.100) respectively, when
both of the spinors in the dyadic refer to the same particle. Performing the
fermion spin sums using these expressions gives

∑

σ=± 1
2

u(p, σ)ū(p, σ) = (mf − i/p) (4.16)

∑

σ=± 1
2

v(q, ζ)v̄(q, ζ) = (−mf − i/q) , (4.17)

so summing the result of Eq. (4.15) over the fermion spins then gives
∑

σ,ζ=± 1
2

[ūγµ(gV +gAγ5)v][ūγν(gV +gAγ5)v]∗

= tr [γµ(gV +gAγ5)(mf + i/q)γν(gV +gAγ5)(mf − i/p)] . (4.18)

4.1.3 Evaluating Dirac traces

Further progress requires the evaluation of various traces over Dirac matri-
ces, of form tr [γµ1 . . . γµn ] or tr [γ5γµ1 . . . γµn ]. (Traces involving multiple γ5

can always be handled by anti-commuting a γ5 across the γµ which separate
it from another, and using γ5γ5 = 1.)

There are two procedures for evaluating such traces. One procedure is to
use repeatedly the identity, Eq. (C.56) from appendix C and the cyclicity
of the trace. Here we will present an alternative, in some respects more
powerful, approach. Namely, we take advantage of their transformation
properties under the (improper) Lorentz group.

The key observation is that the Dirac gamma-matrices, γµ, satisfy the
following property:

D−1(Λ)γµD(Λ) = Λµ
νγ

ν , (4.19)

in which Λµ
ν is an arbitrary Lorentz transformation whose representation

on spinor fields—c.f. Eq. (1.72)—is denoted D(Λ). This implies that a trace
over n gamma matrices is an invariant tensor of the Lorentz group. That is,

Λµ1
ν1 · · ·Λµn

νn tr [γν1 . . . γνn ] = tr [γµ1 . . . γµn ] , (4.20)

for all Lorentz transformations. A trace that includes a factor of the matrix
γ5 is similarly an invariant Lorentz pseudotensor:

Λµ1
ν1 · · ·Λµn

νn tr [γ5γ
ν1 . . . γνn ] = det(Λ) tr [γ5γ

µ1 . . . γµn ] . (4.21)
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Now comes the main point: Any such invariant tensor of the Lorentz
group may be constructed from products of the invariant metric tensor, ηµν .
Similarly, any invariant pseudotensor may be constructed from products of
the metric tensor and an odd power of the completely antisymmetric Levi-

Civita symbol, εµνλρ. This last tensor is an invariant pseudotensor by virtue
of the following identity that is satisfied by any four-by-four matrix:

Λµ1
ν1Λ

µ2
ν2Λ

µ3
ν3Λ

µ4
ν4ε

ν1ν2ν3ν4 = det(Λ)εµ1µ2µ3µ4 . (4.22)

The traces may therefore be evaluated up to an overall multiplicative fac-
tor by writing down the most general combinations of metric and Levi-Civita
tensors that has the same number and symmetry of indices. The multiplica-
tive factor may then be chosen by evaluating the trace for a particularly
simple choice of indices. This procedure may be illustrated as follows:

(i)

tr [γµ1 . . . γµn ] = 0 if n is odd. (4.23)

This is so because the result must be expressed as a combination of
metrics and Levi-Civita symbols. However, each of these has an even
number of indices. They cannot be combined into an object with an
odd number of indices, so the result must vanish.

(ii)

tr [γ5γ
µ1 . . . γµn ] = 0 if n is odd. (4.24)

This result is an immediate consequence of the previous one since
γ5 = iγ0γ1γ2γ3 involves an even number of gamma matrices.

(iii)

tr [γµγν ] = 4ηµν . (4.25)

There is only one invariant second-rank symmetric tensor: the metric
itself, ηµν . This establishes Eq. (4.25) up to the value of the propor-
tionality constant. To fix this constant, choose the special case where
µ = ν = 1, for which tr [(γ1)2] = tr [1] = 4 = 4η11.

(iv)

tr [γ5γ
µγν ] = 0 . (4.26)

To see this, note that γ5γ
µ = −γµγ5. The γµ may then be moved

to the end by cyclicity of the trace, proving that the result must be
antisymmetric in µ, ν. But the only second-rank invariant tensor is
symmetric, so the answer must be zero.
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(v)

tr [γµγνγλγρ] = 4(ηµνηλρ − ηµληνρ + ηµρηνλ) . (4.27)

A fourth-rank invariant tensor (as opposed to pseudotensor) must be
constructed from a sum of pairs of metric tensors. The three distinct
pairs that are possible are those that appear on the right-hand-side
of Eq. (4.27). The coefficient of each of these terms is most easily
determined by evaluating both sides with a simple choice for the
indices. For example, the coefficient of the first term is determined
to be 4 by the choice µ = ν = 0 and λ = ρ = 1. With this choice only
the first term on the right-hand side is nonzero since the metric is
diagonal, and the left-hand side becomes tr [(γ0)2(γ1)2] = tr [−1] =
−4 = 4η00η11.

(vi)

tr [γ5γ
µγνγλγρ] = 4iεµνλρ . (4.28)

The right-hand side of this result is again the unique fourth-rank
invariant pseudotensor. Its coefficient is easily determined by the
evaluating the choice µ = 0, ν = 1, λ = 2 and ρ = 3 for which the
right-hand-side is 4iε0123 = 4i (c.f. Eq. (1.33)) and the left-hand-side
is tr [γ5γ

0γ1γ2γ3] = tr [i(γ5)2] = 4i.

These results suffice for the present purposes. Traces involving more than
four gamma matrices may be evaluated in a similar fashion.

4.1.4 Z0 decay: formulae

With these results, we can evaluate the traces that arise in Eq. (4.18):

tr [γµ(gV +gAγ5)(mf+i/q)γν(gV +gAγ5)(mf−i/p)]

= m2
f tr [γµ(gV +gAγ5)γν(gV +gAγ5)]

+ tr [γµ(gV +gAγ5)q/γν(gV +gAγ5)/p] (4.29)

= m2
f tr [γµ(g2

V−g2
A)γν ]

+ tr [γµ(g2
V +g2

A + 2gV gAγ5)q/γν/p]

= 4m2
f (g2

V−g2
A)ηµν

+ 4(g2
V +g2

A)(qµpν + pµqν − ηµνp · q) + 8igV gAεµναβpαqβ .

In going from the first to second expressions, we have dropped terms linear in
mf because they involve an odd number of gamma matrices, and therefore
vanish in the trace. Between the second and third expressions, we have
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moved (gV +gAγ5) across either 1 or 2 intervening gamma matrices; as γ5

anticommutes with each γα, its sign flips once for each intervening gamma
matrix. The last step uses the trace identities numbered 3, 5, and 6 above.

Contracting against [ηµν + kµkν/M
2
Z ] from Eq. (4.13), and using (due to

the δ function) kµ = pµ+qµ, this becomes

M2 =
4e2

Z

3

[
−2(g2

V +g2
A)p · q + 4m2

f (g2
V − g2

A) +
4m2

f

M2
Z

g2
A(m2

f − p · q)
]

.

(4.30)
This should be combined with Eq. (4.9) to give the polarization averaged
differential decay rate,

dΓ[Z(k) → ff̄ ] =
1

2k0
M2 (2π)4δ4(k−p−q)

d3pd3q

2p0 2q0 (2π)6
. (4.31)

Notice that this displays the proper Lorentz-transformation properties ap-
propriate to a decay rate. All of the factors in Eq. (4.31) are manifestly
Lorentz invariant except for the 1/2k0 prefactor. Since the Z0-boson en-
ergy, k0, is related to its rest mass, MZ, and speed, v, by k0 = MZ/

√
1− v2,

it follows that in a general frame dΓ = dΓrest

√
1− v2, implying the correct

time dilation for the lifetime τ = 1/Γ.
The decay rate in the Z0 rest frame is found by making the substitu-

tion kµ = (MZ ,0), which implies that (2π)4δ4(p+q−k) = 2πδ(p0+q0−MZ)
(2π)3δ3(p+q). It follows that the outgoing fermion and antifermion have a
specific energy in the Z0 rest frame. In this case, because the fermion and
antifermion have equal masses, the outgoing fermion energies and momenta
are

p0 = q0 = MZ/2

|p| = |q| =
√

(p0)2 −m2
f =

1
2

√
M2

Z − 4m2
f . (4.32)

This kind of delta-function distribution of outgoing-particle energies is char-
acteristic of a two-body decay process.

The rest-frame differential decay rate may be simplified by using the delta
functions to perform the integrals over q and p = |p|. Suppose θ and φ are
the polar angles that give the direction of the outgoing fermion in the Z0

rest frame. Then the result p ·q = −p0q0 +p ·q = −(p0)2−p2 = m2
f −M2

Z/2
implies that the differential decay rate, dΓ, for the decay of unpolarized Z0’s
is independent of θ and φ. This is not surprising, as the initial state is
rotationally symmetric.
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The total and differential decay rate in the Z0 rest frame is therefore,

Γ(Z → ff̄) = 4π
dΓ

sin θdθdφ
(Z → ff̄) (4.33)

=
e2

Z

12π
MZ

[
(g2

V +g2
A) + 2(g2

V − 2g2
A)

m2
f

M2
Z

] √√√√1− 4m2
f

M2
Z

.

Before turning to the implications of this expression, a short aside is in
order to compute the same quantity for a perfectly polarized sample of Z0’s.

4.1.5 Polarized Z0 decay

The differential decay rate for polarized Z0’s is found using the same tech-
niques. Assuming that the spin of the outgoing fermion and antifermion are
not observed, the main difference is that there is in this case no sum over the
initial Z0 spin, and so the identity used in Eq. (4.13) is no longer available.

The differential decay rate is therefore still given by Eq. (4.31), with the
difference that in this case,

M2 ≡ M2
pol ≡ e2

Z

∑

σ,ζ

|εµūγµ(gV +gAγ5)v|2

= e2
Z tr [/ε(gV +gAγ5)(mf + i/q)/ε∗(gV +gAγ5)(mf − i/p)] . (4.34)

This trace may be evaluated using the techniques of subsection 4.1.2. If the
initial Z0 is linearly polarized so that εµ = ε∗µ and ε · ε = 1, then the result
is

M2
pol = 4{m2

f (g2
V − g2

A)− (g2
V + g2

A)[p · q − 2(ε · p)(ε · q)]} . (4.35)

In the Z0 rest frame, choose the direction of the Z0 spin, εµ, to define the
z-axis. Then taking the polar angles of the direction of the outgoing fermion
to be (θ, φ), we have ε · p = −ε · q = |p| cos θ. The resulting differential cross
section is independent of φ, as is expected due to the axial symmetry of the
initial state, but does depend on θ in the following way:

dΓ
sin θdθ

= 2π
dΓ

sin θdθdφ

=
e2

ZMZ

16π

√√√√1−4m2
f

M2
Z

× (4.36)

[
g2

V

(
1− cos2 θ+

4m2
f

M2
Z

cos2 θ

)
+ g2

A

(
1−4m2

f

M2
Z

)
(1− cos2 θ)

]
.
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As a check, notice that the integral of Eq. (4.36) over the interval 0 < θ <

π reproduces the same total decay rate as does the unpolarized result of
Eq. (4.33), as it must.

4.1.5.1 The massless limit

Eq. (4.36) has a particularly simple physical interpretation in the limit of
vanishing fermion mass, mf → 0. In this limit the differential decay rate
becomes

dΓ
sin θdθ

≈ e2
Z

16π
MZ(g2

V +g2
A)(1− cos2 θ) . (4.37)

This result vanishes when the outgoing fermion comes out parallel or an-
tiparallel to the initial Z0 boson’s polarization vector, εµ. This has a simple
explanation in terms of the interplay between conservation of angular mo-
mentum and conservation of helicity (which is conserved in the limit of
massless fermions).

The neutral-current interaction of Eq. (4.4) that is responsible for the
Z0 decay always pairs up fermions of definite helicity. That is, since this
interaction Hamiltonian always involves the field combination f̄LγµfL, it
must always create a left-handed fermion together with the antiparticle to a
left-handed fermion, which is a right-handed antifermion. The term which
involves f̄RγµfR must similarly create a right-handed fermion and a left-
handed antifermion. When the fermion or antifermion comes out along
the direction of the initial Z0 boson’s polarization vector, then the total
component of angular momentum along this direction is Jz = ±1. The
angular momentum of the initial state along this direction is zero, however,
so this decay configuration must be forbidden by conservation of angular
momentum.

We return now to the main line of argument and explore the implications
of Eq. (4.33) for the Z0 decay width in the Z0 rest frame.

4.1.6 Z0 decay: applications

The decay rate for a Z0 to decay into a particular species of fermion-
antifermion pair, ff̄ , is given by Eq. (4.33):

Γ(Z → ff̄) =
e2

Z

12π
MZ

[
(g2

V +g2
A) + 2(g2

V − 2g2
A)

m2
f

M2
Z

] √√√√1− 4m2
f

M2
Z

≈ e2
Z

12π
(g2

V +g2
A)MZ for m2

f ¿ M2
Z . (4.38)
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Fermion Type T3 Q gV gA (g2
V +g2

A)

νe, νµ, ντ + 1
2 0 0.25 0.25 0.125

e, µ, τ − 1
2 –1 –0.0189 –0.25 0.0629

u, c, t + 1
2 + 2

3 0.0959 0.25 0.0717
d, s, b − 1

2 − 1
3 –0.1730 –0.25 0.0924

Table 4.1. Fermion neutral-current coupling constants

The last line gives the approximate form for the decay rate to the extent that
the mass ratio, m2

f/M2
Z , is negligible. This is a very good approximation for

all of the fermions of the standard model except the top quark, which is
anyway too heavy to appear as a decay product for the Z0. The heaviest
allowed decay product is the b quark, for which this mass ratio is m2

b/M
2
Z ≈

(5/90)2 ≈ 3 · 10−3.
Given this formula for the Z0 decay rate into differing fermion species, we

may sum the contributions of all of the species of fermions in the standard
model that are kinematically allowed to contribute, and thereby compute
the total lifetime of the Z0 within the standard model.

The coupling constants gV and gA in the standard model are given in
terms of the third component of weak isospin, T3, and electric charge, Q,
by gV = 1

2T3 −Q sin2 θW and gA = 1
2T3. The corresponding couplings of the

standard model fermions are tabulated in Table 4.1 (using sin2 θW = 0.2311,
see appendix A.)

From this table it is straightforward to compute the total Z0 lifetime
within the standard model.

Rather than computing the decay rate for each species of fermion in the
model, it is convenient to compute the total decay rate, Γtot, and the fraction
of Z0 decays—or branching fraction, Bf = Γ(Z → ff̄)/Γtot—that go into
each particular fermion species. The reason for quoting results in this way is
that the branching fraction is more reliably computable since it just depends
on the numbers gV and gA and so is less subject to errors in the values of
the experimentally determined couplings. The branching fractions are also
much easier to measure experimentally.

Using the numerical values for parameters given in appendix A, we find,

Γ(Z → ff̄) =
α

3 sin2 θW cos2 θW

MZ(g2
V +g2

A)Nc

= (1.336 GeV) · (g2
V + g2

A)Nc . (4.39)

The constant Nc here represents the number of colors that is appropriate
to fermion type f . Nc = 1 must therefore be chosen when f is a lepton
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Fermion Type Computed Measured

νeν̄e + νµν̄µ + ντ ν̄τ 20.5% f1(20.00± 0.06)%
e+e− 3.45% (3.363± 0.004)%
µ+µ− 3.45% (3.366± 0.007)%
τ+τ− 3.45% (3.370± 0.008)%
bb̄ 15.18% f2(15.14± 0.05)%
uū + dd̄ + ss̄ + cc̄ 54% f3(54.76± 0.06)%

Total Width 2.44 GeV (2.4952± 0.0023) GeV

f1: i.e. Z → unobserved final state.
f2: i.e. Z → BB̄.
f3: i.e. Z → non BB̄ hadrons.

Table 4.2. Computed and measured Z0 branching fractions

and Nc = 3 when f is a quark. α = e2/(4π) denotes the electromagnetic
fine-structure constant whose value we take at µ = MZ to be α = 1/127.9.
The total Z0 width then becomes

Γtot = (1.336 GeV) [3 · (0.125) + 3 · (0.0629) + 9 · (0.0924) + 6 · (0.0717)]

= 2.44 GeV . (4.40)

The corresponding Z0 lifetime is therefore

τ(Z) =
1

Γtot
= 2.69 · 10−25 sec. (4.41)

Since even an ultrarelativistic particle can only travel around 10−18 m in
this time, Z0 particles decay well before they are seen, and so must be
reconstructed in a detector from their decay products.

Some of the branching fractions are listed in Table 4.2.
There are several points to be made about these results.

(i) The factor MZ

√
1− (4m2

f/M2
Z) in the decay rate has its origin in the

integration over phase space. That is, it arises from the integration
over the final-state momenta:

∫
d3q d3p. For mf ¿ MZ this factor

is O(MZ) since this is the typical size of the momentum available to
the final-state particles. Since the total rate for a process is given
by an integral over all of the final states that can take part, it is a
rule of thumb that if two processes have equal size couplings then the
one with more available phase space (i.e. the one with more available
final states) will have the larger rate.

The phase-space factor is proportional to the momentum available
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to the final fermions, and so tends to zero as mf approaches MZ/2,
as is required by four-momentum conservation. In the event that mf

should be close to MZ/2 this phase-space suppression can make the
decay rate into fermion species f much smaller than might otherwise
be expected.

(ii) The overall order of magnitude of the Z0 decay rate can be estimated
reasonably well without performing the entire detailed calculation.
This may be done by keeping track of factors of coupling constants
and the volume of phase space appropriate to the process of interest.
Since factors of 2π are ubiquitous in these calculations, and since their
omission can appreciably affect the size of the result, it is important
also to keep track of these factors. There is a factor of (2π)4 from the
momentum conserving delta function, a (2π)−3 from each final state
particle’s momentum integration, and a (2π) from the dΩ angular
integral for all but 1 of the final state particles. (As will be seen later
there can also be an additional factor of (4π)−2 for each loop in the
relevant Feynman diagram if such loops arise.)

The matrix element for Z0 decay is clearly proportional to the
coupling constants, eZgV and eZgA, of the neutral-current interaction
term in the Lagrangian. Since, for massless fermions, the total rate is
found by incoherently adding the rate due to left-handed fermions to
that for right-handed fermions, these two couplings must appear in
the combination e2

Z(g2
V +g2

A) when fermion masses are neglected. The
momentum integrals and squared matrix element therefore provide
Γ ∼ [e2

Z(g2
V +g2

A)/2π]X. Here the phase space volume, X, repre-
sents the result obtained by integrating over all final-state momenta,
and whose value can be estimated by dimensional analysis. In the
present example the volume of phase space is O(MZ) if mf is not
too close to MZ , since MZ is the typical energy available in the de-
cay. Since Γ has dimensions of mass (in units with h̄ = c = 1), we
get Γ ∼ [e2

Z(g2
V +g2

A)/2π]MZ . Comparing this estimate with the full
calculation, Eq. (4.38), shows that the estimate has only missed the
purely numerical factor 1/6. This is typical of the accuracy of this
type of simple order-of-magnitude estimate for two-body decays (see
also subsection 5.1.1).

(iii) The next feature of this result that bears remarking is that the de-
cay width, Γ, is much smaller than the mass, MZ , since Γ/MZ ≈
e2

Z/(12π) ∼ 10−2. This implies that the Z0 is reasonably stable for
a particle of its mass. As we shall see, Z0’s have been observed as a
resonance in e+e− annihilation in high-energy electron-positron stor-
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age rings at CERN and at SLAC. The small size of the width of
the Z0 translates into the narrowness of the resulting resonance (see
subsection 6.4.1).

(iv) Inspection of the coupling constants, gV and gA, of the table shows
that the neutrinos couple to the Z0 with the largest strength of the
fermions of the standard model. The vector coupling, gV , of the
remaining fermions is smaller due to a partial cancellation between
1
2T3 and Q sin2 θW . This cancellation is most complete for the charged
leptons, e, µ and τ , and would be perfect if sin2 θW were exactly
0.25. As a result, the charged-lepton neutral-current couplings may
be considered to first approximation as being purely axial in nature.

(v) Although the data measures the decay rate into hadrons, the decay
rate we have computed is really the decay rate into a quark-antiquark
pair. Since the observed hadrons are really bound states of the quarks
and since no isolated quark has ever been directly detected, it is not
immediately clear that the rate for producing quark-antiquark pairs
should be related to the rate for Z0 decays into hadrons.

The argument is discussed in more detail in later chapters, but the
main point can be made schematically here. The key observation
that makes this connection relies on the fact that the rate we have
computed is an inclusive rate in the sense that only the total rate for
producing hadrons is considered without trying to distinguish one
type of hadron from another. The observable therefore has the form
of a sum over all possible final hadronic states:

dΓ(Z → hadrons) ∝ tr [ρ(Z)P (β)], (4.42)

in which ρ(Z) denotes the density matrix that describes the sample of
initial Z0 bosons and P (β) is the projection matrix within the Hilbert
space onto the subspace spanned by the observables labelling the final
state. For the total rate for producing hadrons this projection matrix
is the projector, PH , onto the entire subspace of strongly interacting
particles: PH =

∑
h |h〉〈h| for some basis of hadronic states, |h〉.

Now an equally good basis for the subspace of hadronic states is
formed by the set of color-neutral many-quark and -gluon states,
|q, g〉, even though no particular hadron mass eigenstate may be well
approximated by any particular multi-quark and -gluon state. The
projector that appears in Eq. (4.41) may therefore be written PH =∑

q,g |q, g〉〈q, g|. Once the projector is expressed in terms of a sum on
quark and gluon states the calculation simplifies dramatically. This is
because the strong coupling constant is small, α3 = g2

3/(4π) ≈ 0.12,
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when it is evaluated at the scale, µ ≈ MZ , appropriate to a Z0 decay.
It follows that the contribution of each of the quark basis states to
Eq. (4.41) is well approximated at these energies by perturbation
theory. To lowest order the dominant quark states that contribute
are precisely the quark-antiquark pairs for which we have performed
the calculation.

This the general pattern. Although rates that involve identifying
specific strongly interacting final-state particles cannot be computed
without detailed knowledge of the wavefunctions of these particles, in-
clusive quantities that simply involve a sum over all possible hadronic
states (possibly with some prescribed value for a quantum number
such as B that is conserved by the strong interactions) may be reli-
ably calculated (at high energies) within perturbation theory.

(vi) The above table allows a comparison between the computed and ob-
served widths for Z0 decays into various final states. Since measure-
ments of Z0 properties have been made with great precision, this
comparison furnishes a significant test of the standard model’s ac-
curacy. This is all the more true given the success of the model in
describing other neutral-current phenomena (to be described in later
chapters) using the same set of model parameters.

Before performing this comparison, however, we need to have an
idea of the size of the potential corrections to the computed result.
These corrections arise from processes that involve more than one
power of the interaction Hamiltonian in Eq. (4.1). Corrections to the
leading result can be expected to be suppressed in size by additional
powers of the relevant coupling constants. For processes involving
strongly-interacting particles the typical size of a correction from ad-
ditional strong interactions is o[α3/(4π)] ≈ 1%. All other things be-
ing equal, electroweak interactions can be expected to be even smaller
since they are instead proportional to o[α/(4π sin2 θW )] ≈ 3 · 10−3.

This counting turns out to be modified somewhat in the case when
the correction involves the exchange of a massless particle such as
a photon or a gluon. Then the appearance of infrared mass singu-
larities can introduce factors of the logarithm of a large mass ratio
which can increase the size of the correction. For strongly interact-
ing particles this kind of effect would increase the above estimate to
o{[α3/(4π)] log(M2

Z/Λ2
QCD)} ≈ 5 · 10−2. ΛQCD ≈ 150 MeV is a scale

that is typical of the strong interactions, and which is discussed at
length in chapter 8. The analogous estimate for the size of an elec-
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tromagnetic correction is o{[α/(4π)] log(M2
Z/m2

f )}, which can be as
large as 7 · 10−3 when f is an electron.

To summarize, we expect the uncertainty in the theoretical predic-
tion to be in the neighborhood of around 5% for decays that involve
strongly-interacting quarks in the final state. Electromagnetic cor-
rections should be the largest for Z0 decays into electrons, for which
they could be in the neighborhood of 1% of the lowest-order result.
Electromagnetic corrections to decays into other final states should be
smaller still. Since the neutrino does not interact strongly or electro-
magnetically, the prediction for the branching fraction into neutrino
pairs should be accurate to within fractions of a percent.

These estimates would indicate that the uncertainty in the predic-
tion, Eq. (4.42), for the total rate should be accurate to the level of
roughly 0.13 GeV. The calculations of the hadronic branching frac-
tions could also be in error at the few percent level. A real calculation
of the size of these corrections is required in order to use the accuracy
of the experiment to make a better test of the model. To date, such
more precise comparisons between experiment and theory have been
spectacularly successful. For instance, one of the best current exper-
imental determinations of α3 arises from the corrections it generates,
in the width ΓZ .

4.2 W± decays

The calculation of the decay properties of the charged electroweak boson,
W±, follows the same lines as did that for the Z0. The total decay rate (but
not necessarily the partial widths) of the W+ and W− are guaranteed to
be equal to one another by the fact that CPT is a symmetry of the theory.
The partial width W+ → β must also be equal to the conjugate process,
W− → β, to the extent that the relevant interactions preserve CP. Since our
interest in this section is restricted to the dominant decays of the W± which
are well-described within the Born approximation, which is CP perserving,
it suffices to focus here on, say, the W+.

4.2.1 W± decays: formulae

The first step is to identify the standard model interactions for which the
matrix element 〈β|HI |W 〉 6= 0, since these can directly mediate the decay.
An argument that is identical to the one used for the Z0 shows that the only



4.2 W± decays 143

such interaction is the charged-current fermion coupling of Eq. (2.88),

HI = −Lcc

= −ieW

[
W+

µ (ν̄mγµ(1+γ5)em + Vnmūmγµ(1+γ5)dn)

+W−
µ (ēmγµ(1+γ5)ν1n + (V †)mnd̄mγµ(1+γ5)un)

]
. (4.43)

As before, eW is means the coupling constant eW ≡ g2

2
√

2
= e

2
√

2 sin θW
. The

dominant W± decays are therefore predicted to be into fermion-antifermion
pairs, like W+ → e+νe, W+ → s̄u, etc..

4.2.1.1 Neglect of fermion masses

To the extent that all fermion masses may be neglected compared to MW —
an excellent approximation for the standard model given that the t quark is
too heavy to allow the decay W+ → td̄, ts̄ or tb̄—no additional calculation is
necessary to determine the differential rate for W+ decays. This is because
the differential decay rate for the process W+ → f̄mfn may be directly lifted
from the results of the previous section using the following translation table:

gV , gA → 1;

MZ → MW ;

eZ → eW Unm,

with Unm =
{

unit matrix, δmn if fm, fn are leptons;
KM matrix, Vnm if fm, fn are quarks.

(4.44)

The differential decay rate for the decay of a linearly polarized W± bosons
into a fermion-antifermion pair, f̄mfn, (with the final fermion spins unmea-
sured) therefore is

dΓ
sin θdθ

[W+ → f̄mfn] ≈ e2
W

8π
|Unm|2MW Nc(1− cos2 θ); m2

m,m2
n ¿ M2

W .

(4.45)
The notation is the same as in the previous section. θ and φ denote the
polar angles of the outgoing fermion in the rest frame of the decaying W+

with the initial polarization direction chosen to define the z-axis.
The total (unpolarized) decay rate is similarly

Γ(W+ → f̄mfn) ≈ e2
W

6π
|Unm|2NcMW ; m2

m, m2
n ¿ M2

W . (4.46)

4.2.1.2 Nonvanishing fermion masses

Before exploring the implications of these expressions, we pause to generalize
the above results to the case where the fermion masses are not neglected.
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These generalizations may be straightforwardly proven using the techniques
of the previous section.

The full expression for the differential decay rate for polarized W+ bosons
into an unpolarized fermion-antifermion pair, f̄mfn, is

dΓ
sin θdθ

[W+→ f̄mfn] =
e2

W

8π
|Unm|2NcMW

√√√√
(

1− m2

M2
W

)2

− 4m2
mm2

n

M4
W

×

1− m2

M2
W

−



(
1− m2

M2
W

)2

− 4m2
mm2

n

M4
W


 cos2 θ


 ,

(4.47)

in which m2 = m2
m + m2

n is the sum of the squared masses of the final
spin-half particles.

Of particular interest is a special case of this last expression for which
the mass of only one of the fermions is negligible. This is the result that is
appropriate if fn is a neutrino and the rate is desired as a function of the
charged lepton mass. The results are

dΓ
sin θdθ

[W → f̄mfn] =
e2

W

8π
|Unm|2MW Nc

[
1−

(
1− m2

m

M2
W

)
cos2 θ

]
×

×
(

1− m2
m

M2
W

)2

; m2
n ¿ m2

m, M2
W . (4.48)

The total decay rate in this last case becomes

Γ(W → f̄mfn) =
e2

W

6π
|Unm|2MW Nc

(
1 +

m2
m

M2
W

) (
1− m2

m

M2
W

)2

. (4.49)

Since this is a two-body decay, four-momentum conservation implies that
the spectrum of outgoing fermions has a delta-function distribution as a
function of the energy of the outgoing fermions. Since the fermions have
equal and opposite three-momenta in the W± rest frame, it follows that
their energies in this frame are given in terms of the particle masses by

p0
m =

MW

2
+

m2
m −m2

n

2MW

,

p0
n =

MW

2
− m2

m −m2
n

2MW

. (4.50)

This process is clearly kinematically allowed provided only that the sum of
fermion and antifermion masses is smaller than MW .
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4.2.2 W± decays: applications

The total decay rate and the branching fractions of the W± boson into
fermion-antifermion pairs may now be computed within the standard model
by applying these formulae.

It is convenient to normalize the total decay rate by the partial rate for
the decay of a W+ into an positron-neutrino pair:

Γ(W+ → e+νe) =
α

12 sin2 θW

MW

= (226 MeV) . (4.51)

In terms of this partial rate the total W± decay width therefore is

Γtot = Γ(W+ → e+νe)

[
3 + 3

2∑

n=1

3∑

m=1

|Vnm|2
]

= 9Γ(W+ → e+νe)

= 2.04 GeV . (4.52)

The first factor of 3 in the square bracket in the first equation corresponds
to the three families of leptons. The second 3 represents the three colors of
each quark. The sum over ‘up-type’ quarks only runs over the first two gen-
erations because the top quark is too heavy to be a W+ decay product. The
second equality in Eq. (4.52) uses the unitarity of the Kobayashi Maskawa
matrix:

∑2
n=1

∑3
m=1 |Vnm|2 =

∑2
n=1 [V V †]nn = 2.

The decay width of Eq. (4.52) corresponds to a W± boson lifetime of

τ(W±) =
1

Γtot
= 3.22 · 10−25 sec . (4.53)

These particles clearly decay well before they may themselves be directly
detected.

Many branching fractions are once again calculable as pure numbers, in-
dependent of model parameters. A few branching fractions are presented in
Table 4.3.

The W± boson is again very long lived on the scale of its mass, and decays
into leptons 33% of the time, and hadrons the rest of the time.

Since the strengths of the W± couplings to fermions do not depend on the
fermions’ electric charges or other such quantum numbers, to this approx-
imation the only difference in the branching fractions into different species
of particles is due to the existence of the Kobayashi Maskawa matrix. As
a result, the model predicts absolutely no difference among the decay rates
into lepton pairs until masses and radiative (loop) corrections are included.
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Fermion Type Computed Measured

e+νe 11.1% (10.72± 0.16)%
µ+νµ 11.1% (10.57± 0.22)%
τ+ντ 11.1% (10.74± 0.27)%
Hadrons 66.7% (67.96± 0.35)%

Total Width 2.04 GeV (2.118± 0.042) GeV

Table 4.3. Computed and measured W+ branching fractions

The size of these corrections are expected to be roughly the same size as for
Z0 decays—around a percent for electrons and less for µ’s and τ ’s.

Like the Z0 width, the W± width is larger than our theoretical estimate.
This is because of (computable) positive O(α3) corrections; the width is in
good agreement with a more detailed calculation.

4.3 Higgs decays

The last massive elementary boson of the model to be considered here is
the spinless Higgs particle. We compute the decay rate of this particle,
not to compare with experiment, but to predict the observations of future
experiments of this (as yet undetected) particle.

The interaction terms in the Lagrangian that are linear in the Higgs scalar,
which can potentially mediate Higgs decay through a matrix element of the
form 〈β|HI |H〉 6= 0, are of two types: the Higgs-fermion Yukawa couplings
of Eq. (2.70), and the Higgs-electroweak boson interactions of Eq. (2.69):

Hf = −LHf =
∑

f

mf

v
f̄f H , (4.54)

and

Hg = −LH−g =
H

v

(
2M2

W W+
µ W−µ + M2

ZZµZµ
)

. (4.55)

The first of these can mediate the potential decay H → ff , and the second
can mediate H → W+W− and H → Z0Z0. Since the coupling strength
in both cases is proportional the mass of the decay products, the dominant
decay is expected to be into the heaviest particle that is still light enough
for the decay to be kinematically allowed. It should be noted, however, that
a longitudinal W or Z boson counts for these purposes as a Higgs particle
(see subsection 4.3.2). The condition for the decay to be allowed is that the
mass of the decay product must be less than half the mass of the Higgs.
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Which decay dominates therefore depends on what the mass of the Higgs
boson is. There are three possibilities, depending on the size of mH :

(i) mH < 2MW :
In this case the heaviest available final state is a bb pair. Eq. (4.54)

is therefore the relevant interaction.
(ii) 2MW < mH < 2mt:

In this scenario the top quark is too heavy to be produced, and so
the Higgs prefers to decay into gauge boson pairs. Here Eq. (4.55)
describes the most relevant interaction.

(iii) 2MW < 2mt < mH :
Here the Higgs loves to decay into a tt pair. Eq. (4.54) is again the

interaction of most interest. Note however that for a very heavy Higgs
boson, it will turn out that decays into W bosons again dominate.

The next step is to compute the Higgs decay rate into fermion-antifermion
pairs and into gauge boson pairs.

4.3.1 Decays into fermions

The matrix element for this process may be evaluated using the expansion
of the fields in terms of creation and annihilation operators, as in subsec-
tion 4.1.3. The result is

M(H → ff) = 〈f(p, σ); f(q, ζ)|Hf (0)|H(k)〉
=

mf

v
〈f(p, σ); f(q, ζ)|ffH|H(k)〉

=
mf

v
v(q, ζ)u(p, σ) . (4.56)

Summing the square of this matrix element over final-state spins gives

M2
f ≡

∑

σ,ζ

|M(H → ff)|2

= −m2
f

v2
tr [(mf − i/p)(mf + i/q)]

=
4m2

f

v2
(−p · q −m2

f ) . (4.57)

The differential decay rate is therefore

dΓ(H → ff) =
1

2k0
M2

f (2π)4δ4(p + q − k)
d3p d3q

4p0q0(2π)6
(4.58)

=
2m2

f

v2k0
(−p · q −m2

f ) (2π)4δ4(p + q − k)
d3p d3q

4p0q0(2π)6
.
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In the Higgs rest frame the fermions clearly come out back-to-back and
with energies equal to half the Higgs mass. Due to the rotational symmetry
of the problem, the decay probability in the rest frame is also independent
of the direction of the outgoing fermion-antifermion pair. Including the po-
tential sum over final-state color, the total Higgs decay rate into a particular
flavor of fermion in the Higgs rest frame becomes

Γ(H → ff) =
mH

8π

(
mf

v

)2

Nc

(
1− 4m2

f

m2
H

)3/2

≈ mH

8π

(
mf

v

)2

Nc for mf ¿ mH . (4.59)

This decay rate is clearly very sensitive to the final-state fermion mass,
and as advertised is largest for the heaviest fermions. An upper bound on the
ratio of the Higgs lifetime to the Higgs mass may be obtained by using the
above result and including just those fermions that are known to be lighter
than is the Higgs. This includes all standard model fermions except the t

quark. By far the largest contribution from these fermions comes from the
heaviest—the b quark. Neglecting the ratio m2

b/m2
H and using the present

(2005) 95% confidence-level lower bound, mH > 114 GeV, on the Higgs mass
gives the bound

Γtot > Γ(H → bb)

= (3.5 · 10−5) mH

> 4 MeV . (4.60)

This represents an upper limit for the Higgs lifetime of τ(H) < 1.6 · 10−22

sec. Such a particle could not make a track that is long enough to be visible
in a detector and so must be detected through its decay products.

4.3.2 Decays into gauge bosons

We consider the W+W− final state before computing the Z0Z0 case in order
to postpone the complication due to statistics when the final particles are
identical.

4.3.2.1 The decay H → W+W−

The matrix element for this process is evaluated as usual by expanding all
fields in terms of creation and annihilation operators:

M(H → W+W−) = 〈W+(p, σ);W−(q, ζ)|Hg(0)|H(k)〉
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=
2M2

W

v
〈W+(p, σ);W−(q, ζ)|W+

µ W−µH|H(k)〉

=
2M2

W

v
ε∗µ(q, ζ)ε∗µ(p, σ) . (4.61)

Squaring and summing over gauge boson spins using Eq. (1.119) gives

M2
g ≡

∑

σ,ζ

|M(H → W+W−)|2

=

(
2M2

W

v

)2 [
2 +

(p · q)2
M4

W

]
. (4.62)

The differential decay rate becomes

dΓ(H → W+W−) =
1

2k0

(
2M2

W

v

)2 [
2 +

(p · q)2
M4

W

]
×

(2π)4δ4(p+q−k)
d3p d3q

2p02q0(2π)6
. (4.63)

The kinematics of this collision are identical to those for the fermion-
antifermion decay: the gauge bosons are back-to-back in the Higgs rest
frame with an energy of mH/2. The decay distribution in the rest frame is
also completely isotropic. The total Higgs decay rate in the Higgs rest frame
for this particular channel becomes

Γ(H → W+W−) =
mH

16π

m2
H

v2


1−4

(
M2

W

m2
H

)
+12

(
M2

W

m2
H

)2



√
1−4M2

W

m2
H

≈ mH

16π

m2
H

v2
for MW ¿ mH . (4.64)

An interesting feature about this result is that it is proportional to the
square of the Higgs mass, (mH/v)2, rather than to the square of the mass
of the final-state particle as was the case for Higgs decays into fermions,
Eq. (4.59). Since the ratio (mH/v)2 is essentially the Higgs self coupling,
λ, (c.f. Eq. (2.38)), this reflects the fact that the longitudinal component
of the massive gauge bosons originate as components of the scalar doublet
that are ‘eaten’ by the Higgs mechanism. This allows a simple interpretation
for the two terms in the square bracket in the last equality of Eq. (4.63):
The factor of 2 corresponds to the two transverse polarization states of the
W meson which couple with a strength proportional to the gauge coupling,
g2 ≈ MW /v, and the remaining term represents the momentum-dependent
coupling of the longitudinal ‘Goldstone mode’ that couples proportional to
the Higgs self-coupling as above.
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This decay rate clearly cannot contribute at all unless the Higgs mass is
at least twice that of the W boson, mH > 2MW = 161 GeV.

4.3.2.2 The decay H → Z0Z0

The only difference between this decay and the decay into W pairs lies in
the statistics of the final two-boson state. Since the two final Z0 particles
are identical, there are two changes to be made to the calculation:

(i) In the evaluation of the matrix element, M, of Eq. (4.61), there are
two effects which cancel one another. First, the numerical coefficient
of the interaction Hamiltonian, Eq. (4.55), is half as large for Z0’s as
it is for W±’s. This introduces a factor of 1

2 in the matrix element
relative to the W+W− result.

(ii) On the other hand, there are now two ways in which the fields, ZµZµ,
can create the two particles in the final state. These two ways arise
because either field can create any given Z0. This introduces a factor
of 2 in the matrix element relative to the W+W− result. This factor
of 2 cancels the previous factor of 1

2 .
(iii) Next, the range of the final integration over the solid angle of the

direction of one of the outgoing particles need only be 2π steradians
rather than the usual 4π since it is impossible to distinguish which Z

boson heads in which direction. This reduces the decay rate relative
to the WW final state by a factor of 2. (Alternatively, if we perform
the integral over 4π steradians, we have double counted each possible
final state, and must divide by a factor of 2 to undo this double
counting.)

The final result is therefore

Γ(H → Z0Z0) =
1
2
Γ(H → W+W−)

∣∣∣∣
MW→MZ

, (4.65)

that is, the rate for decay into Z0’s is the same as it is separately to decay
into each of the two charge states, W1 or W2, that make up the W±, except
for the substitution of MZ for MW .

4.4 Problems

[4.1] W width at finite fermion mass
Calculate the rate Γ(W− → e−ν̄e) without assuming me ¿ Mw.

Use

L = ieW W−
µ ēγµ(gV +gAγ5)ν + h.c. , gV = gA = 1 .
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[4.1.1] Show that the matrix element is

〈e(p)ν̄e(q)|H|W (k)〉 = −ieW εµ(k)ū(p)γµ(gV + gAγ5)v(q) .

[4.1.2] Show that, if mν 6= 0 and me 6= 0, we would get
∑
σ1σ2

|εµ(k)ū(p)γµ(gV + gAγ5)v(q)|2 =

4
{
memν(g2

V − g2
A) + (g2

V + g2
A) [−p · q + 2ε · p ε · q]

}
.

[4.1.3] Suppose the initial W− is linearly polarized in the direction ~e . In
the W− rest frame, show that

dΓ
d cos θ

=
e2

W MW

16π
(g2

V + g2
A)

[
1−

(
1− m2

e

M2
W

)
cos2 θ

] (
1− m2

e

M2
W

)2

,

where θ is the angle between ~p and ~e . Assume mν = 0 .
[4.1.4] Show that the unpolarized rate is

Γ(W− → e−ν̄e) =
e2

W MW

12π
(g2

V + g2
A)

(
1 +

m2
e

2M2
W

) (
1− m2

e

M2
W

)2

.

[4.2] Decay of the top quark
Consider the top quark, with a mass of mt ' 178GeV.

[4.2.1] Identify the only interaction term in the Lagrangian which is linear
in the top quark. Can a single insertion of this interaction term cause
the top quark to decay? What are the decay products?

[4.2.2] Write an expression for the matrix element for the dominant top
quark decay process.

[4.2.3] Find a compact expression for the square of the matrix element,
summing over final state spin or helicity states and averaging over the
initial top quark helicity state.

[4.2.4] Compute the width of the top quark. Neglect the masses of any
other fermions in comparison to the top quark mass, but treat the
masses of W and Z bosons as comparable to the top quark mass. You
should be able to find an analytic expression for the decay rate. Then,
substitute in physical values and express the answer in GeV.

[4.3] Gamma matrix identities
Prove the following useful formulae involving gamma matrices. You
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should need only the relations, γµγν = 2ηµν − γνγµ, and ηµ
µ = 4.

/k/k = k2

/k/p/k = 2p · k/k − k2/p

γµγµ = 4

γµ/kγµ = −2/k

γµ/p/kγµ = 4p · k
γµ/p/kq/γµ = −2q//k/p .



5

Leptonic weak interactions: decays

The next simplest application of the standard model to understanding the
properties of the observed elementary particles is to compute the decay
lifetimes of the other weakly-interacting particles of the model. The only
remaining particles that do not participate in the strong interactions are the
leptonic fermions. This chapter is devoted to a calculation of their decay
properties.

The purpose of this section is threefold. Two of these are straightfor-
ward. Lepton decays furnish our first example of a ‘second-order’ decay
that proceeds via a virtual particle, and so provide a good motivation for
a full description of the Feynman rules of the theory. This calculation also
provides some insight into the observed properties of real leptons and so
allows more contact with experimentally accessible quantities. Indeed, the
weak decays of the known fundamental particles provide much of our cur-
rent information concerning the electroweak couplings. The third and final
motivation is to provide the first illustration of the utility of the technique
of effective Lagrangians for computing the virtual effects of heavy particles.

5.1 Qualitative features

The six flavors of fundamental leptons are: e, µ, τ, νe, νµ and ντ . Four of
these are absolutely stable in the standard model by virtue of exact or
extremely good approximate conservation laws of the model. The stable
species are the three neutrino types and the electron. They are absolutely
stable because they are each the lightest particles that carry nonzero values
for a conserved quantum number. They cannot decay because any potential
decay product would have to be lighter than the decaying particle, and
would have to carry a nonzero value for the quantum number in question.

153
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No such particles exist by the very assumption that the original particle is
the lightest one that carries this quantum number.

The neutrinos, being massless, are the lightest particles that carry the
appropriate lepton number: Le, Lµ and Lτ . The electron is similarly stable
since it is the lightest particle that carries electric charge. One might won-
der whether the stability of the neutrinos might be suspect because of the
anomalies in the conservation of Le, Lµ and Lτ discussed in subsection 2.5.3.
This turns out not to be so; there are three anomaly free quantum numbers
in the standard model, Le − Lµ, Lµ − Lτ , and B − L, which (together with
the fact that the neutrinos are all lighter than any particle carrying baryon
number) are sufficient to ensure the stability of all three neutrinos. Note
however that if the standard model is enlarged by relaxing renormalizabil-
ity to allow dimension 5 operators, as discussed in chapter 10, then lepton
numbers are generically violated and the neutrinos may not be absolutely
stable. However, estimates of their lifetimes are so long that the question of
their stability is not experimentally interesting.

The decay properties of the remaining two leptons, µ and τ , are computed
here. The first step is to determine which interactions are responsible for
their decays. In this regard, notice that in the absence of the charged-
current fermion interactions, the symmetry group of the leptonic sector of
the standard model would be larger than Ue(1) × Uµ(1) × Uτ (1). They
would in particular include a separate symmetry under the rotation of the
electron, say, by a phase that is independent of the electron neutrino. This
would imply the separate conservation of the number of electrons (minus
positrons) and electron neutrinos (minus electron antineutrinos), and so
imply the stability of the µ and the τ . It follows that any process which
results in µ or τ decay must necessarily involve the lepton charged-current
interaction at least once. The dominant contribution to the decay will be
that one which involves the fewest interactions.

For definiteness consider τ− decay. In order to involve the minimum
number of interactions—one—there must be a potential decay product, |β〉,
for which the matrix element

〈β|Hcc(0)|τ−〉 = − ig2

2
√

2
〈β| W+

µ ντγ
µ(1+γ5)τ |τ−〉 6= 0 . (5.1)

The only state, |β〉, for which this matrix element is not zero is |β〉 =
|W−; ντ 〉. This cannot be a decay product for a τ− particle, since the W−

boson is more massive than is the τ−.
It follows that τ−- (and µ−-) decay must arise at at least second order in

the perturbative expansion of Eq. (3.26). That is, the dominant contribution
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to a decay τ− → β must proceed via the matrix element

M(τ− → β) =
(−i)2

2!

∫
d4x 〈β| T [HI(x)HI(0)] |τ−〉+ · · · , (5.2)

if not at higher order.
From the above considerations, the interaction term which destroys the

τ− particle must be the charged-current Hamiltonian appearing in Eq. (5.1).
Besides destroying the τ−, this interaction also creates W− and ντ particles.
The second interaction term must therefore destroy the created W− parti-
cle, in order to produce a final state that involves only particles that are
less massive than the initial τ− lepton. As is demonstrated in some detail
in section 4.2, the only interaction that can cause a transition from a W−

particle to lighter particles is once again the charged-current fermion inter-
action. These interactions destroy the W− and produce a fermion and an
antifermion, for instance, e−νe. The τ -neutrino that is produced when the
τ lepton is destroyed must appear in the final state to carry off the nonzero
Lτ of the original τ−.

The dominant decay processes must therefore be three-body decays, of
the form τ− → fmfn ντ , in which fm and fn are any two fermions that are
related to one another through the charged-current interactions and which
are lighter than the initial τ−. The rate for this decay is given to first
approximation by Eq. (5.2), in which the relevant interaction Hamiltonian
is

HI = −ieW

(
W+

µ ντγ
µ(1+γ5)τ +

∑
mn

U∗
mnW−

µ fnγµ(1+γ5)fm

)
. (5.3)

The matrix Umn in this expression is the same as that used in section 4.2 and
represents the unit matrix, δmn, if fm and fn are leptons and the Kobayashi
Maskawa matrix, Vmn if they are quarks. As before, eW ≡ g2/2

√
2 =

e/(2
√

2 sin θW ).
Many of the properties of µ− and τ− decays follow from these general

observations before any detailed calculations are performed:

5.1.1 µ− decays

(i) For µ− decays there is only one combination of three fermions for
which the sum of the masses is smaller than the µ− mass itself, and is
therefore kinematically allowed. The three particles in the final state
are completely determined by the conservation laws for the decay.
The final state must include the electron, e−, since this is the only
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negatively-charged particle that is lighter than the µ−. Conservation
of Le and Lµ then dictate that the remaining two fermions must be
νµ to carry off the initial muon number, and νe to cancel the electron
number of the final electron. The dominant decay must therefore be

µ− → e−νeνµ . (5.4)

(ii) Of the three particles in the final state, only the electron is detectable
(without heroic efforts) since the neutrinos interact so weakly as to
make them easily leave any detector without interacting at all. The
observable of most interest is therefore the decay rate as a function of
the final electron’s quantum numbers. Since Eq. (5.4) is a three-body
decay, the electron can emerge with a continuous range of energies,
with energy conservation satisfied by having the remainder of the
initial muon’s energy shared by the remaining neutrinos. One of the
goals of the next section is to compute the number of electrons of any
given energy that emerge from a sample of decaying muons.

(iii) Counting the coupling constants and (2π)’s associated with the decay
rate allows a simple estimate of its size and so of the muon lifetime.
This estimate compares reasonably well with the more detailed cal-
culation to follow. The decay involves two insertions of HI , which is
linear in g2, so it follows that M∝ g2

2.
There is another factor that must be included as well, the suppres-

sion associated with the necessity to produce and destroy a virtual
W− boson. As is justified in more detail in what follows, this sup-
pression is given by a factor of 1/M2

W in the amplitude. This factor is
the relativistic analogue of the familiar energy denominators of non-
relativistic quantum mechanical perturbation theory (c.f. Eq. (1.34)
for example).

Including this factor gives the estimate: M ∼ g2
2/M

2
W . Since the

typical energy available to the final particles in the muon rest frame is
mµ, the integral of the squared matrix element over phase space may
be estimated by including the appropriate power of mµ. Since our
estimate for |M|2 has dimension M−2 and the decay rate is dimension
M , the power of mµ required by dimensional analysis is m5

µ.
It remains to find the power of (2π) arising from the phase space

integration. Each of the 3 integrals over final particle momenta intro-
duces (2π)−3, but there is a (2π)4 from the energy and momentum
conserving delta function. There are two independent solid angle
integrations, each contributing ∼ (2π). The total power of (2π) is
therefore (2π)−3.
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The decay rate is therefore of order

Γ(µ− → e−νeνµ) ∼ |M|2 m5
µ

(2π)3

∼ g4
2

(2π)3
m5

µ

M4
W

∼ 2α2

π sin4 θW

m5
µ

M4
W

∼ 2 · 10−15 mµ

∼ 2 · 10−16 GeV, (5.5)

corresponding to a lifetime of τ(µ) ∼ 3 ·10−9 sec. Unlike in the previ-
ous chapter we take here the value α ≈ 1/137 for the electromagnetic
fine structure constant that is appropriate to low energies compared
to the weak scale.

This differs from the measured lifetime of τexp = 2.2 · 10−6 sec by
some three orders of magnitude, motivating the more careful calcula-
tion performed below. Notice that an extremely relativistic particle
with a lifetime of a microsecond can travel several hundred meters
before decaying. Muons therefore live long enough to escape the re-
gion immediately surrounding the interaction point and can enter the
surrounding detector for observation.

(iv) The branching fractions for differing final states in µ− decay may
also be simply estimated. As argued above, the decay into eνν is the
only one that may proceed to second order in the interactions of the
model. This will therefore have a branching fraction of essentially
≈ 100%.

There will be other decay products available, and so deviations
from the 100% branching fraction, to the extent that higher-order
processes are possible. One such process that arises once three pow-
ers of the interaction Hamiltonian are allowed is the decay µ− →
e−νeνµγ, in which a photon is emitted by the initial muon or by the
final electron. Apart from all of the factors of coupling constants that
already arise for the purely three-body decay, the matrix element for
emitting an additional photon involves an extra factor of the elec-
tromagnetic coupling, e, and the phase space integration involves an
extra (2π)/(2π)3 (the numerator from an angular integration, the
denominator from the momentum integration).

The estimate of the branching fraction for decays with an extra
photon in the final state is therefore B(µ− → eννγ) ∼ e2/(2π)2 ∼
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2 · 10−3. Having the photon pair-produce an electron-positron pair—
µ− → e−e+e−νν—would bear another factor of e2/(2π)2 of suppres-
sion, for a branching fraction ∼ 10−5. These are in agreement with
the measured branching fractions,

Bexp(µ− → e−νν) = ∼ 100%;

Bexp(µ− → e−ννγ) = (1.4± 0.4)%;

Bexp(µ− → e−ννe+e−) = (3.4± 0.4) · 10−5 . (5.6)

The photon branching fraction is larger than our estimate because it
turns out to be enhanced by a factor of log(mµ/me), for reasons we
will discuss in subsection 6.7.2.

5.1.2 τ− decays

(i) The tau lepton differs from the muon only through the size of its
mass. The arguments of the preceding section for muons therefore
apply equally well to taus to the extent that they do not rely crucially
on the value of the initial lepton’s mass.

Because of its larger mass, the τ lepton can decay at second order in
Hcc to many more three-fermion final states than could the relatively
light muon. It has two purely leptonic decays: τ− → e−νeντ and
τ− → µ−νµντ . At the quark level it can also decay into either τ− →
udντ or τ− → usντ . All of the other quark combinations are ruled
out by energy conservation. (The cs and cd combination superficially
appears to be just possible since the charm and strange quark masses
sum to a value just below the tau mass. The c-quark nevertheless
cannot contribute to τ decays because real hadrons are bound states
of these quarks and all of these bound states that contain a single
charmed quark are too heavy to be produced as a tau decay product.)

(ii) The decay rate for the τ is easily estimated given the decay rate of
the muon. All of the estimates that lead to Eq. (5.5) apply equally
well to tau decays and so the same result holds here. In particular
the ratio of the tau decay rate to the muon decay rate must scale like
the fifth power of the ratio of their masses. Using the experimentally
observed muon lifetime therefore gives

τ(τ) ∼
(

mµ

mτ

)5

τ(µ)

∼ 1.6 · 10−12 sec . (5.7)
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This estimate is just about right (to within the accuracy of the esti-
mate) since the observed τ lifetime is (2.906± 0.011) · 10−13 sec. The
factor of about 5 is expected because of the 5 allowed decay products
for the τ (the ud counts as 3 because there are 3 available colors).
A relativistic particle with this lifetime can travel a tenth of a mil-
limeter or more before decaying, which can be a visible displacement
with the proper experimental setup.

(iii) As is noted above, the tau meson has more decay channels open to
it than does the muon just by virtue of the fact that it is so much
heavier. Predictions for the τ− branching fractions may be made
simply by counting the degrees of freedom available in each channel.
These predictions are quite robust since they rely on few (if any) of the
details of any potentially poorly-measured parameters of the model.
One of these predictions, that follows simply from the observation
that the tau decays via a virtual W boson and from the universal
nature of the couplings of the W , is that the branching fraction for
the two leptonic decays must be equal. This and other predictions
are summarized in the following:

B(τ → eνν) = B(τ → µνν)

≈ 1
2 + 3(|Vud|2 + |Vus|2)

≈ 20%

B(τ → strange hadrons) ≈ B(τ → usν)

≈ 3|Vus|2
2 + 3(|Vud|2 + |Vus|2)

≈ 2%

B(τ → non strange hadrons) ≈ B(τ → udν)

≈ 3|Vud|2
2 + 3(|Vud|2 + |Vus|2)

≈ 58% . (5.8)

By way of comparison, the corresponding experimental numbers
are

Bexp(τ → eνν) = (17.84± 0.06)%

Bexp(τ → µνν) = (17.37± 0.06)%

Bexp(τ → strange hadrons) ≈ (2.7± 0.9)%

Bexp(τ → non strange hadrons) ≈ (62± 4)% . (5.9)
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The agreement is within the accuracy of the estimate. The hadronic
entries in the experimental table here are estimated by summing over
all of the observed rates in the Particle Data Book. The errors listed
in this case are rough estimates based on the combined errors for
each mode. Note that the leptonic modes are systematically low.
A more detailed calculation turns out to show that the rates for
the ud and us decay modes receive a positive O(α3) correction; so
the difference from the naive branching fraction estimates allows a
determination of the size of α3. The size of α3 determined in this
way differs from the determination from the width of the Z0 boson,
discussed at the end of subsection 4.1.6; but this is expected, as we
will discuss in subsection 7.4.1, and the difference turns out to agree
with the predictions of the standard model.

5.2 The calculation

Consider, for simplicity, the decay τ− → ντfmfn in which none of the initial
or final polarizations are measured. We must evaluate the matrix element,
Eq. (5.2), using the interaction Hamiltonian, Eq. (5.3). The first term in the
interaction Hamiltonian is responsible for destroying the initial τ− meson
and creating the ντ . The second term creates the final fermion-antifermion
pair, fmfn. Since the total amplitude is the product of two powers of the
interaction Hamiltonian, there are two types of contributions, corresponding
to which interaction Hamiltonian destroys the τ particle and which creates
the fmfn pair. Each of these turns out to contribute equally to the total
amplitude, and so we compute here only one of them and multiply the result
by two.

It is convenient to write out the action of the interaction Hamiltonian
separately for the τ, ντ , W -boson and fmfn sectors of the Hilbert space. To
this end write the initial and final states as

|τ−〉 = |τ−〉τ ⊗ |0〉W ⊗ |0〉f ,

|ντ ; fm; fn〉 = |ντ 〉τ ⊗ |0〉W ⊗ |fm; fn〉f . (5.10)

The utility of writing this dependence out explicitly is that the desired ma-
trix element, Eq. (5.2), then factorizes into three parts, which may be dealt
with separately:

−iM =
(−i)2

2!

∫
d4x 〈ντ (l); fm(q); fn(p)|T [Hcc(x)Hcc(0)] |τ(k)〉

= 2
(−i)2

2!
(−e2

W U∗
mn)

∫
d4x Aµ(k, l; x) Gµν(x) Bν(q,p) , (5.11)
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in which the factors Aµ, Bν and Gµν are defined by

Aµ(k, l;x) = τ 〈ντ (l)| [ντγ
µ(1+γ5)τ ] (x) |τ(k)〉τ ,

Bν(q,p) = f 〈fm(q); fn(p)|
[
fnγν(1+γ5)fm

]
(0) |0〉f ,

Gµν(x) = W 〈0|T
[
W+

µ (x)W−
ν (0)

]
|0〉W . (5.12)

The first factor of 2 in the last line of Eq. (5.11) is the factor of two discussed
in the opening paragraph of this section, which corresponds to the two ways
in which the interaction terms can destroy the τ : The τ can be destroyed
by the interaction at spacetime point x, or by the one at 0.

These matrix elements are evaluated by expanding each field in terms of its
creation and annihilation operators and then evaluating the resulting matrix
elements of these operators. The evaluation of matrix elements Aµ and Bν

only involves initial or final states and so closely parallels the evaluation of
those matrix elements performed in previous chapters. They give

Aµ(k, l;x) = uν(l)γµ(1+γ5)uτ (k) ei(k−l)x ,

Bν(q,p) = un(p)γν(1+γ5)vm(q) . (5.13)

5.2.1 The W propagator

The matrix element Gµν(x) of the W field operators that arises in Eq. (5.12)
is called the W propagator. It is determined completely by the properties
of the W bosons that contribute to it as intermediate states. Its evaluation
requires a little more care and is the topic of the present aside.

Gµν(x) may be evaluated by inserting a complete set of one-particle W -
states. (For notational simplicity we drop the ubiquitous subscript ‘W ’ on
the Hilbert-space state vectors in this section but it is implicit in all for-
mulae.) Recalling the definition, Eq. (3.17), of the time-ordering operation,
T , and inserting a complete set of 1-particle W boson states between the
operators, gives

Gµν(x) = 〈0|T
[
W+

µ (x)W−
ν (0)

]
|0〉 (5.14)

=
1∑

λ=−1

∫
d3r

2Er(2π)3
[
〈0|W+

µ (x) |W+(r, λ)〉 〈W+(r, λ)|W−
ν (0) |0〉 θ(x0)

+ 〈0|W−
ν (0) |W−(r, λ)〉 〈W−(r, λ)|W+

µ (x) |0〉 θ(−x0)
]

=
1∑

λ=−1

∫
d3r

2Er(2π)3
[
εµε∗ν(r, λ)eir′x θ(x0) + ενε

∗
µ(r, λ)e−ir′x θ(−x0)

]
.
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Here r is the momentum of the inserted state, and Er =
√

r2 + M2
W is its

energy. The four-vector, r′µ, that appears in the phase e±ir′x is defined with
timelike component given by r′0 ≡ Er.

θ(x) is the step function that is unity when its argument is positive and is
zero when its argument is negative. For the present purposes the following
integral representation proves convenient:

θ(x) =
1

2πi

∫ ∞

−∞
eixω

ω − iε′
dω . (5.15)

ε′ here denotes a positive infinitesimal that is to be taken to zero at the end
of the calculation.

The spin sum may be evaluated using Eq. (1.119):

Πµν(r, Er) ≡
1∑

λ=−1

εµ(r, λ)ε∗ν(r, λ)

= ηµν + r′µr′ν/M
2
W . (5.16)

Using this spin sum, and Eq. (5.15), into Eq. (5.14) gives the desired expres-
sion for the propagator. After performing a change of integration variables
in this result in order to put the coefficient of both of the step functions,
θ(x0) and θ(−x0), into a common form, the result becomes

Gµν(x) = −i

∫
d3r

(2π)3
dω

2π
Πµν(r, Er) eir·x−iωx0

× 1
2Er

[
1

Er − ω − iε′
+

1
Er + ω − iε′

]

= −i

∫
d4r

(2π)4
Πµν(r, Er)

r2 + M2
Z − iε

eirx . (5.17)

The four vector rµ (as opposed to r′µ of Eq. (5.14)) that appears in the last
equality is defined with time component r0 equal to the integration variable,
ω (as opposed to Er). The infinitesimal, ε, appearing here has been rescaled
from the original infinitesimal, ε′, of Eq. (5.15) by ε ≡ 2Er ε′ > 0.

5.2.1.1 Lorentz covariance: an aside

This last expression is almost, but not quite, covariant with respect to
Lorentz transformations. The qualification comes because the polarization
‘tensor’, Πµν(r, Er), depends on the variable Er rather than the time com-
ponent of rµ: r0 = ω. This is something of an embarrassment since it would
seem to imply a loss of Lorentz invariance for the S-matrix element that is
being computed! Happily enough this particular failure of Lorentz invariance
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is just what is required to cancel another source that has been glossed over
up until this point. (See however the discussion in section 4.1.) This other
source of Lorentz noninvariance would have arisen in Eq. (5.3) if the inter-
action Hamiltonian had been properly identified. The result that is implicit
in this equation is that the charged-current interaction Hamiltonian, Hcc, is
related to the interaction Lagrangian, Lcc, by Hcc = −Lcc as would usually
be the case for a nonderivative interaction. This relation does not hold for
the couplings of gauge potentials, however, as is perhaps more familiar in
Quantum Electrodynamics where the nonderivative coupling, LI = AµJµ,
produces a noncovariant Coulomb contact interaction in the Hamiltonian.

It is beyond the scope of this book to detail how these two sources of
Lorentz noninvariance cancel one another out (see, however, problem 5.4
of this chapter for an illustration of what is involved). The final result is
simple to state, however. The full calculation is equivalent to neglecting
the difference between HI and −LI and replacing the naively time-ordered
W propagator of Eq. (5.14) through Eq. (5.17) by the covariant expression
obtained by replacing Πµν(r, Er) in Eq. (5.17) by Πµν(r) ≡ Πµν(r, r0):

G̃µν(x) = 〈0|T ∗
[
W+

µ (x)W−
ν (0)

]
|0〉

= −i

∫
d4r

(2π)4
Πµν(r)

eirx

r2 + M2
Z − iε

. (5.18)

The upshot of this aside is that G̃µν(x) of Eq. (5.18) must be used in the
amplitude of Eq. (5.11) rather than Gµν(x).

5.3 The large-mass expansion

The results for Aµ, Bν , and G̃µν accumulated above, in Eq. (5.13) and
Eq. (5.18), may now be combined in Eq. (5.11) for the matrix element
M(τ− → ντfmfn). The x integral may be performed and gives a mo-
mentum conserving delta function,

∫
d4x ei(k−l+r)x = (2π)4δ4(k − l + r),

giving the following result for M:

M(τ → ντfmfn) = e2
W U∗

mn [uν(l)γµ(1+γ5)uτ (k)] [un(p)γν(1+γ5)vm(q)]

×
[
ηµν + (k − l)µ(k − l)ν/M

2
W

(k − l)2 + M2
W − iε

]
. (5.19)

All of the techniques of the previous sections may be brought to bear
on this expression to evaluate the corresponding τ− decay rate. A great
simplification is possible at this point, however, if it is agreed to neglect any
contributions that are suppressed relative to the dominant one by powers of
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the small quantity m2
τ/M

2
W ≈ 5 · 10−4. (The approximation is even better

for the muon where this ratio is 300 times smaller.) In this case the entire
W -boson propagator, as represented by the last square bracket in Eq. (5.19),
may be expanded in inverse powers of M2

W :

ηµν + (k − l)µ(k − l)ν/M
2
W

(k − l)2 + M2
W − iε

≈ ηµν

M2
W

, (5.20)

since in the rest frame of the tau meson all of the components of the four-
momentum, k − l, are at most equal to mτ .

Within this approximation, the matrix element simplifies to

M(τ → ντfmfn) =
e2

W U∗
mn

M2
W

[uν(l)γµ(1+γ5)uτ (k)] [un(p)γµ(1+γ5)vm(q)] .

(5.21)
It is conventional to denote the coupling combination e2

W /M2
W , that ap-

pears in this expression, by GF /
√

2. i.e.

GF√
2

=
e2

W

M2
W

=
g2
2

8M2
W

=
1

2v2
. (5.22)

The constant GF = 1.1664 ·10−5 (GeV)−2 obtained in this way is for histori-
cal reasons called the Fermi coupling constant. Indeed, it is the measurement
of GF through comparison of the predicted and measured muon lifetimes
that fixes the value of the Higgs v.e.v., v, that is quoted in appendix A.

Returning to the matrix element, Eq. (5.21), averaging over the two initial
spin states of the τ and summing over spins of the final fermions gives

M2 =
1
2

∑

spins

|M(τ → ντfmfn)|2

=
G2

F

4
|Umn|2Mµν(k, l) Nµν(p, q) , (5.23)

in which the quantities Mµν and Nµν denote traces over Dirac matrices:

Mµν(k, l) ≡ tr [γµ(1+γ5)uτuτγ
ν(1+γ5)uνuν ]

= tr [γµ(1+γ5)(mτ − i/k)γν(1+γ5)(−i/l)]

= 8
[
(ηµνk · l − kµlν − kν lµ)− iεµνλρkλlρ

]
, (5.24)

and

Nµν(k, l) ≡ tr [γµ(1+γ5)vmvmγν(1+γ5)unun]

= − tr [γµ(1+γ5)(mm + i/q)γν(1+γ5)(mn − i/p)]

= 8
[
(ηµνp · q − pµqν − pνqµ)− iεµνλρqλpρ

]
. (5.25)
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Contracting Mµν with Nµν (using the identity εµναβεµνλρ = 2(δα
ρ δβ

λ−δα
λδβ

ρ ))
finally gives the simple result,

Mµν(k, l)Nµν(q, p) = 256(l · p)(k · q) . (5.26)

Combining all of the above formulae gives the following differential decay
rate:

dΓ(τ → ντfmfn) =
64G2

F |Umn|2
2k0

(l·p)(k·q)(2π)4δ4(p+q+l−k)
d3l d3p d3q

8l0p0q0(2π)9
.

(5.27)
This expression must now be integrated over phase space to produce the
desired differential or total decay rate. We will perform the integration
assuming that both the ντ and one of the other leptons is massless. This
treatment is relevant for τ− → µ−νµντ and for µ− → e−νeνµ, and is not too
bad for decays of ντ into quarks (where g2

3 effects which we will not compute
are anyway more important than the up quark mass).

Consider for concreteness the case of a purely leptonic τ decay: τ− →
µ−νµντ . We now compute this differential decay rate as a function of the
final muon’s energy and mass.

Since we do not observe the neutrino momenta l and q, it is convenient to
integrate over them first. Moving everything else outside the q, l integrations
leaves the integral,

Iµν(k, p) ≡
∫

lµqν (2π)4δ4(l + p + q − k)
d3ld3q

4l0q0(2π)6
, (5.28)

which we must evaluate. Iµν(k, p) as defined is a second-rank tensor that is
a function of kµ and pµ only through the combination wµ ≡ (k − p)µ. The
most general possible form for such a tensor is

Iµν(w) = Aw2ηµν + Bwµwν , (5.29)

in which A and B can a priori be arbitrary functions of the Lorentz-invariant
variable w2 = wµwµ. The scalar variables A and B are much more conve-
nient to deal with than is the full tensor Iµν , since they are Lorentz-invariant
(as opposed to being covariant), and so may be simply evaluated in the most
convenient reference frame.

A and B turn out to be both determined in terms of a single scalar integral:

I(w) ≡
∫

(2π)4δ4(l + q − w)
d3l d3q

4l0q0(2π)6
. (5.30)

To see this, note first that

ηµνIµν(w) = Aw2ηµνηµν + Bηµνwµwν = (4A + B)w2
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=
∫

l · q (2π)4δ4(l + q − w)
d3l d3q

4l0q0(2π)6

=
w2

2
I(w) . (5.31)

In the last equality the identity w2 = (l + q)2 = 2l · q is used, which relies on
four-momentum conservation as well as the masslessness of the neutrinos:
l2 = q2 = 0. Similarly,

wµwνIµν(w) = Aw2wµwνηµν + Bwµwνwµwν = (A + B)(w2)2

=
∫

(w · q)(w · l) (2π)4δ4(l + q − w)
d3l d3q

4l0q0(2π)6

=
∫

(l · q)2 (2π)4δ4(l + q − w)
d3l d3q

4l0q0(2π)6

=
(w2)2

4
I(w) , (5.32)

which uses w · l = (l + q) · l = l · q = w · q. These equations may be solved
for A and B, giving B = 2A = I/6.

It remains to evaluate I(w). It is first convenient to perform the l inte-
gration using the following identity, which holds for any Lorentz-invariant
integrand:

∫
d3l

2l0(2π)3
=

∫
d4l

(2π)4
2πδ(l2 + m2)θ(l0) . (5.33)

For our case, m2 = 0. Then

I(w) =
∫

(2π)4δ4(l + q − w) 2πδ(l2)θ(l0)
d4l

(2π)4
d3q

2q0(2π)3
,

=
∫

2πδ[(w−q)2] θ[w0−q0]
d3q

2q0(2π)3
. (5.34)

Notice that the four-vector, wµ, is timelike, since

w2 = (k − p)2 = (l + q)2 = 2l · q = −2|q||l|(1− cos θ) ≤ 0 . (5.35)

θ here represents the angle between the three-vectors l and q. There must
therefore be a reference frame in which the three-vector components of w

vanish: w = 0. Define w0 = E in this frame. Then, also in the same frame,
w2 = −E2 and (w − q)2 = w2 − 2w · q = −E2 + 2Eq0. The last integral is
most conveniently evaluated in this frame:

I(w) =
1
2π

∫
δ[E2 − 2Eq0]θ[E − q0] q0dq0 ,
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Fig. 5.1. Differential τ , µ decay rate, as function of the charged lepton energy.

=
1
8π

θ(−w2) , (5.36)

where the θ function is because the integration only has support provided
w is timelike. Clearly, then, B = 2A = 1/(48π), and

Iµν(w) =
1

96π

[
ηµνw

2 + 2wµwν

]
θ(−w2) . (5.37)

Inserting this integral into the decay rate, Eq. (5.27), finally gives the
differential decay rate as a function of the muon energy and mass (normalized
to the tau mass so that ε ≡ p0/mτ and µ ≡ mµ/mτ ):

dΓ
dε

(τ− → µ−νµντ ) =
G2

F m5
τ

4π3

(
ε− 4ε2

3
+ εµ2 − 2µ2

3

) √
ε2 − µ2

≈ G2
F m5

τ

4π3
ε2

(
1− 4ε

3

)
for µ ¿ 1 . (5.38)

The shape of this curve as a function of ε is plotted in figure 5.1.
The kinematically allowed range for the muon energy is 0 < p0 < (m2

τ +
m2

µ)/(2mτ ). This may be seen from the condition that k − p be timelike as
seen in the tau rest frame: (k−p)2 = k2−2k·p+p2 = −m2

τ +2mτp
0−m2

µ < 0.
Integrating p0 over this range then gives the total rate for τ− decays into
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this channel (neglecting all fermion masses):

Γ(τ− → ντfmfn) =
G2

F m5
τ

192π3
|Umn|2 . (5.39)

Some final comments about this result:

(i) Eq. (5.39), applied to muon decay, may be compared to the estimate
of section 5.1 to see if the discrepancy of this estimate with the ex-
perimental value persists or is instead an artifact of the inaccuracy
of the earlier estimate. The full and approximate results are,

Γcalc(µ− → e−νeνµ) =
G2

F m5
µ

192π3

=
g4
2

3 · 29 · (2π)3
m5

µ

M4
W

and Γest(µ− → e−νeνµ) ∼ g4
2

(2π)3
m5

µ

M4
W

. (5.40)

The approximate estimate has missed the numerical factor of 2−9 ·
3−1 = 1/1536, which provides the missing three orders of magnitude.
This illustrates a general caveat for the order-of-magnitude estimates:
they are useful for judging the rough size of a rate but are not a sub-
stitute for a real calculation. The source of this large number in
the full calculation is in the integration of the squared amplitude
over phase space. The estimate of this integration using simple di-
mensional analysis and counting of 2π’s is the weakest part of the
arguments of section 5.1. Although it furnishes reasonable accuracy
for the two-body decays of the previous sections, it can be potentially
more of a problem in decays which involve more final state particles,
since the rates for these processes involve a multidimensional integra-
tion over phase space.

The full result, Eq. (5.39), gives the following µ− and τ− decay
rates into leptons:

Γtot(µ−) = Γ(µ− → e−νeνµ)

=
G2

F m5
µ

192π3

= 3.009 · 10−19 GeV,

so: τ(µ−) = 2.187 · 10−6 sec; (5.41)

and:

Γtot(τ−) =
[
2 + 3(|Vud|2 + |Vus|2)

]
Γ(τ− → e−νeνµ)
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= 5 · G2
F m5

τ

192π3

= 2.025 · 10−12 GeV,

so: τ(τ−) = 3.25 · 10−13 sec. (5.42)

Corrections to the muon lifetime should be smaller than a percent
or so since they are purely electromagnetic. The corrections to the
τ lifetime might be somewhat larger since they can include strong-
interaction corrections for the hadronic final states. The predicted
lifetimes compare very well with the measured lifetimes:

τexp(µ−) = (2.19703± 0.00004) · 10−6 sec

τexp(τ−) = (2.906± 0.011) · 10−13 sec . (5.43)

The comparison for the µ− is not really fair, since the value of GF is
determined from this width. However, with GF so determined, the
τ− width is fair game. Again we emphasize that the τ− width is
not that close to the prediction (10% discrepancy); this is because of
strong interaction physics. The partial widths to leptons are in very
good agreement with the predictions of our formulae.

(ii) The shape of the differential decay probability, dΓ/dE, for decays
into leptons as a function of the charged-lepton energy, E, is given in
figure 5.1. It vanishes like E2 as E → 0 and rises monotonically to a
maximum at the endpoint, i.e. the maximum energy that is kinemat-
ically available to the charged-lepton (roughly half of the mass of the
decaying particle in the present case). The most probable energy for
the outgoing charged lepton is therefore its endpoint value. The E2-
dependence for small E is also easily understood. It arises partly from
the phase space measure for relativistic fermions, d3p/p0 ≈ EdE, and
partly from the proportionality to E of the squared matrix element,
M2 of Eq. (5.27).

5.4 Feynman rules

The general pattern for the perturbative evaluation of general scattering
amplitudes and decay rates is similar to the examples that have been en-
countered up to this point. In each case the desired matrix element is found
by expressing it in terms of the fields of the theory which are then themselves
expressed in terms of the corresponding creation and annihilation operators.
The resulting matrix elements of these operators may then be evaluated by
applying the rules of section 1.1.
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In each case we pick up standard factors corresponding to the polarization
vectors or spinors in the expansions of the fields, and to the coupling con-
stants and Dirac matrices of the interaction Lagrangians. These rules may
be very graphically summarized in a way that allows the corresponding am-
plitude to be straightforwardly written down. The procedure is to associate
a line to the propagation of every particle in a particular matrix element.
These lines end whenever the corresponding particle is created or destroyed
by one of the creation or annihilation operators of the matrix element of
interest. The lines drawn in this way form a Feynman graph (or Feynman

diagram) that is associated with the given matrix element.

Explicitly, the relation between the procedure we have followed so far,
and the drawing of a Feynman graph, is as follows. First, one chooses the
initial and final states under consideration. For the case of µ− decay, this
consisted of a µ− in the initial state, |µ−〉, and e−, ν̄e, νµ in the final state,
〈e−ν̄eνµ|. These are represented graphically by putting the end of a line on
the left hand side of the graph for each initial state particle and the end of
a line on the right hand side for each final state particle, labeled with the
particle type:

-

HHj

�

H

�*

HY
µ

νµ

e

ν̄e

Fermions are given arrows pointing right for particles and left for anti-
particles. Some people use the bottom and top of the figure rather than the
left and right.

Next, one must determine what insertions of the interaction Hamiltonian
are involved. Each HI insertion is represented by a dot (vertex) with the
stubs of lines coming out, labeled as dictated by the fields appearing in HI .
Fermion fields are given an arrow entering the vertex if the field operator
e, µ, ν is involved and an arrow leaving the vertex if the anti-field operator
ē, µ̄, ν̄ is involved. For the case of µ− decay, the graph is now,
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- u-Hjµ νµ

W

HHj

¦̈

¦̈uW

e

νe

�*HY

�

H

�*

HY

µ

νµ

e

ν̄e

The locations on the page of the vertices in the graph are arbitrary, and
are usually chosen so that the final graph will look nice.

Finally, each field in an HI insertion provides either a creation or an
annihilation operator. These must be contracted either with initial or final
state particles, or with each other. When an annihilation operator destroys
an initial state particle, a line is drawn between the incoming line end and
the line stub on that vertex; similarly with creation operators and final
state particles. These lines are called incoming lines and outgoing lines,
respectively. Two fields in HI insertions which combine to form a propagator
are represented in the graph by attaching the line stubs on the vertices with
an internal line. In all cases the line ends connected by a line must be of
the same particle type, and for fermions they must have compatible arrow
directions. By convention fermions are drawn with solid lines, electroweak
gauge bosons are wiggly lines, and gluons are curly lines. We will draw
scalars with dashed lines—conventions here are less uniform. The result is
that the diagram corresponding to the µ− decay process we have analyzed
is,

- uHHHHHj
HHHHHHHHH

¦¦¦¦¦

¨¨¨¨ ü��
��
��

HHHHHH

��
�*

HH
HY

µ

νµ

e

ν̄e

W−

We emphasize again that the exact location on the page of the vertices and
lines is arbitrary and is usually chosen to make the picture easy to draw.
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Feynman graphs with a given initial and final state, and sets of HI in-
sertions and creation and annihilation operator pairings which can induce
the transition from the initial and final state, are in 1 to 1 correspondence.
Drawing Feynman graphs represents a particularly efficient and visual way
of finding the possible ways an initial state can become a final state. There-
fore, the possible processes contributing to a matrix elementM for a process
involving a given initial and final state may be found by drawing all possible
Feynman graphs which have external lines appropriate to the initial and
final states, and involving the vertices corresponding to the interactions of
the theory of interest. Furthermore, M itself can be found from the graphs:
it is the sum over each graph of an expression which can be determined
by replacing each element (line and vertex) of the graph with an expres-
sion determined by the Feynman rules of the theory. Each graph must also
be multiplied by a symmetry factor, which is precisely the graph theoretic
symmetry factor of the Feynman graph.

We first present a table of the Feynman rules of the standard model. That
is, we present a list of the proper factors that should be associated with each
internal line, external line, and vertex in order for a graph to reproduce the
corresponding standard model amplitude. We then consider two examples
for which the operator calculation has been done in earlier sections in order
to illustrate how the graphical method correctly reproduces matrix elements.

5.4.1 External lines

This section lists the factors that are associated with the external lines of a
Feynman graph—and so the initial or final particles of an amplitude.

5.4.1.1 Incoming lines (initial states)

The following factors give the (momentum-space) Feynman rules appropri-
ate to an incoming spin-zero, spin-half or spin-one particle. The arrows
on the fermion lines indicate the direction of fermion-number flow, the dot
indicates where the line attaches to an interaction vertex.

Spin Zero:
s 1 ; (5.44)

Spin–Half Fermion:

- s
ui(p, σ) ; (5.45)
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Spin–Half Antifermion:

� s
vi(p, σ) ; (5.46)

Spin One:
¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s εµ(p, σ) . (5.47)

5.4.1.2 Outgoing lines (final states)

The momentum-space Feynman rules for an outgoing spin-zero, spin-half or
spin-one particle are similarly

Spin Zero:
s 1 ; (5.48)

Spin–Half Fermion:

-s
ui(p, σ) ; (5.49)

Spin–Half Antifermion:

�s
vi(p, σ) ; (5.50)

Spin One:
¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s

ε∗µ(p, σ) . (5.51)

These are the factors needed to compute the matrix elementM. When in-
tegratingM2 over final state momenta one must use the phase space measure
d3p/(2p0[2π]3), and there is a factor of 1/(2p0) from the state normalization
of each incoming particle.

5.4.2 Internal lines

The momentum space description for an internal line is given by the propaga-

tor for the corresponding particle. The propagators for the three lowest-spin
particles of interest here are listed here.

Notice that the Dirac indices on the spin-half propagator are such that
Dirac matrix multiplication orders propagators and vertices oppositely to
the order they would have if they are ordered consecutively along a fermion
line in the direction of fermion-number flow. Here and in the expressions for
vertices, when some index (color, for instance) is not explicitly displayed, it
is contracted with a δ function between the lines which carry that index.



174 Leptonic weak interactions: decays

The spin-one propagator given here depends on whether the spin-one par-
ticle has a mass or not. For massive spin-one particles unitary gauge is pre-
sented as was used for the W and Z bosons in the text. This propagator is
less useful for massless particles like the photon or gluons, however, since it
has a singular limit as the particle mass tends to zero. For massless particles
we use instead the propagator in what is called the renormalizable ξ gauge.
We are free to choose a gauge that is different from unitary gauge for the
photon and gluons because the unitary gauge condition, Eq. (2.30), does not
fix the electromagnetic or SUc(3) gauge invariance. Notice that the ξ-gauge
propagator tends to the unitary gauge result as ξ tends to infinity. The
special cases ξ = 1 and ξ = 0 carry the special names of Feynman gauge

and Landau gauge respectively.
ξ-gauge is also useful for massive spin-one particles in higher-loop calcu-

lations because of its better behavior as p2 → ∞. In this case there are
extra Feynman rules involving ‘unphysical scalars’ and ‘ghosts’ that must
also be included. As these are not necessary for the tree-level computations
that are encountered in this book, a description of the full ξ-gauge Feynman
rules are reserved for appendix D.

Spin Zero:

s s
G(p) = −i

∫
d4p

(2π)4
1

p2 + m2 − iε
; (5.52)

Spin–Half:

-s sj i Gij(p) = −i

∫
d4p

(2π)4

[ −i/p + m

p2 + m2 − iε

]

ij

;

(5.53)
Spin One (Unitary Gauge):

¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s sµ ν Gµν(p) = −i

∫
d4p

(2π)4
ηµν + pµpν

m2

p2 + m2 − iε
;

(5.54)
Spin One (ξ Gauge):

¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s sµ ν Gµν(p) = −i

∫
d4p

(2π)4
ηµν + (ξ−1) pµpν

p2+ξm2

p2+m2−iε
.

(5.55)

5.4.3 Vertices

The Feynman Rules that differentiate the standard model from any other
theory of interacting spin-one, spin-half and spin-zero particles are those
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that describe the vertices or interactions of the theory. There is a separate
vertex for each type of interaction that is given in section 2.4.

They are all tabulated here for completeness. All momenta are taken as
being directed into the vertex. We do not include labels whenever they are
connected by a delta function in an obvious way (for instance, color indices
in the Hff̄ coupling), or for momentum assignments when the Feynman
rule does not depend on them in a complicated way.

Some numerical coefficients in denominators in the following expressions
are printed in boldface. We do this for diagrams where there are always
multiple ways to attach the external lines to the vertex; in practice, these
factors are almost always canceled by the combinatorics of the number of
ways to form a graph. Many other references absorb these factors into the
computation of the combinatorial factor for the diagram.

5.4.3.1 Higgs self-couplings

H3 Coupling:

@

@

�

�

s
(
−3i

m2
H

6v

)
(2π)4 δ4(k+l+p) ; (5.56)

H4 Coupling:

�

�

@

@

@

@

�

�

s
(
−3i

m2
H

24v2

)
(2π)4 δ4(k+l+p+q) .

(5.57)

5.4.3.2 Higgs–gauge boson couplings

HW+W− Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s
µ ν

(
−2i

M2
W

v

)
ηµν (2π)4 δ4(k+l+p) ;

(5.58)
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H2W+W− Coupling:
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s
µ ν

(
−2i

M2
W
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)
ηµν (2π)4 δ4(k+l+p+q) .

(5.59)

HZ2 Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s
µ ν

(
−2i

M2
Z

2v

)
ηµν (2π)4 δ4(k+l+p) ;

(5.60)

H2Z2 Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦�
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s
µ ν

(
−2i

M2
Z

4v2

)
ηµν (2π)4 δ4(k+l+p+q) .

(5.61)

5.4.3.3 Higgs–fermion couplings

Hff Coupling:

- -sj i
(
−i

mf

v

)
δij (2π)4 δ4(k+l+p) ;

(5.62)

5.4.3.4 Gluon self-couplings

G3 Coupling:
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©
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©
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¤£

α, k, µ γ, p, λ

β, l, ν

+
g3

6
fαβγ [(k−p)νηµλ + (l−k)ληµν +

+ (p−l)µηνλ] (2π)4 δ4(k+l+p) ;

(5.63)
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G4 Coupling:
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sα, k, µ

β, l, ν

γ, p, λ

δ, q, ρ

−i
g2
3

24

[
fξαβfξγδ (ηµληνρ − ηµρηνλ)

+ fξαγfξβδ (ηµνηλρ − ηµρηνλ)

+ fξαδfξβγ (ηµνηλρ − ηνρηµλ)
]
×

(2π)4 δ4(k+l+p+q) . (5.64)

5.4.3.5 Gluon–fermion couplings

Gff Coupling:
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s- -

α, l, µ

b, k, j a, p, i − g3

2
(λα)ab (γµ)ij (2π)4 δ4(k+l+p) .

(5.65)

5.4.3.6 Electroweak boson self-couplings

W+W−γ Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s̈§
§̈
§̈

¥¦

¥¦

k, µ

γ; l, ν

p, λ
W+→ ← W− ie [(k−p)νηµλ + (l−k)ληµν + (p−l)µηνλ]

×(2π)4 δ4(k+l+p) ; (5.66)

W+W−Z Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s̈§
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¥¦

¥¦

k, µ

Z; l, ν

p, λ
W+→ ← W−

ie cot θW

[
(k−p)νηµλ + (l−k)ληµν

+ (p−l)µηνλ

]
(2π)4 δ4(k+l+p) ;

(5.67)
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W+W−W+W− Coupling:

s¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦

§̈
§̈
§̈
§̈
§̈

¥¦

¥¦
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¥¦

¥¦
W+; µ, k

W−; ν, l

W+;λ, p

W−; ρ, q

ig2
2

4
[2ηµληνρ − ηµρηνλ − ηµνηλρ]

×(2π)4 δ4(k+l+p+q) . (5.68)

W+W−Z2 Coupling:

s¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦

§̈
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§̈
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§̈

¥¦
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¥¦

¥¦

¥¦
W+; µ, k

W−; ν, l

Z; λ, p

Z; ρ, q

− ie2 cot2 θW

2
[2ηµνηλρ − ηµρηνλ − ηµληνρ]

×(2π)4 δ4(k+l+p+q) . (5.69)

W+W−γ2 Coupling:

s¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦
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¥¦
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W+; µ, k

W−; ν, l

γ; λ, p

γ; ρ, q

− ie2

2
[2ηµνηλρ − ηµρηνλ − ηµληνρ]

×(2π)4 δ4(k+l+p+q) . (5.70)

W+W−Zγ Coupling:

s¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦

§̈
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§̈
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§̈

¥¦

¥¦

¥¦

¥¦

¥¦
W+;µ, k

W−; ν, l

Z;λ, p

γ; ρ, q

−ie2 cot θW [2ηµνηλρ − ηµρηνλ − ηµληνρ]

×(2π)4 δ4(k+l+p+q) . (5.71)

5.4.3.7 Fermion electroweak couplings

The coupling combinations eW and eZ used here are the same as those
used elsewhere in the text: eZ = e/(sin θW cos θW ) =

√
g2
1+g2

2 and eW =
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e/(2
√

2 sin θW ) = g2/(2
√

2). gV and gA are the quantum number combina-
tions gV = 1

2T3 −Q sin2 θW and gA = 1
2T3, listed explicitly in Table 2.1 and

Table 4.1. The matrix Umn is the unit matrix δmn when ‘m’ and ‘n’ are
leptons and is the Kobayashi Maskawa matrix, Vmn, when they are quarks.

W+fnfm Coupling:

§̈
§̈
§̈

¥¦

¥¦

s- -j, n i,m − eW Umn[γµ(1+γ5)]ij (2π)4 δ4(k+l+p) ;
(5.72)

W−fnfm Coupling:

§̈
§̈
§̈

¥¦

¥¦

s- -j, n i,m − eW U∗
nm[γµ(1+γ5)]ij (2π)4 δ4(k+l+p) ;

(5.73)
Zff Coupling:

§̈
§̈
§̈

¥¦

¥¦

s- -j i − eZ [γµ(gV +gAγ5)]ij (2π)4 δ4(k+l+p) ;
(5.74)

γff Coupling:

§̈
§̈
§̈

¥¦

¥¦

s- -j i − eQf [γµ]ij (2π)4 δ4(k+l+p) . (5.75)

5.4.4 The rules

These rules allow a Feynman graph to be converted into an S-matrix element
by the following steps.

(i) Draw all graphs that can connect the desired initial and final states
using only those vertices that can contribute to the order of pertur-
bation theory that is desired—recall that each vertex is proportional
to the coupling constant of the corresponding interaction so each ad-
ditional vertex costs extra powers of the couplings.

(ii) For each graph, replace each internal line, external line and vertex
by the expression given above.
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(iii) Integrate the result over the four-momentum flowing through all of
the internal lines (corresponding to summing over all virtual inter-
mediate states), and sum over all Dirac and Lorentz indices.

(iv) If the graph contains n vertices then divide its contribution by n!
(c.f. the denominator of Eq. (3.22)). If there are p distinct ways of
forming the given graph using the same set of interactions and initial
and final states, then multiply the contribution of the graph by p.
The product of these factors is called the symmetry factor of the
graph.

(v) Multiply the result by a factor of -1 for each closed fermion (or ghost)
loop in the graph.

(vi) When comparing different matrix elements for the same process, there
can be a relative minus sign if the fermion lines connect together
differently (see section 6.6).

(vii) To convert the resulting S-matrix element to a matrix element M,
multiply by i and remove the overall energy-momentum conserving
delta function (2π)4δ4(pα − pβ) (with pα and pβ the sums over all
incoming and outgoing momenta, respectively).

A few of these items demand some clarification. To clarify item (iv): if a
graph contains, say, 2 vertices and they are of distinct types, for instance, a
W+ν̄µµ vertex and a W−ēνe vertex, then there is a factor of 1/2! from the
multiple vertices and a factor of 2 from the different choices of which vertex
generates the W+ν̄µµ interaction and which is the W−ēνe interaction. An
alternate way of expressing item (iv) is to say that, for each time the same
type of vertex appears n times, there is a factor of 1/n!; and the result
is multiplied by the number of ways of constructing the graph out of the
required types of vertices. Also, when a vertex has several of the same field
operator, there are generally multiple ways that the graph can be formed,
corresponding with different choices for which field operator does each job.
For a simple (though hardly physically realizable!) example, consider the
scattering process HH → HH. The HHHH vertex mediates this process,
but any of the four H operators can annihilate the first H incoming state,
any of the remaining three H operators can annihilate the other, and either
of the two remaining H operators can create the first H final state, leading
to 4×3×2×1 = 24 ways to build the graph, canceling the 1/24 denominator
in the Feynman rule for the vertex. Therefore, we would get M = 3m2

H/v2

(plus the contribution of other diagrams).
To clarify item (vi): a relative minus sign arises whenever the pairing off

of the creation and annihilation operators for fermions requires an odd num-
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ber of anti-commutations of those operators. This is also the origin of the
rule, item (v). The sure-fire way to determine whether the matrix element
contributions associated with two diagrams have a relative minus sign, due
to such fermionic operator anti-commutation, is to draw one diagram next
to the mirror image of the other, and connect the lines corresponding to the
same external particles. Then count the number of fermionic loops in this
picture. Next, do the same with either of the original diagrams and itself.
If the number of fermion loops differs by an odd number, there is a relative
−1 in the original diagrams’ contribution to the matrix element. To give
an example, consider the following two diagrams for the scattering process,
e−e+ → e−e+:
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(5.76)

Is there a relative sign? To find out, we mirror image the second element, and
connect the lines for the final state e+ particles, the final state e− particles,
the initial state e+ particles, and the initial state e− particles;
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(5.77)

Then we count how many fermionic loops there are. The fermion lines form
one big loop. Squaring either of the original diagrams gives two separate
loops. Therefore, there is a (−1) relative factor between the diagrams,and
when we compute the interference between these diagrams, we will have to
include an extra factor of (−1) beyond what the Feynman rules otherwise
provide.
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Fig. 5.2. The Feynman graph for Z0 → ff

5.4.4.1 Example: Z0 decay

As an illustration of the application of these rules, we wish to recompute
the matrix element for the Z0 to decay into a fermion-antifermion pair. The
corresponding graphs start with a single Z0 boson external line and end
with a fermion- and antifermion external line.

The simplest set of vertices and internal lines that can connect these initial
and final states is a single neutral current vertex, Eq. (5.74). The required
graph therefore is as in figure 5.2.

Using the above rules the S matrix for this process becomes:

〈ff |S|Z0〉 =
1
1!

[
εµ(k, λ)

][
u(p, σ)

]
× (5.78)

×
[
− eZ γµ(gV +gAγ5) (2π)4 δ4(p + q − k)

][
v(q, ζ)

]
.

The number of independent ways of forming this graph with these vertices is
in this case p = 1, and the denominator 1! corresponds to the graph having
only a single vertex.

The matrix element M is obtained by stripping off the energy-momentum
conserving delta function (2π)4δ4(p+q−k) from this expression and multi-
plying by i. The result obtained in this way is identical to Eq. (4.8) derived
by directly evaluating the matrix element.

5.4.4.2 Example: µ− decay

Perhaps a less trivial example is the amplitude for µ− decay into e−νeνµ.
In this case the relevant graph has a single fermion initial external line
for the µ− and has two fermion and one antifermion final external lines.
Two charged-current vertices are also required. The graph therefore is as in
figure 5.3.

The S-matrix associated with this graph is:

〈eνν|S|µ〉 =
2
2!

∫
d4r

(2π)4
u(l)

[
−eW γµ(1+γ5) (2π)4 δ4(l + r − k)

]
u(k)
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Fig. 5.3. The Feynman graph for the decay µ → eνν

×u(p)
[
−eW γν(1+γ5) (2π)4 δ4(p + q − r)

]
v(q)

×
[ −i

r2 + m2 − iε

(
ηµν +

rµrν

M2
W

)]
. (5.79)

Since this graph contains two vertices, the denominator in the first line of
Eq. (5.79) is 2!. The numerator of the same term is 2, corresponding to
the two equal contributions depending on which charged-current interaction
vertex destroys the muon and which creates the electron-antineutrino pair.

Grouping terms and identifying the matrix element, M(µ → eνν), from
this S-matrix element then gives the same result as is found in Eq. (5.19)
by operator methods.

5.5 Problems

[5.1] Z decay including a Higgs
The first limits on the Higgs boson mass from LEP I came from consid-

ering the process Z → Hf̄f . Here mH must be lighter than MZ , so that
the process is allowed.

[5.1.1] How many interaction vertices are needed for a Z boson to decay
to a final state containing a Higgs boson? Assuming the Higgs boson
mass is of order 40 GeV, what is the dominant process which leads to
the final state Hf̄f? What propagator is involved in this process?

[5.1.2] Perform a crude parametric estimate of the width of the Z boson
to decay to this final state, based on counting powers of couplings and
2π.
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[5.1.3] Evaluate the partial width of the Z boson into the Hf̄f final state,
leaving the final momentum integrations unperformed if you cannot
evaluate them. You may treat the fermion masses as small, mf ¿
mH ,MZ , but do not neglect the ratio mH/MZ .

[5.1.4] What fraction of the Z boson width does this decay represent?
What are the decay products observed in the detector? (Modern ver-
tex detectors have enough resolution to distinguish the path a b quark
propagates along before it in turn decays; so you should treat the b

quark as a valid final state.)

[5.2] Neutron lifetime
Compute the lifetime of the neutron, in the approximation where the

vertex between the W boson, the neutron, and the proton, is the same as
the vertex between the W boson, a down quark (in the neutron), and an
up quark (in the proton), except that the γ5 factor is rescaled by a factor
gA:

[5.2.1] Making the approximations MW À mp,mn À Q ≡ mn−mp ∼ me,
show that the neutron β–decay rate is given in the neutron rest–frame
by

dΓ
dEe

=
G2

F |Vud|2
2π3

[F + G] Ee

√
E2

e −m2
e (Q− Ee)

√
(Q− Ee)2 −m2

ν .

Here mν is a hypothetical neutrino mass and the Fermi and Gamow-

Teller terms F and G are defined by

F = |ūp(p)γ0(gV + gAγ5)un(p′)|2

and

G = |ūp(p)~γ(gV + gAγ5)un(p′)|2 .

Assume that only the outgoing electron energy, Ee, is measured.
[5.2.2] Evaluate F and G in the approximation that the nucleon does not

recoil; i.e., pp = 0 (or is ¿ mn) in the neutron rest frame.
[5.2.3] Graph the quantity

y =

[
dΓ/dEe

Ee

√
E2

e −m2
e

]1/2

as a function of the electron energy, Ee , for the two cases mν = 0 and
mν = 10 eV. This is known as a Curie plot. How do the two graphs
differ?



5.5 Problems 185

[5.2.4] Evaluate numerically the total life time of the neutron, neglecting
mν and using the numerical values, gA = 1.267, mp = 938.27200MeV,
mn = 939.565MeV, me = 0.51100MeV; (1fm)−1 = 197.32696MeV, 1
sec=2.9979×1023fm.

[5.3] Higgs decay to Wff̄

In section 4.3, we found that, for mH < 2MW , the dominant Higgs
boson decay mechanism is H → bb̄. However, the decay width is very
small due to the very small b quark mass.

In the mass regime MW < mH < 2MW , another mechanism is

H → Wff̄ ,

via the diagram

s̈
¨¨¨¨¨

¦¦¦¦¦

§§§§§

¥¥¥¥s��
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W±

f̄

f
W∓H

where f and f̄ are a pair of fermions which could result from the decay of a
W∓ (that is, for W− they are e−ν̄e, µ−ν̄µ, τ−ν̄τ , dū, sc̄). For this problem,
you should systematically ignore the fermion masses (except mt, which
is so heavy that the top quark does not participate anyway). However,
you obviously cannot neglect the W boson mass MW . Label the initial
momentum p, the final W boson momentum as q, the momentum on the
virtual W boson propagator as r, and the final fermion and anti-fermion
momenta as k and l (so r = k + l).

[5.3.1] Matrix element
Argue that exactly half the width, via this process, will be from the case
with a W+ in the final state, and half from the case with a W−. (Is there
a symmetry at play here?) Having made this argument, concentrate on
the width when it is a W+ appearing in the final state. Remember to
multiply by 2 at the end of the problem.
Write down the matrix element for this process, before summing on the
external state spins and polarizations.

[5.3.2] Squared matrix element
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Evaluate the final spin and polarization summed, squared matrix el-
ement. Carry out all Dirac traces to get an expression which is an
algebraic function of the relevant particle 4-momenta. It will turn out
to be convenient NOT to contract all the Lorentz indices, however; leave
the factors of form (ηµν + rµrν/M2

W ), from the W− propagator, in this
form.

[5.3.3] Integration on fermionic momenta
Write down the width as an integral over final state momenta, of the
squared matrix element.
Holding r fixed, carry out the integration over the final state fermionic
momenta. That is, perform the integrals over k, l. The integration is
similar to the one we encountered for Iµν(r) in the text. The resulting
expression should be proportional to (r2ηµν − rµrν). It should now be
straightforward to perform the rest of the Lorentz index contractions.

[5.3.4] Total width
Express the total width as a single integral. Re-write your answer by
factoring all dimensionful quantities out of the integral, so it depends
only on the dimensionless parameter mH/MW and the integration vari-
able, which might for instance be p0

W /MW . If you cannot do the integral
by hand, you will have to find some way of evaluating it numerically.
In this case, only attempt the numerical integral for mH/MW < 2.
Make a plot of Γ(H → bb̄) and Γ(H → Wff̄) as a function of mH ,
using mb = 3.1 GeV in evaluating Γ(H → bb̄).
At what mass mH does the new decay become the dominant one? What
happens as mH approaches 2MW ? Can you explain why this happens,
both in terms of the diagrammatics and physically?

[5.4] The Miracle of Lorentz Invariance: Consider the following La-
grangian density for a real scalar field, φ(x), that is coupled to a classical
background current, Jµ(x):

L = −1
2
∂µφ∂µφ− 1

2
m2φ2 − g Jµ ∂µφ. (5.80)

[5.4.1] Construct the canonical Hamiltonian density for this problem and
show that it is given by:

H = H0 +Hint,

with

H0 =
1
2

[
π2 + (∇φ)2 + m2φ2

]
(5.81)
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Hint = gJ0π +
g2

2
J0 J0 = +g Jµ ∂µφ− g2

2
J0 J0. (5.82)

Here π = φ̇−gJ0 is the canonical momentum. Notice in particular how
the interaction Hamiltonian is not Lorentz invariant.

[5.4.2] Find the propagator:

Gµν(x, x′) ≡ 〈0|T [
∂µφ(x)∂νφ(x′)

] |0〉,
and show that it can be written in the following way:

Gµν = −i∂µ∂′ν
∫

d4p

(2π)4
eip·(x−x′)

p2 + µ2 − iε
+ ∆µν(x, x′). (5.83)

Explicitly compute the function ∆µν(x, x′) in this equation, and show
that it is not Lorentz covariant.

[5.4.3] Compute the vacuum transition matrix element, 〈0|S|0〉, to second
order in the current, Jµ(x), and show that the above two sources of
Lorentz noncovariance cancel one another. This shows that the final
Lorentz-invariant result is equivalent to what would have been obtained
if we had simply used the naive expression Hint = −Lint and used the
naive propagator G̃µν = Gµν−∆µν . This propagator is often called the
‘T∗-product’, and denoted G̃µν(x, x′) ≡ 〈0|T ∗[∂µφ(x)∂νφ(x′)]|0〉.
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Leptonic weak interactions: collisions

The only applications of the standard model discussed up to this point
have been calculations of the decay rates for the unstable weakly-interacting
elementary particles of the model. These are important applications since
much of what is known about the fundamental interactions of nature comes
from the basic properties of the particles involved, including their decay
products and lifetimes. As we have seen, the standard model is able to do a
good job of accounting for these properties to within the accuracy of current
measurements, at least within the leptonic sector.

There are other applications which the model must also describe, however.
Prominent among these are reactions that are observed within particle ac-
celerators. This is, after all, how these unstable particles are produced.
This chapter is meant to present some of the standard model predictions for
the results of elementary-particle collisions among leptons and electroweak
bosons. We focus here on these particles since their collisions are under-
standable with the fewest complications. Hadronic collisions are the topic
of chapter 9.

e+e−–annihilation processes are the lepton collisions that are currently
of the most interest since these have been studied in great detail near and
beyond the Z0 pole. The precision of these measurements have been used
to test the model with exquisite precision. For this reason the reaction
e+e− → ff is examined in some detail.

Neutrino-electron scattering is another purely leptonic process of exper-
imental interest. Beams of electron-type neutrinos (produced for instance
in a nuclear reactor or the Sun), or muon-type neutrinos (produced by pion
decay downstream of a target area within an accelerator), can be collided
with electrons and the resulting collision rates compared with the predictions
of the theory. Neutrino collisions with electrons also take place within the
large neutrino observatories and must be understood in order to understand

188
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neutrino oscillations in solar, reactor, atmospheric, and beam experiments,
and to understand neutrinos from supernovae, such as those observed from
supernova 1987A (and any more that are yet to come).

6.1 The Mandelstam variables

Before launching into a detailed calculation of the collision rates in various
accelerators some notational points must first be made. In any two-body
scattering process in which only the momenta and energies of the scattering
particles are observed (as opposed to their spins etc.) there are precisely two
relativistically invariant variables on which Lorentz-invariant observables
like cross sections can depend. There is a conventional choice for these
variables that is outlined in this section.

Consider, then, a two-body process of the form of a + b → c + d in which
particles a, b, c and d have four-momenta pµ

k and masses m2
k = −p2

k, with
k = a, b, c, d. These four-momenta are arbitrary future-directed timelike
(or possibly null) vectors that are subject only to the condition of four-
momentum conservation:

pa + pb = pc + pd . (6.1)

If only momenta and energies are measured in this reaction then the cross
section must depend only on the four four-momenta of the problem: pa

through pd. Being Lorentz invariant, the cross-section dσ(a + b → c + d)
can only depend on the independent Lorentz-invariant combinations that
can be constructed from these momenta. Since the square of each of these
four-vectors is a constant—being equal to the mass of the corresponding
particle—the Lorentz-invariant combinations that contain the kinematic in-
formation (such as the directions traveled by each particle) are the six inner
products: pk · pl with k and l running over particle types a to d with k 6= l.
Since four-momentum conservation, Eq. (6.1), allows any one of the pk to
be eliminated in terms of the others only three of these inner products need
a priori be considered as being distinct. If, for example, four-momentum
conservation is chosen to eliminate pd then the three inner products could
be chosen to be pa · pb, pa · pc and pb · pc.

Instead of directly using these inner products, it is conventional to use the
following equivalent three combinations, known as Mandelstam variables or
Mandelstam invariants:

s ≡ −(pa + pb)2

= −2pa · pb + m2
a + m2

b ,
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t ≡ −(pa − pc)2

= 2pa · pc + m2
a + m2

c ,

u ≡ −(pa − pd)2

= 2pa · pd + m2
a + m2

d . (6.2)

These invariants may also be re-expressed in terms of the other four-
momenta using four-momentum conservation:

s = −(pc + pd)2

= −2pc · pd + m2
c + m2

d ;

t = −(pd − pb)2

= 2pb · pd + m2
b + m2

d ;

u = −(pc − pb)2

= 2pb · pc + m2
b + m2

c . (6.3)

Now, given the masses of all of the particles involved, a two-body collision
should be completely described in terms of two invariant parameters. These
could be chosen to be the collision energy and scattering angle as seen in the
center-of-mass frame, for example. There must therefore be a relationship
amongst the three Mandelstam invariants. This relationship is easily derived
if the definitions for s, t and u in Eq. (6.2) are added to one another:

s + t + u = −2pa · (pb − pc − pd) + 3m2
a + m2

b + m2
c + m2

d

= +2p2
a + 3m2

a + m2
b + m2

c + m2
d

= m2
a + m2

b + m2
c + m2

d . (6.4)

These variables can be related to the basic kinematic quantities in any
given reference frame, such as the overall energy of the collision and the
scattering angles, etc.. There are two frames that are of the most practical
interest. These are the Center-of-Mass frame—or CM frame for short—
defined as the rest frame of the timelike four-vector pa + pb, and the Lab

frame, defined as the rest frame of particle ‘a’. The Lab frame terminology
is appropriate for “fixed target” experiments in which a beam of high energy
particles impinge on a target at rest. Center of mass variables are useful both
because they are frequently simpler, and because many modern experiments
are beam-on-beam experiments where the center of mass frame is the same
as the frame of the particle detector.

Lab Frame: The Lab frame is defined as the rest frame of particle ‘a’:

Ea ≡ p0
a = ma; and pa = 0 . (6.5)
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In this frame inner products of four-vectors with pa have a very
simple form: pa · pb = −maEb. s, t and u are therefore directly
related to the energies of particles ‘b’, ‘c’ and ‘d’ in this frame:

s = +2maEb + m2
a + m2

b , Lab frame;

t = −2maEc + m2
a + m2

c , Lab frame;

u = −2maEd + m2
a + m2

d, Lab frame . (6.6)

Once the energies E, and hence the magnitudes of the three-
momenta, |p| = √

E2−m2, are determined from these relations, the
angular information may next be obtained from these same variables.
Denote the angle between the direction of the incoming particle, pb,
and the directions of the outgoing particles, pc and pd, by θ∗c and
θ∗d. Then the angular information is obtained from t and u as ex-
pressed in Eq. (6.3). To see this use pb · pc = −EbEc + pb · pc =
−EbEc + pbpc cos θ∗c . (The notation used here has pb ≡ |pb| with the
understanding that the context will keep pb defined in this way from
being confused with the four-vector pb.) The Mandelstam invariants
t and u therefore become

t = −2EbEd + 2pbpd cos θ∗d + m2
b + m2

d, Lab frame;

≈ −2EbEd(1− cos θ∗d) (ultrarelativistic)

u = −2EbEc + 2pbpc cos θ∗c + m2
b + m2

c , Lab frame,

≈ −2EbEc(1− cos θ∗c ) (ultrarelativistic).

(6.7)

CM Frame: The CM frame is defined as the frame in which the three-
momenta of the initial particles (and so also of the final particles)
are equal and opposite:

pa + pb = 0; and so E2
a −m2

a = E2
b −m2

b . (6.8)

In this frame the invariant s is simply the square of the total energy
of the collision:

s = (Ea + Eb)2; CM frame,

= (Ec + Ed)2; CM frame . (6.9)

Clearly knowledge of s therefore completely determines the energies
and the magnitudes of the three-momenta of all particles in this
frame.

The directional information lies in t and u. Defining the angle θ
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as the angle between the direction of the initial particle ‘a’ and the
direction of the outgoing particle ‘c’ in the CM frame, we have

t = −2EaEc + 2papc cos θ + m2
a + m2

c ; CM frame

≈ −2EaEc(1− cos θ); (ultrarelativistic)

u = −2EaEd + 2papd cos(π − θ) + m2
a + m2

d

= −2EaEd − 2papd cos θ + m2
a + m2

d; CM frame,

≈ −2EaEd(1 + cos θ); (ultrarelativistic) . (6.10)

These expressions also indicate the range of values over which s, t and u

may run. Inspection of Eq. (6.6) and Eq. (6.9) shows that s, t and u must
lie within the following kinematically allowed ranges:

s ≥ max [m2
a + m2

b ; m
2
c + m2

d] ;

t ≤ min [m2
a + m2

c ; m
2
b + m2

d] ;

u ≤ min [m2
a + m2

d; m
2
b + m2

c ] . (6.11)

6.2 e+e− annihilation: calculation

Consider now the collision process e+e− → ff . The cross section for this
process is computed in this section for unpolarized initial electrons and with
the spin of the final-state fermions unmeasured. This calculation is meant to
provide an explicit illustration of how such cross sections are determined, as
well as to derive formulae for the cross section that have applications in later
sections and are of interest in themselves. Since most applications involve
energies well in excess of 1 GeV—and the most interesting application is for
s ' MZ ' 90 GeV—the masses of the fermion final states are neglected to
good approximation in this section.

Provided that the final state particles are not electrons or electron neutri-
nos, the standard model scattering amplitude is dominated by two Feynman
diagrams, shown in figure 6.1.

Should the final state particles be e+e− or νeνe then there are additional
graphs such as those in figure 6.2 that must also be included. Therefore, we
postpone treatment of these final states to section 6.5.

Using the Feynman rules of the previous chapter, the Z0-exchange graph
of figure 6.1 has the following matrix element:

Me+e−→ff̄ =
2(−eZ)2

2!
[
ve(p′)γµΓZeue(p)

] [
uf (k)γνΓZfvf (k′)

]
(6.12)

×
[

1
(p + p′)2 + M2

Z − iε

(
ηµν +

(p + p′)µ(p + p′)ν

M2
Z

)]
.
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In this equation, ΓZf denotes the Dirac matrix that specifies the Z-boson’s
neutral-current couplings to fermion type ‘f ’:

ΓZf = gV +gAγ5

= gLPL + gRPR . (6.13)

PL and PR are the projection matrices onto left- and right-handed helicity
as defined in Eq. (1.76)–Eq. (1.77). The coupling constants gL and gR are
the more convenient combinations to use if the fermions involved are ultra-
relativistic, since in this limit helicity is a conserved quantum number. They
are given in terms of gA and gV by

gL = gV +gA = T3 −Q sin2 θW , (6.14)

gR = gV−gA = −Q sin2 θW . (6.15)

The contribution of the photon-exchange graph is also easily obtained
from Eq. (6.12) by making a few substitutions. First, the unitary-gauge Z0

propagator must be replaced with the ξ-gauge photon propagator appro-
priate for a massless particle, Mγ = 0. Next the gauge coupling constant,
eZ, must be replaced by the electromagnetic one, eγ = e. Also ΓZf must
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be replaced by Γγf , which has the same form as in Eq. (6.13) with the nu-
merical constants gV and gA of the neutral current replaced by the values
qV = qL = qR = Q and qA = 0 relevant for the electromagnetic current.

An immediate simplification of this amplitude is possible if the fermion
masses are neglected relative to MZ, as is the case here. This is because
the (p + p′)µ(p + p′)ν term in the Z-propagator may be dropped, since it
contributes to the S-matrix an amount that is proportional to g2

Am2
f/M2

Z .
The same terms in the photon propagator may also be dropped for any
fermion masses, since the axial couplings to the photon vanish, qA = 0, for
of fermion types.

The total matrix element, M(e+e− → ff), is the sum of the photon- and
Z-exchange contributions and therefore becomes:

M(e+e− → ff) = −
∑

V =Z,γ

e2
V

[
ve(p′)γµΓV eue(p)

] [
uf (k)γµΓV fvf (k′)

]

×
[

1
(p + p′)2 + M2

V − iε

]
. (6.16)

Averaging the square of this matrix element over the four initial spin
states (two each for each incoming particle) and summing over the final
spins (and, if necessary, colors) gives the following result:

M2 =
1
4

∑

spins

∑

colors

|M(e+e− → ff)|2

= Nc

∑

V =Z,γ

∑

V ′=Z,γ

e2
V e2

V ′
Kµν(k, k′) Pµν(p, p′)
(s−M2

V )(s−M2
V ′)

, (6.17)

in which s = −(p + p′)2 has been used, the ‘iε’ terms have been dropped,
and Nc is as usual Nc = 1 if ‘f ’ is a lepton and Nc = 3 if ‘f ’ is a quark. Kµν

and Pµν represent the following Dirac traces:

Kµν ≡ tr
[
γµΓV eueue(p)γνΓV ′eveve(p′)

]

= − tr
[
γµΓV e/pγνΓV ′e/p

′]

= −2
[
(geLg′eL + geRg′eR)(pµp′ν + pνp′µ − p · p′ηµν)

+i(geLg′eL − geRg′eR)εµνλρpλp′ρ
]

, (6.18)

and

Pµν ≡ tr
[
γµΓV fvfvf (k′)γνΓV ′fufuf (k)

]

= − tr
[
γµΓV f/k′γνΓV ′f/k

]

= −2
[
(gfLg′fL + gfRg′fR)(kµk′ν + kνk

′
µ − k · k′ηµν)
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−i(gfLg′fL − gfRg′fR)εµνλρk
λk′ρ

]
. (6.19)

The prime on the coupling constants gL and gR indicates it is the coupling
appropriate to gauge boson V ′.

Because the denominators involve the Mandelstam variable s, this process
is conventionally referred to as an s channel process.

Contracting these last results with one another gives the intermediate
result:

KµνPµν = 16
[
(gfLg′fLgeLg′eL + gfRg′fRgeRg′eR)(p · k′)(p′ · k)

+(gfLg′fLgeRg′eR + gfRg′fRgeLg′eL)(p · k)(p′ · k′)
]

= 4
[
(gfLg′fLgeLg′eL + gfRg′fRgeRg′eR)u2

+(gfLg′fLgeRg′eR + gfRg′fRgeLg′eL)t2
]
. (6.20)

The last equality uses the ultrarelativistic approximation to Eq. (6.2) and
Eq. (6.3) for the Mandelstam invariants as applied to this reaction: s =
−2p · p′ = −2k · k′, t = 2p · k = 2p′ · k′ and u = 2p · k′ = 2p′ · k.

Combining these results gives the spin-averaged squared matrix element:

M2 = Nc




∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geLgfL

s−M2
V

∣∣∣∣∣∣

2

u2 +

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geRgfR

s−M2
V

∣∣∣∣∣∣

2

u2

+

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geLgfR

s−M2
V

∣∣∣∣∣∣

2

t2 +

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geRgfL

s−M2
V

∣∣∣∣∣∣

2

t2


 . (6.21)

This last formula has a simple physical interpretation that might have
been expected for massless—i.e. ultrarelativistic—fermions. Eq. (6.21) gives
the rate for the collision process as the sum of the incoherent scattering rates
in which the initial and final fermions have definite helicity.

Also, as is easily seen from Eq. (6.10), the limits where u → 0 or t → 0
correspond for ultrarelativistic fermions to the cases where the scattering
angle, θ, between the directions of the incoming electron, e−, and the out-
going fermion, f , in the CM frame approach zero (t → 0) or pi (u → 0).
In this case the direction of motion of both the incident and final particles
are parallel or antiparallel. An argument identical to that given in subsec-
tion 4.1.5 then implies that the conservation of angular momentum along
this common direction of motion is only consistent with conservation of he-
licity for specific choices for the relative helicities of the initial and final
fermions. This is seen in the squared matrix element, Eq. (6.21), by the way
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that each of the terms for definite helicities vanishes either for t = 0 or for
u = 0.

With Eq. (6.21) in hand, the cross section for e+e− → ff is easily com-
puted. From the definition, Eq. (3.41), of the differential cross section, we
have,

dσ(e+e− → ff) =
1

2p02p′0f
M2 (2π)4δ4(p + p′ − k − k′)

d3k d3k′

(2π)62k02k′0

with f ≡ −p · p′
p0p′0

vrel

≈ s

2p0p′0
(ultrarelativistic) , (6.22)

so combining all of the above results gives

dσ(e+e− → ff) =
8π2α2

s
Nc

(
[|ALL(s)|2 + |ARR(s)|2]u2

+ [|ALR(s)|2 + |ARL(s)|2]t2
)

dχ , (6.23)

in which the helicity amplitudes Aij(s), with i, j = L,R, are given by

Aij =
1

sin2 θW cos2 θW

(
geigfj

s−M2
Z

)
+

QeQf

s
, (6.24)

with gfi the coupling strengths of left- and right-handed particles to the Z0,
and with dχ denoting the Lorentz-invariant measure on phase-space:

dχ ≡ (2π)4δ4(p + p′ − k − k′)
d3k d3k′

(2π)62k02k′0

= (2π)4δ4(p + p′ − k − k′)
d3k

(2π)32k0
2πδ(k′2) θ(k′0)

d4k′

(2π)4

= 2πδ[(p + p′ − k)2] θ(p0 + p′0 − k0)
d3k

(2π)32k0

= − 1
8πs

δ(s + t + u−m2
a −m2

b −m2
c −m2

d) du dt. (6.25)

This gives the final form for the invariant cross section:

dσ

dudt
(e+e− → ff) = −πα2

s2
Nc

(
[|ALL(s)|2 + |ARR(s)|2]u2+ (6.26)

+[|ALR(s)|2 + |ARL(s)|2]t2
)

δ(s + t + u) .

Evaluating this in the CM frame gives the differential cross section as
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a function of the angle between e− and f directions, which is called the
scattering angle θ:

dσ

sin θdθ
(e+e− → ff) =

πα2 s Nc

8

{
[|ALL(s)|2 + |ARR(s)|2](1+ cos θ)2+

+ [|ALR(s)|2 + |ARL(s)|2](1− cos θ)2
}

. (6.27)

This last result uses the relations s = 4E2, t = −2E2(1 − cos θ) and u =
−2E2(1 + cos θ) that connect the Mandelstam variables to θ. Integrating θ

over its range 0 < θ < π using
∫ π
0 (1 ± cos θ)2 sin θ dθ = 8

3 gives the total
rate:

σ(e+e− → ff) =
πα2 s Nc

3

(
|ALL(s)|2 + |ARR(s)|2

+ |ALR(s)|2 + |ARL(s)|2
)

. (6.28)

6.3 e+e− annihilation: applications

The energy dependence of this cross section for electron positron annihilation
is largely governed by the s dependence of the polarized amplitudes Aij(s).
There are naturally three regions to consider depending on the relative size
of contributions due to photon- and Z0-exchange. We consider each region
successively in this section.

6.3.1 Low energies: e+e− → hadrons

For CM-frame energies that are very small compared to MZ = 90 GeV—
yet still large compared to the fermion masses, me and mf—the amplitudes
Aij(s) are well approximated by the contribution due to photon exchange:

ALL ≈ ALR ≈ ARL ≈ ARR ≈ QeQf

s
. (6.29)

In this limit the electron positron annihilation rate reduces to the form found
in Quantum Electrodynamics,

dσ

dudt
(e+e− → ff)

∣∣∣∣
γ−exchange

= −2πα2

s2
Q2

eQ
2
fNc

(
u2 + t2

s2

)
δ(s + t + u) ,

(6.30)
which becomes, in the CM frame,

dσ

sin θdθ
(e+e− → ff)

∣∣∣∣
γ−exchange

=
πα2

2s
Q2

eQ
2
fNc (1 + cos2 θ) . (6.31)
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The total rate similarly reduces to the result familiar from QED,

σ(e+e− → ff)|γ−exchange =
4πα2

3s
Q2

eQ
2
fNc . (6.32)

6.3.1.1 µ+µ− production

To get a feeling for the size of these numbers, consider µ+µ− production at
energies

√
s = 1 GeV. At these energies the ratio s/M2

Z is s/M2
Z ≈ 10−4

and m2
µ/s ≈ 10−2, so Eq. (6.32) provides a perfectly adequate description.

In this case, using α = 1/137 and Q2
e = Q2

µ = Nc = 1 gives

σ(e+e− → µ+µ−) =
4πα2

3s
= 2.23 · 10−4 (GeV)−2

= 87 nb . (6.33)

The units of the final line are nanobarns with a barn defined to be 10−24

cm2. Now, an accelerator luminosity is defined as the rate at which the
accelerator can deliver incident particles per unit area of beam. This is useful
because the product of the cross section and luminosity gives the number of
events which can be expected per unit time. Luminosity is usually quoted in
inverse cm2s; for instance, the LEP I experiment achieved 2.4× 1031/cm2s,
but at a much higher energy than 1 GeV. A machine designed to study the 1
GeV energy range in detail, the VEPP-2000, has a luminosity of 1032/cm2s,
enough to produce about 9 µ+µ− pairs per second.

For the purposes of comparison, a strong-interaction cross section is roughly
a typical strong-interaction scale raised to the power that is dictated by di-
mensional analysis: σstr ∼ Λ−2

QCD ∼ 40 (GeV)−2 ∼ 20 mbarn. We take the
strong scale ΛQCD ≈ 150 MeV in this estimate.

6.3.1.2 Hadron production

There is an immediate application of these low-energy results that takes
advantage of the fact that in this energy range the energy dependence of
the cross section is the same for all particle types in the final state. To
use this fact it is convenient to compute the cross section for producing
hadrons in low-energy e+e− annihilations, normalized by the muon pair-
production rate. The complication is that quarks and gluons interact very
strongly with each other at low energies, as we discuss in Part III. In fact,
the interactions are so strong that quarks and gluons are not valid external
states for a reaction; instead they stick together into bound states called
hadrons. However, at suitably high energies,

√
s > 1 GeV or so, the strong
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coupling is weaker and perturbation theory begins to be useful. At these
energies the process of producing quarks and gluons and the process of
their combining into hadronic bound states are approximately independent.
Rather than summing over a complete set of hadronic final states, one can
sum over color neutral quark and gluon final states and ignore the question
of how these project onto the hadronic states. For energies large enough
to justify perturbation theory the dominant terms in the final-state sum
are then the quark–antiquark pairs. The cross section for this process may
therefore be computed by summing Eq. (6.32) over all quark flavors with
masses small enough to allow pair production at the given CM energy,

√
s.

This gives the following expression for the ratio:

RH ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

≈ 3s

4πα2

∑

q,2mq<
√

s

σ(e+e− → qq̄)

= 3
∑

q,2mq<
√

s

Q2
q . (6.34)

The overall factor of 3 here is due to the number of colors available to each
quark type. The approximation that is used in the second line is the low-
energy expression, Eq. (6.32), for the cross section in which fermion masses
are neglected relative to

√
s. The neglect of fermion masses implies that

Eq. (6.34) should not be expected to hold in the immediate vicinity of a
threshold,

√
s ≈ 2mq.

Clearly RH(s) is independent of energy between mass thresholds to the
extent that photon exchange dominates the production cross section. Mea-
surement of its value gives an indication of the number of quark degrees of
freedom that are available at the given energy. It gives, in particular, an
experimental indication of the number of colors, Nc.

A plot of the experimental value for this ratio is given in figure 6.3 (from
data compiled and made freely available by the Particle Data Group). The
solid lines in the figure represent Eq. (6.34) evaluated using u, d, s (3 quarks),
u, d, s, c (4 quarks), and u, d, s, c, b (5 quarks). At low energies, the hadronic
character of the final state is important and the cross-section has a number
of peaks and troughs. Above this region, the cross-section is reasonably
well approximated by Eq. (6.34), including steplike features at s ' 2mc and
s ' 2mb. (The figure does not show very high but narrow spikes at these
points, which arise because of cc and bb bound states.)
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Fig. 6.3. The measured pair-production ratio, RH

6.3.2 Intermediate energies: asymmetries

The range of CM interaction energies in the neighborhood of 10 GeV or so
is an intermediate range within which the neutral current contribution to
the cross section is still small, but is large enough to be detectable. In this
energy range we must keep the subdominant term in the expansion of the
helicity amplitudes, Aij(s), in powers of s/M2

Z :

Aij(s) ≈ QeQf

s
− 1

sin2 θW cos2 θW

geigfj

M2
Z

. (6.35)

Since the small M−2
Z effect of the neutral-current interaction must be

picked out of a background of electromagnetic events it helps to focus on
some sort of observable to which the electromagnetic interactions do not
contribute at all. A natural choice for such an observable would be anything
which measures either C or P violation, since this is a symmetry of the
electromagnetic, but not of the neutral current, interaction.

6.3.2.1 Left–right asymmetry

An example of this type of an observable is given by the comparison of cross
sections as the helicity of the initial electron-positron pair is varied, since the
amplitude only develops a dependence on helicity through the neutral cur-
rent couplings. A candidate example might be to take the difference between
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the cross section measured for left- and right-handed electrons colliding with
unpolarized positrons:

ALR =
σ(eL)− σ(eR)
σ(eL) + σ(eR)

. (6.36)

This is known as the Left–Right Asymmetry and may be computed us-
ing Eq. (6.28) and Eq. (6.35). The leading contribution arises from the
interference of the neutral-current and electromagnetic amplitudes:

ALR(e+e− → ff) =
[|ALL|2 + |ALR|2]− [|ARL|2 + |ARR|2]
[|ARL|2 + |ARR|2] + [|ARL|2 + |ARR|2]

' −
(

s

M2
Z

) [
(g2

eL − g2
eR)(g2

fL
+ g2

fR
)

2QeQf sin2 θW cos2 θW

]
. (6.37)

For
√

s = 25 GeV the ratio s/M2
Z = 0.08, so this asymmetry can be in the

neighborhood of an 8% effect at these energies.

6.3.2.2 Forward–backward asymmetry

A similar kind of asymmetry that is also sensitive to C-violating interactions
is the Forward–Backward Asymmetry, AFB. This is defined in the following
way: Suppose the particle detector is imagined to be enclosed within a
sphere which is centered at the collision point. If the direction of motion
of the initial electron is taken to define the north pole of this sphere, then
AFB is given by the difference in cross sections, call them σ±, between those
collisions for which the final fermion, f , emerges in the northern—0 < θ <
π
2 —and southern—π

2 < θ < π—hemispheres of this sphere, normalized by
the total cross section. That is to say, for

σ± ≡ ±
∫ ±1

0

dσ

d cos θ
d cos θ , (6.38)

we have,

AFB =
σ+ − σ−
σ+ + σ−

=
3
4

(
[|ALL(s)|2 + |ARR(s)|2]− [|ALR(s)|2 + |ARL(s)|2]
[|ALL(s)|2 + |ARR(s)|2] + [|ALR(s)|2 + |ARL(s)|2]

)

≈ −
(

s

M2
Z

) [
3(g2

eL − g2
eR)(g2

fL
− g2

fR
)

8QeQf sin2 θW cos2 θW

]
. (6.39)

The approximation used in the third line here is the use of the approximate
form, Eq. (6.35), for the helicity amplitudes, Aij(s).

Notice that although ALR and AFB are proportional at low energies to
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the squared difference of the left- and right-handed electron couplings, they
each sample a different combination of the couplings of the pair-produced
fermions. It was measurements of these asymmetries which first gave con-
vincing evidence of the existence of the Z0 boson, before any accelerator
had sufficient energy to create one directly.

6.3.3 High energies: asymptotic forms

The next simplest limit is the limit in which s À M2
Z , so the helicity ampli-

tudes may be approximated by

Aij(s) ≈
[
QeQf +

geigfj

sin2 θW cos2 θW

]
1
s

. (6.40)

In this limit the energy dependence of the cross section is precisely as it is in
the photon-dominated case, but with the electromagnetic coupling constants
QeQf replaced by the combination in the square bracket of Eq. (6.40) above.

At these energies the photon and Z0 exchange graphs differ only in the
strength of their couplings. This is the signature of electroweak unification:
At high energies the weak and electromagnetic interactions are indeed very
similar in form.

6.4 The Z boson resonance

Even a superficial inspection of Eq. (6.26), Eq. (6.27), or Eq. (6.28) indi-
cates that there is a problem in the regime where the exchange momentum,
r ≡ (p+p′), approaches the Z boson mass shell, r2 = −M2

Z , where the in-
termediate Z boson has the right 4-momentum to be a real (as opposed
to virtual) particle. As s = −r2 approaches M2

Z , the cross-section appar-
ently diverges. This indicates a failure of the perturbative expansion for
the S-matrix. After all, the S-matrix elements are bounded by the general
requirement of unitarity; so their perturbative approximations must also be
bounded, or must be bad approximations. For this reason, in this section
we will have to make a digression into the topic of higher-order perturbative
corrections. We will find that these corrections are essential to resolving this
puzzle.

There is a large body of knowledge concerning the higher-order pertur-
bative corrections to the lowest-order expressions described up to this point
throughout this book. As has already been seen, these corrections are an
important part of the agreement of the standard model with experiment,
particularly for the properties of the Z0 boson, due to the accuracy of the
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Fig. 6.4. Important corrections near s = M2
Z

experimental results that are now available. This is doubly true in the reso-
nance regime, s ' M2

Z , where the radiative corrections are already essential
at leading order, and where exquisitely precise measurements, conducted at
LEP I at CERN and SLC at SLAC, have thoroughly explored the physics
and provided some of the highest precision experiments, and tightest tests,
of the standard model.

6.4.1 Corrections near resonance

From the fact that the perturbative S matrix near the Z0 mass shell diverges,
it follows that there must be additional, supposedly higher-order, graphs
that nevertheless contribute in an important way, when s ' M2

Z . It is the
purpose of this subsection to identify these contributions and to find their
size, in order to have a good approximation to the lowest-order cross section
near the pole.

The graphs that are the source of the difficulty are graphs of the form of
figure 6.4, which can be thought of as modifying the Z0-boson propagator.
Although these graphs are superficially suppressed relative to Figs. 6.2 by
additional powers of the small electroweak coupling constants, they can
be of comparable size for Z0 boson four-momenta, rµ, that lie within the
immediate neighborhood (i.e. within o(αM2

Z)) of r2 = −M2
Z .

The reason that corrections are needed here, is because of a cancellation
in the denominator of the propagator, r2 + M2

Z ' 0, which renders the
propagator much larger than the usual size ∼ 1/M2

Z . Each “loop” of the
form shown in figure 6.4 (the loop is the pair of fermionic propagators going
in a circle, including the loop momentum integration and the vertex factors)
gives a contribution which is of order αM2

Z (as can be argued on dimensional
grounds). Each loop also leads to one more appearance of the gauge boson
propagator, introducing a factor of 1/(r2+M2

Z). When r2 + M2
Z ∼ αM2

Z ,
the addition of a loop is not a suppressed correction. While there are other
ways of adding loops, they do not lead to a new factor of 1/(s−M2

Z) per
loop, and we can therefore continue to neglect them.
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Denote the contribution of one of these loops, after all polarization sums
have been performed, as M2

Zα(x+iy), with x and y pure numbers of order 1.
We know on dimensional grounds that this is the right general form for the
correction. It is easy to see that the inclusion of these graphs does remove
the divergence of the S matrix near the Z0 mass shell. The whole set of
graphs with 0, 1, 2, . . . “loops” inserted can be summed as a geometric series,
and appears as a correction in the denominator of the Z0 boson propagator:

(0 loop)+(1 loop)+ . . . ∝ 1
r2+M2

Z

+
M2

Zα(x+iy)
(r2+M2

Z)2
+

[M2
Zα(x+iy)]2

(r2+M2
Z)3

+ . . .

=
1

r2+M2
Z(1− α(x+iy))

. (6.41)

A radiative (loop) correction which can be understood as a correction of a
propagator in this way is called a self-energy correction, because it represents
a correction to the propagating particle’s energy due to its interaction with
the vacuum (with its own field).

The correction to the propagator is complex, and in particular it moves
the singular point of the propagator away from the real point r2 + M2

Z = 0
and out to a complex point:

r2 = −M2
Z [1− α(x + iy)]. (6.42)

However, since the Z0 boson four-momentum, rµ, must necessarily be real,
it can never satisfy Eq. (6.42), and so the corresponding source of the di-
vergence of the S matrix does not arise. Since these corrections are only
significant for s within o(αM2

Z) of s = M2
Z , none of the discussion of the

previous sections need be modified.
From the above considerations it is clearly the imaginary part of the con-

tribution from diagrams like figure 6.4 that is the most important. A real
shift, e.g. αx in Eq. (6.42), can be re-interpreted as a shift in the Z0 boson
mass squared, M2

Z(physical) = M2
Z(1−αx). In fact, it is the combination

M2
Z(1−αx) which we “measure” as the true mass of the Z boson–a point we

will return to in subsection 7.4.1. An imaginary shift cannot be similarly
absorbed. The next step is to determine how to compute the size of this
shift reliably. The main conclusion to be argued is that the imaginary part
of the shift in the position of the pole of the propagator is simply related
to the mass and total decay width of the Z0. Once this is established, the
results of chapter 4 may be used immediately to compute the size of the
shift.

For these purposes we take advantage of the small range of momenta for
which these corrections are appreciable. It is therefore a good approximation
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to take the corrections to the Z0 propagator near the mass shell, due to
figure 6.4, to be independent of momentum. That is, we are neglecting the
r2 dependence of y above. It will be convenient to redefine y as −iM2

Zαy ≡
−iMZ∆. That is to say,

1
r2 + M2

Z − iε
→ 1

r2 + M2
Z − iMZ∆

, (6.43)

where ∆ is a constant with the dimensions of mass that is much smaller than
the Z0 mass itself: ∆ ∼ o(αMZ). The infinitesimal, ε, has been dropped
since its role is to indicate how to avoid the singularity at r2 = −M2

Z in the
integration over the component r0. This is no longer necessary since the
additional term, −iMZ∆, shifts the singularity off of the (real) integration
axis.

The remainder of the argument is to relate the parameter ∆ to the prop-
erties of the particles “going around in the loop.” The main observation is
that the last two terms in the denominator of Eq. (6.43) may be written to
lowest order in α as a perfect square:

M2
Z − iMZ∆ =

(
MZ − i∆

2

)2

+ o(α2), (6.44)

which is completely equivalent to a shift of the Z0 mass by a small imaginary
part. If the arguments used to derive the propagator from the sum over
virtual particle states in subsection 5.2.1 are now run backwards, the shift
of the pole of the propagator implies that the intermediate Z0 states evolve
in time with a small negative imaginary part for their mass.

Since the time dependence of these particle states, in the Z rest frame, is

|Z(t)〉 = e−iMZt|Z(0)〉
→ e−iMZt− 1

2
∆t|Z(0)〉 , (6.45)

the probability that the Z0 particle survives as a function of time therefore
becomes

p(t) = |〈Z(t)|Z(0)〉|2
= e−∆tp(0) . (6.46)

This implies that ∆ should be identified with the full decay width for the
Z0 particle as computed in section 4.1 (c.f. Eq. (4.38) and Eq. (4.39)):

∆ = ΓZ

=
e2

Z

12π
MZ

∑

f

(g2
V +g2

A)Nc. (6.47)



206 Leptonic weak interactions: collisions

In a nutshell, then, the net effect of all of the higher-order graphs such as
those of figure 6.4 for the results of section 6.2 is to replace the denominator
(s−M2

Z) by

1
s−M2

Z

→ 1
s−M2

Z − iMZΓZ

. (6.48)

Two comments concerning this replacement are in order:

(i) Notice that, as advertised, because ΓZ is o(αMZ), the difference be-
tween the corrected propagator and the original one is completely
negligible except when s−M2

Z = o(αM2
Z). This implies that none of

the results of the previous sections are affected by this change (except
at an order where there are other corrections anyway).

(ii) Although the S matrix elements for e+e− → ff no longer diverge
after this substitution, they do become very large. In fact, for s

precisely equal to M2
Z , the Z0-exchange contributions to the helicity

amplitudes, Aij(s), are larger than those due to photon decay by a
factor of 1/α ∼ 100. This implies that there is an enormous enhance-
ment of the Z0-exchange amplitude for s in the immediate vicinity
of M2

Z , and so photon exchange may be neglected for these energies.
The s-dependence of the squared helicity amplitudes then acquires
the classic Lorentzian, or Breit-Wigner lineshape of a resonance:

dσ(e+e− → Z0 → ff) ∝
∣∣∣∣

1
s−M2

Z − iMZΓZ

∣∣∣∣
2

=
1

(s−M2
Z)2 + M2

ZΓ2
Z

. (6.49)

6.4.2 Application: e+e− → ff near resonance

Using this replacement in Eq. (6.24) and neglecting photon exchange gives
the following approximation for the helicity amplitudes, Aij(s), that holds
near resonance (‘Near resonance’ here means for |√s−MZ | ≤ o(

√
αM2

Z) ≈
10 GeV):

|Aij(s)|2 ≈
∣∣∣∣

geigfj

sin2 θW cos2 θW

1
s−M2

Z − iMZΓZ

∣∣∣∣
2

=
g2
eig

2
fj

sin4 θW cos4 θW

1
(s−M2

Z)2 + M2
ZΓ2

Z

. (6.50)

The resulting expressions for the differential and integrated cross sections
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in the CM frame are

dσ

sin θdθ
(e+e− → Z0 → ff)

∣∣∣∣
res

=
πα2

8 sin4 θW cos4 θW

Nc
s

(s−M2
Z)2 + M2

ZΓ2
Z

×
(
[g2

eLg2
fL + g2

eRg2
fR](1 + cos θ)2

+ [g2
eLg2

fR + g2
eRg2

fL](1− cos θ)2
)

, (6.51)

and

σres(e+e− → Z0 → ff) =
πα2

3 sin4 θW cos4 θW

Nc
s

(s−M2
Z)2 + M2

ZΓ2
Z

×(g2
eL + g2

eR)(g2
fL + g2

fR) . (6.52)

A particularly clean prediction on resonance is possible for the asymme-
tries, ALR and AFB, respectively defined by Eq. (6.36) and Eq. (6.38), since
the common resonant energy dependence drops out of these cross section
ratios:

ALR|res =
g2
eL − g2

eR

g2
eL + g2

eR

=
1
4 + sin2 θW

1
4 + sin2 θW + 2 sin4 θW

,

AFB|res =
(g2

eL − g2
eR)(g2

fL
− g2

fR
)

(g2
eL + g2

eR)(g2
fL

+ g2
fR

)

=
(g2

fL
− g2

fR
)

(g2
fL

+ g2
fR

)
ALR|res . (6.53)

6.4.2.1 Factorization

Resonant amplitudes and cross sections have a particularly simple form when
evaluated right on the central point of the resonance, s = M2

Z . On resonance
the Z0 propagator may be simplified using the spin sum identity, Eq. (1.119):

1
r2 + M2

Z − iMZΓZ

(
ηµν +

rµrν

M2
Z

)
→ i

MZΓZ

1∑

λ=−1

ε(r, λ)ε∗(r, λ) , (6.54)

so the scattering matrix element of Eq. (6.12) may be written as (c.f.
Eq. (4.8) for the Z0 decay matrix element)

M(e+e− → ff)
∣∣∣
res

= − ie2
Z

MZΓZ

1∑

λ=−1

[
ve(p′)γµΓZeue(p) ε∗(p+p′, λ)

]

× [
uf (k)γνΓZfvf (k′) ε(p+p′, λ)

]
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= − i

MZΓZ

1∑

λ=−1

[
ieZve(p′)γµΓZeue(p) ε∗(p+p′, λ)

]

× [−ieZuf (k)γνΓZfvf (k′) ε(p+p′, λ)
]
.

= +
i

MZΓZ

1∑

λ=−1

[M(Z0 → e+e−)]∗[M(Z0 → ff)] .

(6.55)

That is, on resonance the cross section for e+e− → ff factorizes into the
product of the amplitude for the process e+e− → Z0 and the decay Z0 → ff

for a Z0 particle at rest, EZ = MZ . This is as would be expected if a real
Z0 is produced and then decays. The Z0 so produced does not appear with
its spin in a pure state but instead is prepared in a state that is described
by a density matrix which has each of the three possible spin states equally
weighted. Since this is indeed how real Z0’s are produced this justifies the
choice made in Eq. (4.10) for the spin state of an unpolarized Z0 sample.

The cross section for this process has a similar factorized form:

σ(e+e− → Z0 → ff) =
e4

Z

48π
Nc

1
Γ2

Z

(g2
eL + g2

eR)(g2
fL + g2

fR)

=
12π

M2
Z

Γ(Z → e+e−)
ΓZ

Γ(Z → ff)
ΓZ

. (6.56)

Here we used g2
L + g2

R = 2(g2
V +g2

A). Note that this result is precisely the
Breit-Wigner result for (ultra-relativistic) scattering through a p-wave (spin
1) resonance,

σ =
16π

s

(2sZ+1)
(2se+1)(2sē+1)

Γ(Z → e+e−)
ΓZ

Γ(Z → ff)
ΓZ

, (6.57)

where s is the particle spin, (2sZ+1) = 3 is the number of spin states of the
Z boson, and (2se+1) = (2sē+1) = 2 are the number of spin states of the
incoming particles. This latter factor appears because we are computing the
spin-averaged cross-section; had we computed the cross-section for a specific
spin state of the e+ and e−, no such factor would appear.

Eq. (6.56) has a natural physical interpretation. In order to bring this
interpretation out, rewrite Eq. (6.56) in terms of the total cross section for
Z0 production on resonance, defined by summing the above result over all
possible fermion–antifermion final states. Then, using

∑
f Γ(Z → ff) = ΓZ,

we find,

σ(e+e− → Z0 → ff) = σtot B(Z → ff) . (6.58)



6.5 t-channel processes: crossing symmetry 209

��
��

��*
HHHH
HHj

s̈§
§̈
§̈

¥¦

¥¦

¥¦s
HHHH
HHj

��
��

��*

e−

f

e−

f

γ , Z0

Fig. 6.5. The Feynman graph for e−f → e−f

Here B(Z → ff) = Γ(Z → ff)/ΓZ is the Z0 branching fraction into the
final fermion-antifermion pairs of flavor ‘f ’. The total cross section, σtot, is
itself given explicitly by

σtot(e+e− → Z0) =
12π
M2

Z

B(Z → e+e−)

= 1.52 · 10−4 (GeV)−2

= 59.4 nb , (6.59)

where we used the experimental values for the width and branching frac-
tion. Now both the total cross section, σtot, and the cross section σ(e+e− →
Z0 → ff), give the rate per unit incident flux per unit time for the corre-
sponding reactions. Also, the branching fraction, B(Z0 → ff), gives the
probability that any given Z0, once produced, decays into an f − f pair.
Eq. (6.58) therefore declares that the probability for ff production is given
on resonance by the product of the probability of creating a Z0 with the
probability of this Z0 decaying into ff .

Notice that the total cross section given by Eq. (6.59) translates into 1
Z0 produced per four seconds using the luminosity of the LEP-I collider at
CERN: 17 · 1030 cm−2 s−1. We will see in subsection 6.7.2 that Eq. (6.59)
turns out to be missing a rather substantial correction, which brings the
actual cross-section down by about 28% from the one we have computed.

6.5 t-channel processes: crossing symmetry

Next, consider the process e−f → e−f , with f any fermion other than e+,
e−, ν̄e, or νe. This type of scattering is dominantly mediated by the exchange
of a virtual Z boson or by photon-exchange as in figure 6.6.

There are a great many practical situations for which this cross section
is of interest. Some of these are: (1) Elastic scattering of electrons and
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muons: e−µ− → e−µ−; (2) Elastic muon neutrino collisions with electrons:
e−νµ → e−νµ; or (3) various hadronic processes considered in more detail in
chapter 9. Inelastic processes such as e−νµ → µ−νe may also be described by
the result derived below provided that all fermion masses may be neglected.

Consider therefore the evaluation of figure 6.5 for the contribution of a
vector boson V to the reaction e−(p)f(p′) → e−(k)f(k′). Inspection of
the Feynman rules of the previous chapter gives a matrix element for this
process of

M(e−f → e−f) = −
∑

V =Z,γ

e2
V [ue(k)γµΓV eue(p)]

[
uf (k′)γµΓV fuf (p′)

]

×
[

1
(p− k)2 + M2

V − iε

]
. (6.60)

This expression is very similar to Eq. (6.16). In fact, Eq. (6.60) may be
obtained from Eq. (6.16) by the simple substitution of ue(k) for ve(p′) and
uf (p′) for vf (k′), as well as with the replacements p′µ → −kµ, k → k′,
and k′µ → −p′µ. The signs of the four-momenta are reversed whenever an
incoming particle becomes an outgoing particle or vice versa.

This correspondence allows the results of section 6.2 to be used directly
to give the spin-summed, squared matrix element for the present process. If
we take the Mandelstam variables for elastic e−f scattering (in the ultrarel-
ativistic limit) as

s = −(p + p′)2 ≈ −2p · p′
t = −(p− k)2 ≈ +2p · k
u = −(p− k′)2 ≈ +2p · k′ , (6.61)

then the desired result is obtained from Eq. (6.21) with the following sub-
stitution:

s = −2p · p′ → +2p · k = t ,

t = +2p · k → +2p · k′ = u ,

u = +2p · k′ → −2p · p′ = s . (6.62)

The result therefore becomes

M2 =




∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geLgfL

t−M2
V

∣∣∣∣∣∣

2

s2 +

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geRgfR

t−M2
V

∣∣∣∣∣∣

2

s2

+

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geLgfR

t−M2
V

∣∣∣∣∣∣

2

u2 +

∣∣∣∣∣∣
∑

V =Z,γ

e2
V

geRgfL

t−M2
V

∣∣∣∣∣∣

2

u2


 . (6.63)
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This expression admits the same simple interpretation in terms of polariza-
tion amplitudes as did Eq. (6.21).

Also in analogy with the earlier treatment, The differential cross section
becomes

dσ

dudt
(e−f → e−f) = −πα2

(
[|ALL(t)|2+|ARR(t)|2]+

+[|ALR(t)|2 + |ARL(t)|2]u
2

s2

)
δ(s+t+u) , (6.64)

Here the helicity amplitudes are

Aij(t) =
∑

V

e2
V

e2

(
geigfj

t−M2
V

)
. (6.65)

Because the Mandelstam variable t appears in the denominator, the process
considered here is generally referred to as a t-channel process, as opposed
to the s-channel process of the previous sections.

This cross-section does not encounter problems when t−M2
V goes to zero,

because the kinematically allowed range for t is −s < t ≡ −Q2 ≤ 0 for
ultrarelativistic fermions. On the other hand, the cross-section does diverge
as t → 0. This is the familiar Coulomb divergence of the cross section, which
again expresses a breakdown of an approximation we have made in deriving
dσ/dt. Very small t corresponds to very small scattering angles, which
classically would occur for large impact parameters. In principle, the long
range of the Coulomb interaction ensures that multiple scatterings must be
included to obtain an accurate determination of very small-angle scattering
amplitudes. These higher-order complications are typically not important
when discussing the differential cross section as a function of angle, since it
is typically true that the experiment of interest cannot distinguish scattering
at sufficiently small angles from no scattering occurring at all.

In deriving the matrix element for this process, we were able to learn
almost everything by recycling the results of the s-channel calculation of
e+e− → ff̄ . This recycling was possible because of a symmetry, called
crossing symmetry, between processes with the same species, but where
species move between initial and final states.

Suppose that we have computed the spin sum of |M|2 for some process.
Form another process by making a series of exchanges, where an incoming
particle/antiparticle is replaced with an outgoing antiparticle/particle or
vice versa. Each external (incoming or outgoing) state in the original process
is assigned to the corresponding external state in the new process. The new
process is called a “crossing” of the old process, and its matrix element
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squared |M|2 is related to the old process’s value by making the following
substitutions:

(i) replace the momentum of each particle in the first process with the
corresponding momentum of the analog particle in the second, with a
minus sign if a particle has switched between incoming and outgoing;

(ii) multiply by (−1) for each fermion which switches between incoming
and outgoing.

The origin of the minus sign is the following. When a fermion in the initial
state is replaced with an anti-fermion in the final state, the squared matrix
element goes from containing ū(p)u(p) = −i/p + m to containing v̄(k)v(k) =
−(i/k+m). This is not the same as we would get by the substitution p → −k,
it has in addition an overall minus sign. In the case we just considered, there
were two such minus signs, so this rule did not matter.

We can quickly see that these rules give us the relation we already found
between the matrix elements for e+(p)e−(p′) → f(k)f̄(k′) and e−(p)f(p′) →
e−(k)f(k′). The rule says we must multiply by (−1)2 = 1 and make the
substitutions, p → p, p′ → −k, k → k′, k′ → p′ in the expression for M2

for the former process. Similarly, we can quickly find the matrix element
for the process e−(p)f̄(p′) → e−(k)f̄(k′); we must multiply by (−1)2 = 1
and make the substitutions, p → p, p′ → −k, k → −p′, and k′ → k′. In the
ultrarelativistic limit, this changes the Mandelstam variables via

s = −2p · p′ → 2p · k = t ,

t = 2p · k → −2p · p′ = s ,

u = 2p · k′ → 2p · k′ = u . (6.66)

Applying these substitutions to Eq. (6.21) gives the differential cross-section
for e−f̄ → e−f̄ .

6.6 Interference: Møller scattering

Crossing symmetry makes it possible to recycle a small number of calcu-
lations into a complete list of desired matrix elements. However, not all
matrix elements are as simple as e−e+ → ff̄ . Two additional complica-
tions are possible; interference effects and bosons in external states. We will
handle them in turn.

Consider the process e−e− → e−e−, called Møller scattering. The new
complication is that, because the initial and final particles are identical,
there are two ways that the electron fields can create the final electrons,
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Fig. 6.6. The ‘uncrossed’ and ‘crossed’ graphs for e−e− scattering

which must be summed over. This is equivalent to including both Feynman
diagrams of figure 6.6—the uncrossed and crossed graphs—in the amplitude.

There are also two mutually compensating factors of two that arise. One
is a factor of 1

2 in the amplitude relative to the e−f scattering result that
arises because there are no longer two equivalent ways of evaluating the
graph depending on whether the f -type vertex appears in the interaction at
the spacetime point ‘x’ or at the point x = 0. The other factor is a factor
of 2 in the amplitude relative to the e−f result that corresponds to the
two different interaction operators that can now destroy each of the initial
electrons.

The result is to simply add the contribution of the crossed graph to
Eq. (6.60). The matrix element associated with the crossed graph is ob-
tained from the matrix element found earlier for e−f scattering by multi-
plying by an overall factor of -1—due to the antisymmetry of fermi statistics
for electrons— and then interchanging the four-momenta of the final par-
ticles: k ↔ k′. The easiest way to understand the factor of (−1) is to
remember that a final state with two fermions in it is antisymmetric under
exchange of the fermion labels, |k,k′〉 = −|k′,k〉, see Eq. (1.4).

This prescription may be equivalently formulated in terms of the helicity
amplitudes, Aij , that appear in the cross section of Eq. (6.65). For scattering
between particles of identical helicity, the required substitution is given by
ALL(t) → ALL(t) + ALL(u) and ARR(t) → ARR(t) + ARR(u). Since the
amplitudes with mixed helicities, ALR = ARL, cannot interfere with one
another, the correct replacement for them is

u2
[∣∣∣ALR(t)

∣∣∣
2
+

∣∣∣ARL(t)
∣∣∣
2
]

= 2u2
∣∣∣ALR(t)

∣∣∣
2

→ 2
[∣∣∣uALR(t)

∣∣∣
2
+

∣∣∣tALR(u)
∣∣∣
2
]

. (6.67)
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The differential cross section therefore is

dσ

dudt
(e−e−→ e−e−) = −πα2

s2

(
|ALL(t)+ALL(u)|2s2 +

∣∣∣(LL → RR)
∣∣∣
2
s2

+
∣∣∣uALR(t)

∣∣∣
2
+

∣∣∣tALR(u)
∣∣∣
2
)

δ(s+t+u), . (6.68)

In the low energy limit this expression simplifies to the QED result for
ultrarelativistic Møller Scattering:

dσ

dudt
(e−e− → e−e−) = −2πα2

s2

(∣∣∣∣
s

t
+

s

u

∣∣∣∣
2

+
∣∣∣∣
u

t

∣∣∣∣
2

+
∣∣∣∣
t

u

∣∣∣∣
2
)

δ(s+t+u)

= −2πα2

s2

(
s2+u2

t2
+

s2+t2

u2
+

2s2

ut

)
δ(s+t+u) ,

(6.69)

which becomes, in the CM frame,

dσ

sin θdθ
(e−e− → e−e−) =

πα2

s


1 + cos4

(
θ
2

)

sin4
(

θ
2

) +
1 + sin4

(
θ
2

)

cos4
(

θ
2

)

+
2

sin2
(

θ
2

)
cos2

(
θ
2

)

 . (6.70)

Note however that, to determine the total cross section, one should either
integrate over only half of available outgoing angles, or integrate over all
angles and divide by two, to eliminate a double counting–the final state
when an electron emerges (in the CM frame) with angle θ also has an electron
emerging with angle π− θ, and is therefore identical to the final state where
the electron emerges with angle π − θ.

We can easily use this result, together with crossing, to find the cross-
section for Bhabha scattering, e−e+ → e−e+, see problem 1.

6.7 Processes involving photons

So far we have only considered scattering processes in which all external
lines are fermions. To be complete, we will briefly discuss what happens
when an external line is a massless gauge boson. The reason we concentrate
on a massless gauge boson is that, for the massive case, the polarization
sum, Eq. (1.119),

∑
λ εµ(p)ε∗ν(p) = ηµν + pµpν/m2, is obviously Lorentz

covariant; but the corresponding massless sum, Eq. (1.132), is not obviously
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Fig. 6.7. Feynman graphs for Compton scattering

so. However, it turns out that there is a simple, Lorentz invariant way to
determine polarization averaged cross-sections, thanks to gauge invariance.

6.7.1 Compton scattering, e−γ → e−γ

Consider then the process e−γ → e−γ. There are two Feynman graphs for
this process, shown in figure 6.7. Labeling the incoming electron momentum
p1, the incoming photon momentum p2, the outgoing electron momentum
p3, and the outgoing photon momentum p4, the corresponding matrix ele-
ment is

M = ie2εµ(p2, λ)εν(p4, λ
′)× (6.71)

ū(p3, σ
′)

(
γν−i(/p1+/p2)+me

(p1+p2)2+m2
e

γµ + γµ−i(/p3−/p2)+me

(p3−p2)2+m2
e

γν
)

u(p1, σ) .

We will eventually sum over polarizations for each photon, using Eq. (1.132),
∑

λ

εµ(p2, λ)ε∗α(p2, λ) = ηµα + pµpα + pµpα . (6.72)

At first sight this is worrying, since pµ is not uniquely defined; it is not
obvious that the polarization summed cross-section will be Lorentz invariant.

In fact, Lorentz invariance follows from the fact that, if we substitute
εµ(p2) → pµ

2 in the matrix element, we get zero:

ū(p3, σ
′)

(
ε/′
−i(/p1+/p2) + me

(p1+p2)2 + m2
e

/p2 + /p2
−i(/p3−/p2) + me

(p3−p2)2 + m2
e

ε/′
)

u(p1, σ)

= ū(p3, σ
′)

(
ε/′
−i(/p1+/p2) + me

(p1+p2)2 + m2
e

[
(/p1+/p2−ime)− (/p1−ime)

])
u(p1, σ)

+ ū(p3, σ
′)

([
(/p2−/p3+ime) + (/p3−ime)

]−i(/p3−/p2) + me

(p3−p2)2 + m2
e

ε/′
)

u(p1, σ)

= ū(p3, σ
′)

(
ε/′
−i(p1 + p2)2 − im2

e

(p1+p2)2 + m2
e

+
i(p3−p2)2 + im2

e

(p3−p2)2 + m2
e

ε/′
)

u(p1, σ)
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= 0 . (6.73)

Here ε′ ≡ ε(p4, λ
′). In passing from the second to third lines, we have used

the Dirac equation, (/p1−ime)u(p1) = 0 and ū(p3)(/p3−ime) = 0.
Because of this relation, when we carry out the summation over spin

states, the p̄µpα terms in Eq. (6.72) will not contribute; we are therefore
free to make the substitution

∑

λ

εµ(p, λ)ε∗α(p, λ) → ηµα . (6.74)

The same holds for the final state photon, as we can quickly verify by substi-
tuting ε′µ → (p4)µ in Eq. (6.71). This not only provides a rather substantial
simplification, but it also makes manifest the Lorentz invariance of the spin
summed cross section.

The cancellation in Eq. (6.73), while at first sight rather remarkable, turns
out to be an absolutely general property of external photon lines; when
summing over all possible diagrams contributing to the matrix element,
replacing εµ(p) → pµ always gives zero, so Eq. (6.74) may always be used.
The physical origin of this property is gauge invariance. To ensure gauge
invariance, it was necessary to ensure that the electromagnetic gauge field
Aµ always couples to a conserved current; Lint =

∫
d4xAµJµ with ∂µJµ = 0

(see subsection 1.5.2). In Fourier space, the current conservation becomes
pµJµ(p) = 0, precisely the relation we need, because the current Jµ is what
the polarization tensor εµ is contracted against.

Now we proceed with computing the spin averaged matrix element. To
simplify expressions we will take the ultrarelativistic me → 0 limit. Squaring
Eq. (6.71), performing the spin sums, and using Eq. (6.74) for the polariza-
tion sums, gives

M2 =
e4

4
Tr /p1

(
γµ /p1+/p2

(p1+p2)2
γν + γν /p3−/p2

(p3−p2)2
γµ

)
×

×/p3

(
γν

/p1+/p2

(p1+p2)2
γµ + γµ

/p3−/p2

(p3−p2)2
γν

)
(6.75)

=
e4

4
Tr /p1

(
γµ /p1+/p2

s
γν + γν /p3−/p2

u
γµ

)
/p3

(
γν

/p1+/p2

s
γµ + γµ

/p3−/p2

u
γν

)
.

Expanding gives four terms. The first term is

e4

4
Tr /p1γ

µ /p1+/p2

s
γν/p3γν

/p1+/p2

s
γµ =

e4

s2
Tr /p1(/p1+/p2)/p3(/p1+/p2) ,

=
e4

s2
Tr /p1/p2/p3/p2 ,
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=
8e4

s2
(p1 · p2 p2 · p3)

= −2e4

s2
(su) = −2e4 u

s
, (6.76)

where we use repeatedly the gamma matrix identities of chapter 4, problem
3, and the approximation p2

1 = 0. The second term is

Tr /p1γ
µ /p1+/p2

s
γν/p3γµ

/p3−/p2

u
γν = −2Tr /p1/p3γ

ν /p1+/p2

s

/p3−/p2

u
γν

= 8
(p1+p2) · (p3−p2)

su
Tr /p1/p3

= 0 , (6.77)

because (p1+p2) · (p3−p2) = (t/2 + s/2 + u/2 + 0) = 0. The third term is
the Hermitian conjugate of the second, and also vanishes; the fourth term’s
evaluation is similar to the first. The result is,

M2(e−γ → e−γ) = −2e4
(

u

s
+

s

u
+ · · ·

)
. (6.78)

This is positive, because u < 0 and s > 0. In this expression the ellipses
indicate terms which vanish as m2 → 0 with s, t and u fixed, which are
required in order to properly capture the entire Compton-scattering cross
section even in the ultrarelativistic limit (see problem 6 for details). These
additional terms are required because there are also m’s hidden within the
definitions of s, t and u, and these conspire to ensure that the terms neglected
in Eq. (6.78) compete with those that are included. This expression is more
useful once it is used to obtain the cross section for e+e− annihilation, using
crossing symmetry.

It is elementary to apply crossing symmetry to determine the annihilation
rate e−e+ → γ γ. Labeling the incoming momenta p1 and p2 and the final
momenta p3 and p4, the momenta are reassigned via p3 → −p2, p2 → −p3.
The Mandelstam variables are changed according to

s = −2p1 · p2 → +2p1 · p3 = t ,

t = +2p1 · p3 → −2p1 · p2 = s ,

u = +2p1 · p4 → +2p1 · p4 = u . (6.79)

Furthermore, there is a factor of (−1)1 because one fermion is reassigned
from the final to the initial state. Therefore, the spin averaged matrix
element squared is

M2(e−e+ → γ γ) = +2e4
(

t

u
+

u

t

)
. (6.80)
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Fig. 6.8. Diagram for scattering with a photon emission

Since both t and u are negative, the (−1) ensures that the result is posi-
tive. This result manifestly has the right behavior if we interchange the two
photon states, corresponding to t ↔ u. Using it to obtain the cross section
leads to the correct ultrarelativistic limit

dσ

dtdu
= − 2πα2

s2

(
t

u
+

u

t

)
δ(s + t + u) , (6.81)

and so
dσ

sin θdθ
=

2πα2

s

(
1 + cos2 θ

sin2 θ

)
. (6.82)

Since the photons are identical particles, to find the total cross-section one
must integrate over only half of the space of final state angles.

The interaction of quarks with gluons is almost the same as the electro-
magnetic processes we have considered here; the main added complication
is the appearance of color factors. However, when the mutual interactions
of gluons via the three or four gluon vertices, Eq. (5.63) and Eq. (5.64),
are involved, then the polarization summation issues are more complicated
and it is not permitted to make the substitution, Eq. (6.74). We postpone
further discussion on this point to chapter 9.

6.7.2 Radiated photons

Another application where photons appear in the final state is when one or
more photons are radiated from a participating particle (initial or final) in a
scattering process, for instance via the Feynman graph depicted in figure 6.8.

Naively, such a process is suppressed by ∼ e2/(2π)2 = α/π ¿ 1 with
respect to the diagram without a photon emission, and should therefore be
negligibly small. However, this is not entirely correct. The probability to
emit a photon in a scattering process is enhanced by large logarithms, which
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can make it quite important. In particular, at the end of this subsection, we
will see that the on-resonance cross-section for e+e− → Z → ff̄ is reduced
by about 1/4 due to these processes.

Consider the process shown in figure 6.8. This is one of four diagrams
which must be summed, and then squared, to find the photon emission rate.
For general angles, when the center of mass frame angle between the photon
and any other particle is large, the naive estimate that the photon emission
rate is suppressed by α/π, is correct. However this turns out not to be
true in the special kinematic regime in which the photon is approximately
collinear with another particle, for instance, when the angle between p and
l in the CM frame is small.

In this regime, the four possible diagrams (with the photon attached
to any of the four external states) all contribute, but they do not con-
tribute equally. When the photon emerges from the e−, the denominator
of the intermediate electron propagator is 1/((p−l)2 + m2

e) = 1/(−2p · l) '
1/(2p0l0(1− cos θpl)). Since (1 − cos θpl) ' 0, this amplitude is enhanced,
relative to the others. It turns out in this case that it is simplest to work in
terms of the two transverse polarization states, in which case the amplitude
in question is ∼ sin(θpl)/(1 − cos θpl) ∼ 1/θpl, while the other amplitudes
are not enhanced at small θpl. Therefore, it is permissible to drop the other
amplitudes to determine the leading behavior in this small angle region.

Let us evaluate just the part of the square of the matrix element involving
the photon emission, to compare with the case without photon emission.
Where, without photon emission, we have the quantity (−i/p + m), we now
have the quantity

−e2
∑

λ

−i/p+il/ + m

(p−l)2 + m2
ε/∗(λ)(−i/p+m)ε/(λ)

−i/p+il/ + m

(p−l)2 + m2
,

=
−e2

(2p · l)2
∑

λ

(−i/p+il/ + m)
{
2(i/p + m)− 2iε · pε/∗

}
(−i/p+il/ + m) ,

=
−e2

(2p · l)2
∑

λ

[−4il · pl/ − 2iε · p (−i/p+il/ + m)ε/∗(−i/p+il/ + m)] ,

' ie2 l/

p · l +
∑

λ

e2|ε · p|2
(p · l)2 (−i/p + il/ + m) , (6.83)

where in the second step we used that l2 = 0 and p2+m2 = 0, and in the
last step we dropped a term ∝ (ε ·p)(p · l)/(p · l)2, which is subleading in θpl.
Since

∑
λ |ε · p|2 ' (p0)2θ2

pl and l · p ' −l0p0θ2
pl/2, the remaining two terms

are of the same order. Since l is almost collinear with p, for the rest of the
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calculation it is adequate to substitute l/ → (l0/p0)/p. Defining l0/p0 ≡ x, so
x is the fraction of the electron’s energy carried off by the photon, we find
that the matrix element in the collinear limit is approximately given by

(−i/p) → (−i/p)
2e2(1 + (1− x)2)

x2(p0)2θ2
pl

. (6.84)

Being slightly more careful,

−l · p ' p0l0
(

1− cos θpl +
m2

e

2(p0)2

)
' (p0)2x

2

(
θ2
pl +

m2
e

(p0)2

)
. (6.85)

This correction at very small angles exists in both terms, and is important
in cutting off the otherwise divergent angular integral. We can now do most
of the integral over the photon momentum;

∫
d3l

(2π)32l0
=

1
8π2

∫ 1

−1
d cos θpll

0dl0 . (6.86)

The integral over the angle is
∫ 1

−1
d cos θpl

1
1 + m2

2p2 − cos θpl

= log
4p2

m2
e

+ O(1) = log
s

m2
e

+ O(1) . (6.87)

There is an unknown constant in this expression, because the approxima-
tions we have made break down at large angles. This constant could be
found by making a more careful treatment, which included the interference
between emissions from different lines at large angles. Nevertheless, our
simplified treatment is sufficient to show that photon emission is logarith-
mically dominated by small opening angles, with the log cut off by the mass
of the emitting particle; and it is sufficient to find the coefficient of that log.

The integration over l0 is more delicate, because the emission of the photon
potentially changes the kinematics of the rest of the diagram. One must re-
compute the remainder of the diagram, but changing the momentum carried
by the incoming electron line from p to (1 − x)p. For the case of emission
from a final state line, f or f̄ , this does not matter. For the case of emission
from an incoming line, e+ or e−, this can matter. In general, it matters if
x ∼ 1, so the kinematics is substantially disturbed. In the case of scattering
through a resonance, such as the Z boson, an energy loss of l0 ∼ ΓZ, or
x ∼ ΓZ/MZ , is important, as we discuss below. Nevertheless, for the present
purposes we will ignore this complication. The likelihood to emit a photon
with energy larger than ω is

e2

8π2
log

s

m2
e

∫ 1

ω/p

xdx

x2
(1+(1−x)2) =

α

2π
log

s

m2
e

(
log

s

4ω2
− 3

2

)
. (6.88)
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Fig. 6.9. A radiative correction to e+e− annihilation

This likelihood is not necessarily small, because it is amplified by the product
of two logarithms which may each individually be large. We should also add
the probabilities to emit from each of the other three legs, giving a total
likelihood of

σ(ω)
σ

' α

π

(
log

s

m2
e

+ Q2
f log

s

m2
f

+ O(1)

) (
log

s

4ω2
− 3

2

)
. (6.89)

The likelihood to emit a photon during a scattering can in fact be quite large.
For instance, on the Z pole, for ω = me, and considering only emissions from
the incoming electrons, this evaluates to approximately 1.2.

Once again, we find a higher order effect (more powers of α) which is just
as large as the original effect. In fact, the result presented appears to be
sick; if we ask for the rate to scatter with the emission of an arbitrarily soft
photon, that rate is logarithmically divergent. It also appears that the total
rate for the scattering to occur, after we add the possibility of this photon
emission, is much larger than we had previously computed. The situation
becomes still worse as we consider multiple photon emission. This suggests
that, as in section 6.4, there may be some additional, formally higher order,
diagrams which can compete with the lowest order one and must be somehow
resummed. This proves to be the case.

Consider the diagram of figure 6.9. When it interferes with the diagram of
figure 6.1, this modifies the rate of scattering without photon emission. The
interference of those diagrams is structurally very similar to the square of
the diagram of figure 6.8. In particular, the photon in the loop, in figure 6.9,
contributes the same collinear and soft divergences as the real, emitted pho-
ton of figure 6.8. There is one major difference, however; the sign turns out
to be opposite. Therefore, the diagram of figure 6.9 reduces the probability
for the scattering process, without the photon emission.

Because the soft and collinear singularities are identical, the cross-section
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to emit an extra photon, and the reduction of the cross-section to scatter
without a photon emission, are approximately the same size. Therefore,
the total cross-section, with or without photon emission, is unchanged up to
O(α) correction, except for the correction to the kinematics because of the
energy carried away by the photons.

The correct way to handle the computation of the total cross-section, and
the likelihood to emit any number of photons above some energy thresh-
old, has been solved by Bloch and Nordsieck. One must introduce a cutoff
frequency ω, below which a photon cannot be detected. (Realistically, all
experiments have such a cutoff.) Then, the likelihood not to emit a collinear
photon is given, approximately, by

σ(e+e− → ff̄ + 0γ)∑
n σ(e+e− → ff̄ + nγ)

' exp (−χ) , (6.90)

with

χ =
−α

π

[
log

s

m2
e

+ Q2
f log

s

m2
f

+ O(1)

] [
log

s

4ω2
− 3

2

]
. (6.91)

This is the expression for s channel exchange. In t channel exchange, it is
t, not s, which controls the size of the collinear logarithm.

This phenomenon of photon emission from the initial state is referred to as
initial state radiation, or ISR. Let us see its effects on scattering processes. In
a typical s channel scattering process, the kinematics is significantly changed
if one of the initial particles radiates a photon carrying x ∼ 1 of the energy.
In this case, the second bracketed quantity should be replaced with ' 1. The
change to the cross-section can be several percent–not huge, but important
when precision is required.

On the other hand, when the e+e− particles’ energies are tuned to lie on
the Z pole, the radiation of a photon with energy ΓZ/2, the half-width of
the resonance, is enough to move the scattering off resonance and reduce
the cross-section substantially. Therefore, the on-resonance cross-section for
e+e− → ff̄ is reduced by a factor of approximately

σtot(e+e− → Z0)
Eq. (6.59)

' exp

(
−α

π
log

M2
Z

m2
e

[
log

M2
Z

Γ2
Z

− 3
2

])

' 0.72 , (6.92)

where in the numerical evaluation we used α ' 1/133, a compromise between
its value at the scale MZ , where α ' 1/128, and at me, where α ' 1/137.
Combining this with the fact that 30% of Z0 decays are to leptons, the
hadronic cross-section on the Z0 pole is expected to be only ' 30 nb. The
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Fig. 6.10. e+e− hadronic cross-section near the Z0 resonance

actual hadronic cross-section on resonance is 30.5 nb, in agreement with a
more careful calculation.

We illustrate the impact of initial state radiation on the cross-section near
the Z resonance in figure 6.10. The initial state radiation corrected cross-
section is an integral over the energy lost to photons, of the probability
for that energy loss due to initial state radiation times the cross-section
at the reduced energy. The correction is very important in the agreement
between theory and data, as shown by the inclusion of the cross-section
data from the four LEP experiments. Note that at high energies, the cross-
section actually exceeds the uncorrected value. This is because initial state
radiation can lower the e+e− pair’s energy to lie on resonance, enhancing
the cross-section.

Initial state radiation also plays a prominent role in the physics of high
energy hadronic collisions, which we will discuss in section 9.2, especially
subsection 9.2.3.

6.8 Problems

[6.1] Crossing symmetry
Use crossing symmetry to derive the cross-section for Bhabha scattering
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in the ultrarelativistic limit, but still at s ¿ M2
Z :

dσ

dudt
(e−e+ → e−e+) =

−2πα2

s2

(∣∣∣∣
u

s
+

u

t

∣∣∣∣
2

+
t2

s2
+

s2

t2

)
δ(s + t + u) .

[6.2] Electron-neutrino scattering

[6.2.1] The process e−ν̄e → fmf̄n (f neither e− nor νe) proceeds via a
single diagram. Draw that diagram and show that, taking all external
states to be massless, it yields a cross-section of

dσ

dudt
= −G2

F

π
|Unm|2 u2

s2

(
M2

W

s−M2
W

)2

δ(s+t+u) .

Use crossing symmetry to find dσ/dudt for e−νµ → µ−νe from this
result.

[6.2.2] Compute the matrix element squared for e−νe → e−νe. Careful:
there are two diagrams, one involving Z exchange and one involving
W exchange. Use crossing symmetry to find the e−ν̄e → e−ν̄e and
e−e+ → νeν̄e matrix elements. Beware; there are two diagrams, and a
relative minus sign between them due to the different ways the initial
and final state fermions connect to each other.

[6.3] Supernova neutrinos
Neutrinos and antineutrinos were observed in 1987 from the supernova

in the nearby Large Magellanic Cloud. They were detected by observing
their interactions with electrons and nuclei in a large tank of water. The
neutrino energies were ∼ 10 MeV and in this energy range the relevant
processes are elastic scattering with electrons and “quasi elastic ” (i.e. low
energy) inverse beta decay: ν̄e + p → n + e+ with the hydrogen nuclei.

[6.3.1] Why not consider the interactions with the oxygen nucleus, O16?

e.g. : ν̄e + 8O
16 → 7N

16 + e+

or : νe + 8O
16 → 9F

16 + e−

(Hint: Nucl. Phys. A166 (1971) page 60).
[6.3.2] In these reactions the interactions are detected by observing the

Cherenkov radiation of the final charged particles. Given that the index
of refraction of water is n = 1.33, what is the minimum energy that
a particle of mass m must have to radiate Cherenkov light? Why not
consider also elastic scattering of neutrinos by the hydrogen and oxygen
nuclei?
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[6.3.3] In the standard model, draw all of the tree level (i.e. no loops)
Feynman graphs that contribute to the following processes:

(i) νµ + e− → νµ + e−

(ii) ν̄µ + e− → ν̄µ + e−

(iii) νe + e− → νe + e−

(iv) ν̄e + e− → ν̄e + e−.

[6.3.4] Kinematics:

(i) Show that, for a neutrino of energy ω, the angle between the
direction of the incident neutrino momentum and the scattered
electron momentum in the lab frame, θ, is related to the same
angle in the center-of-mass frame, ϕ, by

tan θ =
sinϕ

1 + cos ϕ

√
m2 + 2mω

m + ω
.

This implies that the electron-neutrino interactions produce elec-
trons that tend to move away from the supernova (with an an-
gular spread of ∆θ ∼ √

m/ω ∼ 1√
20

for 10 MeV neutrinos) re-

gardless of the scattering probability dσ
d cos ϕ in the center of mass

frame.
(ii) Show that the energy of the final electron in the lab frame, E,

is given in terms of the incident neutrino energy and scattering
angle by

E = m

[
(m + ω)2 + ω2 cos2 θ

(m + ω)2 − ω2 cos2 θ

]
.

For fixed ω, what is the difference between the energy at θ = 0
and that when θ =

√
m
ω ¿ 1? This represents the energy range

of the scattered electrons from this process.

[6.3.5] In the effective Fermi theory of weak interactions (basically, the
limit s, |t|, |u| ¿ M2

W so they can be dropped from the W and Z boson
propagators), the relevant interaction Hamiltonian density is

HI =
GF√

2

{
[ν̄eγ

µ(1+γ5)e][ēγµ(1+γ5)νe]

−1
2

∑
m=e,µ,τ

[ν̄mγµ(1+γ5)νm][ēγµ(ρ + γ5)e]

}

where ρ = 1− 4 sin2 θW .
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The first term can be rewritten, using the Fiertz identities of chapter 1,
problem 6, as

[ν̄γµ(1+γ5)e][ēγµ(1+γ5)ν] = [ν̄eγ
µ(1+γ5)νe][ēγµ(1+γ5)e]

so

HI =
GF√

2

∑
m=e,µ,τ

[ν̄mγµ(1+γ5)νm][ēγµ(h(m)
V + γ5h

(m)
A )e]

where : h
(e)
A = 1− 1

2
=

1
2
,

h
(µ,τ)
A = −1

2

and : h
(e)
V = 1− 1

2
ρ =

1
2

+ 2 sin2 θW ,

h
(µ,τ)
V = −1

2
ρ = −1

2
+ 2 sin2 θW

Use this result to show that the matrix element for neutrino-electron
scattering is

M(νe → νe) =
GF√

2
ū(q′)γµ(1+γ5)u(q) ū(p′)γµ(h(m)

V + h
(m)
A γ5)u(p)

and

M(ν̄e → ν̄e) =
GF√

2
ῡ(q)γµ(1+γ5)υ(q′) ū(p′)γµ(h(m)

V + h
(m)
A γ5)u(p) .

[6.3.6] Averaging over the initial electron spin and summing over all final
spins, show that

M2 = 16G2
F

{
(hV ± hA)2(p · q)(p′ · q′)

+(hV ∓ hA)2(p · q′)(p′ · q) + m2(h2
V − h2

A)(q · q′)
}

in which the upper sign corresponds to νe → νe and the lower sign to
ν̄e → ν̄e.

[6.3.7] Using

dσ =
1

−2p · q υrel
M2(2π)4δ4(p + q − p′ − q′)

d3p′d3q′

(2π)62p′02q′0

(i) Show that the differential cross section in the center-of-mass
frame is (neglecting the electron mass)

dσ

d(cosϕ)
=

G2
F

2π
ω2

cm

{
(hV ± hA)2 +

1
4
(hV ∓ hA)2(1− cosϕ)2

}
,
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where ωcm is the incident neutrino energy, and ϕ is the angle
between the incident neutrino momentum and the final electron
momentum, as before. What is the most probable center-of-mass
scattering angle?

(ii) Show that the total cross section is (in terms of the lab energy
of the neutrino)

σ =
G2

F ωm

2π

[
(hV ± hA)2 +

1
3
(hV ∓ hA)2

]
(1 + o(m/ω)) .

Using the values of the parameters h
(m)
V , h

(m)
A given earlier and

sin2 θW ≈ 1
4 , calculate the ratios,

σ(νee → νee) : σ(ν̄ee → ν̄ee) : σ(νµe → νµe) :

σ(ν̄µe → ν̄µe) : σ(ντe → ντe) : σ(ν̄τe → ν̄τe).

[6.3.8] For nucleon-neutrino scattering (ν̄e+p+ → n+e+) at low energies,
the weak current has matrix elements:

〈n|Jµ
had|p〉 = ūnγµ(gV + gAγ5)up

with gV = 1 and gA ' 1.269. Using

Hweak =
GF√

2
Vud[ν̄eγµ(1+γ5)e]J

µ
had ,

show that

M(p+ν̄e → ne+) =
GF√

2
Vud ῡ(ν)(q)γµ(1+γ5)υ(e)(q

′)

×ūn(p′)γµ(gV + gAγ5)up(p) ,

where Vud is the relevant Kobayashi-Maskawa matrix element.
[6.3.9] Treat the nucleon mass mp À ω the neutrino energy.

(i) Neglecting mn−mp and the electron mass, what is the lab energy
of the final electron as a function of scattering angle and incident
neutrino energy? (This is almost a trick question.)

(ii) Show that the differential scattering cross section as a function of
the lab-frame scattering angle, θ, between the incident neutrino
direction and the final positron direction is

dσ

d(cos θ)
≈ G2

F ω2

2π

{
(g2

V + 3g2
A) + (g2

V − g2
A) cos θ

}

(Neglect: ω
mN

, me
ω and mn−mp

ω ). Notice the angular distribution
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of final electrons is different than that in the case of electron-
neutrino scattering, and is effectively independent of θ (recall
(g2

V + 3g2
A)/(g2

V−g2
A) ≈ −10).

(iii) Calculate the total cross section as a function of the lab frame
neutrino energy, ω.

[6.3.10] (i) Using the given values for h
(m)
A , h

(m)
V , and gV , gA and ω =

10 MeV, calculate what percentage of observed events are ex-
pected to be due to ν̄ep, νee, ν̄ee, νµe, ν̄µe, ντe, and ν̄τe scatter-
ing, assuming the supernova emits equal numbers of all types of
neutrinos.
Don’t forget that only two of the protons in a water molecule
are in hydrogen! That is, there are 2 protons but 10 electrons in
a water molecule.

[6.3.11] νµ-Matter Interactions: In neutrino-matter scattering experi-
ments at accelerators, νµ+e and νµ+ nucleon interactions are observed.
In this case the neutrinos come from pion decay and so are much more
energetic than from the supernova. Their energies are governed by the
beam energy and are generally much greater than the nucleon mass in
the nucleon rest frame. Consider the following four reactions:

νµ + e− → νµ + e−

νµ + n → p + µ−

νµ + n → νµ + n

νµ + p → νµ + p

in the limit of small momentum transfer. In the approximation that the
nucleon (and lepton) masses can be neglected, what is the total cross
section for each of these processes in the center-of-mass frame?
For the last two reactions use the neutral current interaction

Hnc = −GF√
2

[ν̄γµ(1+γ5)ν] Jµ
nc

and 〈N |Jµ
nc|N〉 =

1
(2π)3

ūγµ(kV + kAγ5)u

with kV = 1
2−2 sin2 θW if N is a proton and kV = −1

2 if N is a neutron.
[6.3.12] What is the ratio of their cross sections as a function of the

neutrino energy in the lab frame? (Your answer should behave as
σN/σe ∼ (mN/me) ∼ 103 which shows why nucleon-neutrino scattering
is so much easier to observe than electron-neutrino scattering.)
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[6.4] Higgsstrahlung
At LEP II, the dominant mode used to search for the Higgs boson

was “Higgsstrahlung,” e+e− → Z∗ → HZ, where Z∗ just means a Z

intermediate state with an energy significantly different from the resonant
energy MZ .

Compute the (integrated) cross-section for this process as a function
of the center of mass energy s, the Z boson mass mZ , and the Higgs
boson mass mH . Treat me = 0, but do not treat either mZ or mH as small
compared to

√
s. Compare it to the cross section to go into qq̄ final states.

List the most common final states (the Z and H bosons both subse-
quently decay). What features of the decay, if any, clearly distinguish it
from a scattering e+e− → qq̄ with q any quark type?

[6.5] Resonances
The Υ(4s) is a narrow resonance caused by a bb̄ bound state. Its mass

and width are mΥ(4s) = 10.580 GeV, ΓΥ(4s) = 14 MeV, with a branching
fraction to electrons of Br(Υ(4s) → e+e−) = 2.8 × 10−5. It is experi-
mentally useful because the Υ(4s) decays with almost 100% probability
via Υ(4s) → BB̄, with B a meson containing a b̄ quark and B̄ a meson
containing a b quark. This gives a convenient way to produce B meson
pairs approximately at rest, which has been exploited by the B-factories,
BaBar and Belle.

What is the cross-section for e+e− → BB̄ on the Υ(4s) resonance?
Hint: the spin of the Υ(4s) is 1. Use Eq. (6.57).

What, approximately, is the correction to this cross-section formula due
to the radiation of soft photons from the e+ and e−?

[6.6] Compton Scattering:

[6.6.1] Repeat the calculation for unpolarized photon-electron scattering
without neglecting the electron mass, to show that the spin-summed
and averaged matrix element generalizes to

M2 = 2e4

[
p · k′
p · k +

p · k
p · k′ − 2m2

(
1

p · k −
1

p · k′
)

+ m4
(

1
p · k −

1
p · k′

)2
]

,

(6.93)
where electron (photon) 4-momenta are denoted by p (k) and final-
state quantities carry a prime. Show that even though this naively
approaches the result quoted in the main text, −2e4[(s/u) + (u/s)], if
m2 → 0 with s, t and u fixed, the kinematical relation between the
initial and final photon energies and the final-photon scattering angle
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θ (in the initial electron’s rest frame) k0/k0′ = 1 + (k0/m) (1− cos θ),
implies the nominally sub-dominant combination

m2
[

1
p · k −

1
p · k′

]
= 1− cos θ , (6.94)

contributes even when k0 À m. Use this to derive that the differential
cross section in the electron rest frame is given by

dσ

sin θdθ
=

πα2

m2

(
E′

E

)2 [
E′

E
+

E

E′ − sin2 θ

]
. (6.95)

where E = k0 and E′ = k0′ .
[6.6.2] Repeat the calculation for photon-electron scattering, but this time

without averaging (summing) over the initial (final) photon polariza-
tion. Denoting by εi and εf the polarization vector of the initial and
final photon, show that the polarized cross section is given in the rest
frame of the initial electron by the Klein-Nishina formula:

dσ

sin θdθ
=

πα2

2m2

(
E′

E

)2 [
E′

E
+

E

E′ + 4(εf · εi)2 − 2
]

. (6.96)

Show that the sum over photon polarizations gives
∑

if (εf · εi)2 =
1 + cos2 θ, and so reproduces the above result for the unpolarized cross
section. In this form this result can be adapted to describe the impor-
tant process of Bremstrahlung — the radiation of a photon by a charged
fermion as it moves in the Coulomb field of a nucleus. The cross section
for Bremstrahlung can be computed by replacing the initial photon of
the above calculation with the appropriate Fourier component of the
initial Coulomb field.

[6.6.3] Show that regardless of the photon energy, in the limit of small
scattering angles (θ → 0) the polarized differential cross section reduces
to the Thompson formula

dσ

sin θdθ
=

2πα2

m2
(εf · εi)

2 . (6.97)

This is also the result for all angles in the limit E ¿ m. The fact that
this varies inversely with m2 resolves a puzzle as to why ultrarelativis-
tic muons and electrons behave so differently within detectors. After
all, since electrons and muons have exactly the same gauge interactions
within the standard model, any difference between their properties in a
detector can only be due to their different mass and one might naively
expect that this mass difference should become unimportant for ul-
trarelativistic particles. The above result shows that their small-angle
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Compton scattering (and Bremstrahlung) cross sections differ dramat-
ically even in the ultrarelativistic limit. Since it is the Bremstrahlung
due to numerous small-angle scattering events which dominates the en-
ergy loss of an ultrarelativistic charged particle passing through matter,
this proportionality of this cross section to 1/m2 ensures that muons
lose their energy much less efficiently than electrons, and so are much
more penetrating when they pass through a detector.



7

Effective Lagrangians

A great deal of particle phenomenology, including both the properties of
the observed particles and their reactions in many accelerators, deals with
energy scales that are very small in comparison with the mass of the weak
vector bosons, MW or MZ. A technique that has been used to good effect
at various points in the previous chapters is the expansion of low-energy
scattering amplitudes in inverse powers of the W or Z boson masses. This
expansion greatly simplified the corresponding calculations and was justified
in each case by the fact that the typical energies involved in the amplitudes
under consideration were much smaller than MW and MZ.

Concrete examples where this type of expansion is justified are given by
the weak decays of a light meson such as the muon, as was computed in
chapter 5, since the energy scales involved are much smaller than the mass
of the virtual W boson that mediates these decays. A similar simplification
is justified in chapter 6 in the amplitudes for electron-positron annihilation
at energies that are low compared to the Z-boson mass, as well as for the
various neutrino scattering processes that are considered in that chapter.

All of these examples furnish special cases of the general technique of low-
energy expansions. This technique appears ubiquitously throughout physics
because many physical systems have the property that they involve two
(or more) degrees of freedom that each have very different masses. As is
clear from the examples from Chapters 5 and 6, it is often of interest in
these systems to understand the effects the heavy degrees of freedom for
phenomena that take place at much lower energies. The effective-Lagrangian

formalism is a particularly efficient tool for organizing such calculations.
The purpose of this chapter is to systematize these low-energy approx-

imation schemes through the introduction and use of effective Lagrangian
techniques. We do so using the low-energy Fermi theory of the weak inter-
actions as a vehicle for this discussion. The Fermi theory is of interest in its

232
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own right both for use in performing practical low-energy calculations and
for its historical role, since an early version was written down during the
1930’s as a theory of the beta decay of nucleons, then modified in the 1950’s
to include parity violation effects.

7.1 Physics below MW : the spectrum

The first step in properly constructing the low-energy effective Lagrangian
is to identify all of the light degrees of freedom that are to be included. For
the standard model this would include all of the particles that are much
lighter than MW . The complete list of these particles and the fields that
represent them is:

(i) The photon as represented by it gauge potential, Aµ, and abelian
field strength, Fµν = ∂µAν − ∂νAµ.

(ii) The eight gluons, labelled by the color index α = 1, ..., 8, and repre-
sented by the gauge potentials, Gα

µ, and nonabelian field strengths,
Gα

µν = ∂µGα
ν − ∂µGα

ν + g3f
α

βγGβ
µGγ

ν .
(iii) All of the charged leptons, e, µ and τ , and neutrinos, νe, νµ and ντ .

The charged leptons are each represented by a single Dirac spinor
field while the neutrinos fields may be taken to be Majorana fields.

(iv) Finally, all but one—the top—of the quarks, u, c, d, s, b. Each of these
is electrically charged and so is represented by a Dirac spinor field.

The most important part of the low-energy effective Lagrangian that gov-
erns the mutual interactions of these particles is given (at tree level) by
simply discarding all of those terms in the standard model Lagrangian that
involve any heavy fields. The resulting Lagrangian may be denoted L0 and
has the following form:

L0 = Lkin + Lstr + Lem . (7.1)

Here Lkin represents the kinetic and mass terms for all of the fermion fields:

Lkin = −
∑

f

f(/∂ + mf )f . (7.2)

Lstr contains both the kinetic terms and self-interactions of the eight
species of gluons, as well as the terms which describe the strong interac-
tions of the five light quark flavors with these gluons:

Lstr = −1
4
Gα

µνG
µν
α − g2

3Θ3

64π2
εµνλρGα

µνG
α
λρ +

ig3

2

∑
q

Gα
µ qγµλαq . (7.3)
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Lem similarly describes the kinetic terms for the photon together with the
electromagnetic couplings of all of the light charged particles:

Lem = −1
4
FµνF

µν + ie
∑

f

Qf Aµ fγµf . (7.4)

These are the only interactions within the standard model that do not
involve at least one heavy particle such as a W or Z boson, a Higgs boson
or a top quark. These are also the most general renormalizable couplings
that can be written down for this particle content. Following the logic of
subsection 1.2.2, they may therefore be expected to be the interactions that
dominate in processes that take place exclusively at energies that are much
smaller than the masses of these heavy particles.

Of course, just because a particle is heavy compared to the energy scale un-
der consideration does not mean that its effects may be completely ignored.
Although energy conservation forbids the direct production in low-energy
reactions of very heavy particles, they nonetheless contribute through their
virtual effects. In fact, as was seen in chapter 5, many fundamental low-
energy processes, such as the decays of light particles such as the µ− or τ−,
can only be understood through physics at a much heavier scale, since they
proceed by the virtual emission and subsequent decay of a virtual W boson.

Within the effective-Lagrangian framework all such virtual effects are de-
scribed by various nonrenormalizable effective interactions. The next sec-
tions are devoted to constructing these effective interactions.

7.2 The Fermi theory

The goal is to construct the effective interactions in the low-energy Lagran-
gian that reproduce the virtual effects of heavy particles such as the W , Z

or Higgs bosons or the top quark. We will start with the low-energy effects
due to the W couplings to light particles. In order to do so it is convenient
to reconsider the expressions of section 5.3 that describe the standard model
amplitude for tau or muon decay. We do so in order to reconstruct those
features that are of most interest at energies that are low compared to the
W mass.

Recall, then, Eq. (5.19) for the τ decay amplitude:

M(τ → ντfmfn) = e2
W U∗

mn [uν(l)γµ(1+γ5)uτ (k)] [un(p)γν(1+γ5)vm(q)]

×
[
ηµν + (k − l)µ(k − l)ν/M

2
W

(k − l)2 + M2
W − iε

]
. (7.5)

Section 5.3 makes the basic observation that four-momentum conservation
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implies that all of the components of the four-momenta in the problem are,
in the rest frame of the decaying meson, less than or of the order of this
decaying meson’s mass. This fact, together with the small size of the mass
ratios, m2

τ/M
2
W ≈ 5 · 10−4 and m2

µ/M2
W ≈ 2 · 10−6, is then used to simplify

the scattering amplitude by expanding the W -boson propagator in inverse
powers of M2

W :

ηµν + (k − l)µ(k − l)ν/M
2
W

(k − l)2 + M2
W − iε

≈ ηµν

M2
W

[
1− (k − l)2

M2
W

+ · · ·
]

+
(k − l)µ(k − l)ν

M4
W

[
1 + · · ·

]
, (7.6)

in which the ellipsis represents terms that are higher order in (k − l)2/M2
W

than the terms displayed. Keeping only the lowest order term in this expan-
sion gives the following result for Eq. (7.5):

M(τ → ντfmfn) =
GF√

2
U∗

mn [uν(l)γµ(1 + γ5)uτ (k)] [un(p)γµ(1+γ5)vm(q)] .

(7.7)
As in previous chapters the Fermi coupling constant, GF , is defined by the
coupling combination GF /

√
2 = e2

W /M2
W = 1/(2v2).

The key point is that this matrix element, Eq. (7.7), is what would have
been produced at lowest order in perturbation theory,

M(τ → ντfmfn) = 〈ντ ; fm; fn|H |τ〉 , (7.8)

by the following effective interaction:

H = −L = − GF

2
√

2
U∗

mn[ντγ
µ(1+γ5)τ ][fnγµ(1+γ5)fm] + c.c. . (7.9)

It is worth remarking that this type of interaction is not renormalizable
(c.f. section 1.2 for the significance of and criteria for renormalizability).
This simply reflects the fact that nonrenormalizable interactions are char-
acterized by coupling constants which have dimensions of a negative power
of mass (when h̄ = c = 1). The coupling GF in Eq. (7.9) has this property
precisely because this interaction must vanish as the mass of the virtual W

boson becomes arbitrarily large. This is a feature that is typical of an ef-
fective interaction that represents the low-energy effects of a heavy virtual
particle.
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Fig. 7.1. The tree graph that generates the Fermi Lagrangian

7.2.1 Effective charged-current interactions

This same approximation, in which inverse powers of M2
W are neglected, may

be applied in the same way to all of the other decay and scattering ampli-
tudes that are mediated by the exchange of a W boson between light initial
and final states. The result for all of these possible reactions is efficiently
summarized by directly constructing the relevant effective Lagrangian once
and for all, and then only afterwards computing the particular matrix ele-
ment that is of interest for a particular application.

Following the same steps as in the previous example, it is easy to see the
form of the effective Lagrangian that arises in this way to lowest order in
perturbation theory. Recall that the W boson couples to light particles (in
this case the fermions) through an interaction term of the form of Eq. (2.88):

Lcc = eW Wµ Cµ + h.c., (7.10)

in which the charged-current, Cµ, is defined by

Cµ =
3∑

m=1

[
iemγµ(1+γ5)νm +

3∑

n=1

iU∗
nmdmγµ(1+γ5)un

]
. (7.11)

The corresponding effective charged-current interaction is obtained to low-
est order in M−2

W by evaluating the general tree-level graph of figure 7.1,
and approximating the internal (heavy) W boson line by ηµν/M

2
W . The

external-line factors corresponding to the (light) initial and final particles
are not included but are left as operators in the effective interaction that is
being constructed for the low-energy theory.

The effective interaction that is generated in this way by the virtual ex-
change of a W particle is the Fermi Lagrangian:

L′cc =
GF√

2
CµC∗

µ , (7.12)
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with the charged currents given by Eq. (7.11).
It is easily verified that the evaluation of the rate for µ− or τ− decay, or

the cross section for e−νe scattering using the Fermi Lagrangian, Eq. (7.12),
agrees with the leading low-energy approximation to these processes as cal-
culated in chapter 5 and chapter 6.

7.2.2 Effective neutral-current interactions

The other heavy bosons in the standard model whose masses are at least
as heavy as MW may be handled in precisely the same way, by evaluating
the graphs that correspond to figure 7.1 with the intermediate W boson
replaced by a Z or Higgs boson. In this case the couplings of these bosons
to light fermions has the form of Eq. (2.70) or Eq. (2.100). That is,

Lnc = eZ Zµ Nµ, (7.13)

with the neutral current, Nµ, given by:

Nµ =
∑

fermions

ifγµ(T3PL −Q sin2 θW )f,

=
1
2

[
Jµ

3 − 2 sin2 θW Jµ
em

]
. (7.14)

In this last expression, Jµ
em = ifγµQf is the electromagnetic current and

Jµ
3 = ifγµT3(1+γ5)f is the conserved current corresponding to the third

component of weak isospin, T3.
The effects of the virtual exchange of a Z boson due to these couplings

to light fermions can, for energies small compared to MZ , be reproduced by
the following effective interactions:

L′nc = − e2
Z

2M2
Z

NµNµ

= −ρ
GF√

2

[
Jµ

3 − 2 sin2 θW Jµ
em

] [
J3µ − 2 sin2 θW Jemµ

]
, (7.15)

where the ‘ρ-parameter’ is defined as

ρ ≡ M2
W

M2
Z cos2 θW

. (7.16)

It can be seen here to give a measure of the relative strength of the charged-
current and neutral-current weak interactions at low energies. Within the
standard model, and at leading order in α, ρ = 1 (see Eq. (2.52)).
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7.2.3 Virtual Higgs exchange

The Higgs Yukawa couplings are given by

LH−f = H SH , (7.17)

with

SH = −
∑

fermions

mf

v
ff . (7.18)

Virtual Higgs exchange is therefore reproduced at low energies by the
following effective four-fermion interaction:

L′Higgs = − 1
2m2

H

SHSH

=
∑

f

∑

f ′

mfmf ′

2m2
Hv2

ff f
′
f ′

=
GF√
2m2

H

∑

f

∑

f ′
mfmf ′ ff f

′
f ′ . (7.19)

These effective interactions due to the exchange of a virtual Higgs boson
are generally of much less interest than are the effective charged-current and
neutral-current interactions of the previous sections. This is because they
are generally so small as to be impossible to detect in low-energy processes.

One reason that they are so small is that they involve two factors of the
extremely small Higgs Yukawa coupling, mf/v. This suppression is on top of
the overall factor of m−2

H that arises due to the virtual heavy Higgs particle,
and leads to an effective suppression by four powers of a heavy mass rather
than by two as would be naively expected on dimensional grounds for a
four-fermion operator.

This type of interaction would be difficult to detect, however, even if it
were not so heavily suppressed by large masses. That is because—as we see
in more detail in the following section—the effective interaction, Eq. (7.19),
shares the selection rules of the lowest-order interactions of Eq. (7.1) through
Eq. (7.4). Its contribution to any particular reaction will therefore tend to
be swamped by competing processes that are not suppressed at all by powers
of heavy masses.

This is in contrast to the charged-current and neutral-current effective
interactions, which do not directly compete with the lowest-order strong and
electromagnetic interactions. They do not compete because these effective
interactions violate flavor conserving and P- and C- selection rules of the
lowest-order interactions. This is a reflection of the fact that only the W

and Z couplings break these symmetries in the standard model. It follows
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Fig. 7.2. Higher order tree graphs that contribute to the effective Lagrangian

that flavor-changing observables—such as the meson decays of chapter 5—or
parity or charge-conjugation violating reactions—such as the left-right and
forward-backward asymmetries of chapter 6—are guaranteed to receive their
dominant contributions only from the effective charged- and neutral-current
weak interactions.

It is clearly of some interest to understand the accidental and approxi-
mate selection rules and conservation laws of the leading terms, Eq. (7.1)
through Eq. (7.4), of the low-energy effective action. We therefore turn to
these in section 7.3. Before doing so, a few more odds and ends must be set-
tled concerning other potential tree-level effects for the low-energy effective
action, including any potential effects of virtual top quarks. Loop effects are
considered in more detail in section 7.4.

7.2.4 Other tree-level contributions

Eq. (7.12), Eq. (7.18), and Eq. (7.19) derived above do not exhaust the
effective interactions of the low energy theory. Indeed, more and more com-
plicated interactions can arise from more and more complicated graphs in-
volving internal lines that represent heavy particles. figure 7.2 indicates
several such graphs that arise at ‘tree level’ (no loops in the graph), all of
which generate effective interactions that involve six external light-fermion
fields or four light fermionic and one bosonic field.

As may be seen from the figure, it is at this level that a virtual heavy
fermion, such as a top quark, first makes its tree-level appearance. The
important observation is that, starting just from light initial particles, the
standard model interactions only permit a heavy top quark to be virtually
produced together with either a top antiquark or a W boson. In either
case, at least two heavy-particle propagators must therefore appear in the
amplitude. Besides being suppressed by additional powers of the small gauge
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and Yukawa couplings associated with each vertex, the additional heavy-
particle propagators contribute an additional suppression by extra powers
of inverse heavy masses like (MW )−2 or (mt)−2.

Because they involve additional suppressing powers of 1/M2
heavy, such in-

teractions can generally be ignored in comparison with the virtual effects
we have already considered. This will not necessarily remain true when we
consider diagrams containing loops; we address this point in section 7.4.

7.3 Physics below MW : qualitative features

To summarize the results of the previous two sections, interactions at en-
ergies that are small compared to MW are described up to leading order in
M−2

W (and M−2
Z etc.) by the effective Lagrangian,

Leff = L0 + Lwk

= Lkin + Lstr + Lem + Lwk , (7.20)

in which Lkin, Lstr and Lem are given by Eq. (7.2) through Eq. (7.4), and the
weak-interaction Lagrangian, Lwk, represents the sum of the charged-current
and neutral-current interactions,

Lwk = L′cc + L′nc , (7.21)

of Eq. (7.12) and Eq. (7.15). The Higgs interactions are ignored here for
reasons that were touched on in the previous section and are about to be
made more clear in what follows. This low energy Lagrangian has many
important qualitative features, some of which we list:

(i) First and foremost, the particle content of the model includes pre-
cisely those particles that are observed at low energies. This con-
clusion is subject to the caveat that the observed hadrons are to be
interpreted as bound states of the fundamental quarks and gluons
of the strongly-interacting sector–a point we return to in chapter 8.
Moreover, the most important interactions at low energies, described
by the Lagrangian L0, may be characterized as being the most gen-
eral renormalizable interactions that are consistent with this observed
particle content and gauge symmetries. This is significant inasmuch
as it automatically incorporates precisely the experimentally observed
conservation laws and selection rules as accidental symmetries that
are not put in by hand. This point is elaborated in subsequent items.
This gives us confidence that we understand the origin of these sym-



7.3 Physics below MW : qualitative features 241

metries as natural consequences of general principles together with
the given particle content.

(ii) The Lagrangian of Eq. (7.20) has the general form of a collection of
fundamental fermions, the quarks and leptons, interacting under the
influence of three forces each of fundamentally different strength: the
strong force Lstr, the electromagnetic force Lem, and the charged- and
neutral-current ‘weak’ force, Lwk. This agrees with the basic features
of low-energy physics that had been distilled from experiment over
the years before the advent of the standard model.

(iii) Beyond grouping the three basic interactions, this effective interac-
tion allows a fundamental understanding of their relative strengths.
In particular it gives a natural explanation of why the weak interac-
tions are so weak. Unlike the strong and electromagnetic interactions,
whose strength is governed by the size of the corresponding dimen-
sionless gauge coupling constants, g3 and e, the weak interactions are
controlled by a dimensionful coefficient, GF . The weak interactions
are therefore seen to be the weakest of the three forces, not because
the underlying coupling is small, but because they are suppressed by

a large mass scale, namely G
− 1

2
F . That is, the weak interactions were

found, historically, to be weak just because they had only been probed
at energies much smaller than their characteristic energy scale, MW

or MZ.
This understanding was a prerequisite for the partial unification of

the electromagnetic and weak interactions that occurs in the standard
model since, as we have seen in chapter 6, these interactions have
basically the same strength at energies high compared to MW and
MZ.

(iv) The low-energy action, Eq. (7.20), inherits the success of the standard
model in understanding the selection rules of the various interactions
with respect to the discrete symmetries of parity, time-reversal or
charge-conjugation. In particular, the Lagrangian L0 enjoys many
more of the ‘accidental’ symmetries that are discussed in section 2.5
than does the entire standard model Lagrangian, since many of these
accidental symmetries are broken only by the charged W -boson cou-
plings.

The only term in L0 that violates C, P or T is the P and T violating
gluon self-coupling term:

LΘ = −g2
3Θ3

64π2
εµνλρGα

µνG
α
λρ . (7.22)
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This term is something of an embarrassment for the model, since
there is absolutely no experimental evidence for P or T breaking by
the electromagnetic or strong interactions; in fact, Θ3 is bounded by
the non-observation of the neutron electric dipole moment at the level
of |Θ3| < 10−9. It is possible that this term simply happens to be this
small. However, as we discuss in subsection 11.4.2, it appears that
it would require a rather remarkable coincidence for this to happen.
This is one of the so-called ‘naturalness’ problems with the standard
model and it has received considerable attention. In particular there
are some proposals for extensions of the standard model which would
make the smallness of Θ3 automatic. We discuss one such ‘solution’
to the ‘problem’ of the smallness of Θ3 in subsection 11.4.2.

The analogue of Eq. (7.22) for the electromagnetic interactions
need not be considered in L0, however. This is because Eq. (7.22)
is a total derivative—i.e. it has the form ∂µV µ for some four-vector
field V µ, which vanishes in vacuum—and so does not contribute at
all to any physical process.

Given the small size for Θ3, the model successfully predicts that the
electromagnetic and strong interactions at low energies preserve each
of C, P and T. The charged and neutral-current weak interactions
do not respect these symmetries, although only the charged currents
violate CP or T and only do so in the very specific way described by
the complex phase of the KM matrix.

(v) A similar story holds for the accidental continuous symmetries of the
standard model. Since many of these symmetries are broken only by
the W couplings they are inherited as accidental symmetries by the
low-energy terms, L0, of the model.

Recall that the exact accidental symmetries of the standard model
are Ue(1) × Uµ(1) × Uτ (1) × UB(1), corresponding to the exact con-
servation (up to electroweak and mixed gravitational anomalies) of
electron, muon, tau, and baryon numbers. These symmetries are
automatically inherited as accidental symmetries of the low energy
Lagrangian, Eq. (7.20).

The dominant part of the theory at low energies, L0, involving just
the strong and electromagnetic interactions, enjoy more symmetries
than does the entire standard model. All of the candidate accidental
symmetries of the standard model that only failed because they did
not preserve the charged current W couplings are legitimate invari-
ances of L0. From section 2.5 these symmetries consist of separate
phase rotations of each species of Dirac fermion in the low-energy
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model. That is, in the absence of the charged-current weak interac-
tions, the accidental symmetry group of the low-energy theory is en-
larged from [U(1)]4 to [U(1)]11, corresponding to the separate conser-
vation of each type of fermion flavor: i.e. ‘electron number’, ‘electron-
neutrino number’, ‘up-ness’, ‘down-ness’ and all of their analogues for
the successive generations. To the extent that these symmetries are
exact, the lightest particle carrying each quantum number is stable.
Therefore, such particles can only decay via the charged-current weak
interactions. The decays are therefore suppressed by 1/M4

W in every
case.

(vi) Of course, not all of the features of the standard model are obvious
just given the low-energy limit represented by Eq. (7.20). In particu-
lar, the underlying SUL(2)× UY (1)-invariance is not manifest in the
low-energy theory because we have kept only parts of various SUL(2)-
multiplets in the low-energy theory. For example, the bottom quark
and photon are included, and yet the top quark and W boson are not.
Consequences of the pattern of SUL(2) × UY (1) symmetry breaking
such as the existence of the custodial SU(2) of the Higgs sector are
also not easy to understand from the low-energy point of view. In
particular, there is no understanding purely within the low-energy
theory, of why the ρ-parameter of the neutral-current Lagrangian,
Eq. (7.15), should happen to be one (or very close to it), as it is in
the standard model.

The particle content of the low energy theory, together with gen-
eral principles, are not sufficient to determine the value of the ρ pa-
rameter, or certain other parameters. This makes these parameters
particularly useful to probe the underlying structure of the standard
model.

7.4 Running couplings

Another place where heavy particles can affect low energy phenomena is by
appearing in loops, when calculations are carried out beyond the leading
order. So far we have avoided discussing calculations beyond leading order,
partly because we have only aspired to low order accuracy, but partly be-
cause their consideration involves substantial new technical complications.
In particular, the momenta circulating in loops can be arbitrarily high even
if the phenomenon under consideration involves only low energy scales; and
in some cases this only leads to a suppression of the correction by powers of
the coupling (g/4π)2. These same cases also involve ultraviolet divergences,
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Fig. 7.3. One loop scattering processes

which took physicists some time to understand and control. We will not
give a complete exposition of this subject, but it is too important to leave
out entirely, so we will outline the relevant physics here.

7.4.1 An example problem*

Consider as an example problem, the electromagnetic scattering of two fer-
mion species f1, f2 (for instance, e−µ− scattering). The leading order dia-
gram, which is O(e2), is shown in figure 7.3 A. The possible O(e4) corrections
to the matrix element are shown as B-F in the same figure. (In diagram D
it should be understood that the correction can occur at either vertex; in
diagram E the correction can occur on any of the 4 external lines.) The
square of the leading order matrix element MA is |MA|2 ∼ O(e4), while
the interference of these higher order matrix elements with the leading one,
|MAMB−F | ∼ O(e6). In addition there is an O(e3) process with an extra
emitted photon, whose square is also O(e6). We have discussed this process
in subsection 6.7.2: it is infrared divergent but that divergence is cancelled
by an IR divergence in diagrams D and E.

Some of these corrections are ultraviolet (UV) finite. This is true of dia-
gram B, which evaluates to,

MB = ie4Q2
f1

Q2
f2

∫
d4l

(2π)4
−iηµν

l2−iε

−iηαβ

(l+p−k)2−iε
× (7.23)

ū(k)γα−i(−i/p−il/+m1)
(p + l)2+m2

1−iε
γµu(p)×
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ū(k′)γβ−i(−i/p′+il/+m2)
(p′ − l)2+m2

2−iε
γµu(p′) .

To see that this is well behaved at large l, consider the behavior when
l À p, p′, k, k′ the external momenta. At very large l, its l dependence is
summarized by,

∫
d4l

. . . l/ . . . l/ . . .

l2l2l2l2
(7.24)

with the l/ from the two fermion propagators and the 1/l2 from the four
propagators making up the loop. This has the behavior d4l/l6, which is well
behaved at large l. Therefore there is no problem in principle with perform-
ing the integral and evaluating this correction. A version of this diagram,
with the photons replaced by W bosons, is relevant to flavor changing pro-
cesses discussed in subsection 7.5.2.

The situation is different for diagram D. This diagram acts as a mod-
ification of diagram A, in which the vertex γµ in diagram A is replaced
with

e2Q2
f1

∫
d4l

(2π)4
−iηαβ

l2 − iε
γα−i(−i/p−il/ + m)

(p+l)2 + m2 − iε
γµ−i(−i/p′−il/ + m)

(p′+l)2 + m2 − iε
γβ . (7.25)

The large l behavior is now ∼ ∫
d4l l/l//l6, or

∫
d4l/l4, which is logarithmically

divergent. In other words, it appears that the correction from this process
will be infinite.

7.4.2 Regularization, power counting

The appearance of such apparent divergences does not necessarily mean
that the theory is nonsense. What it does mean is that the theory is not
well defined unless some procedure is taken which removes or “cuts off” the
ultraviolet region of such integrations. This is called regularization of the
theory. There are strong results in quantum field theory which show that
the nature of the regularization is unimportant, provided the scale of the
cutoff is sufficiently large and the way the cutoff is imposed does not violate
any symmetries of the theory. The regularized theory is finite. However, if
a diagram was divergent before imposing a cutoff, its contribution remains
large after the cutoff is imposed. For instance, if a diagram is log divergent
in the absence of a cutoff, then with a cutoff its value is of order log(Λ/m),
with Λ the cutoff scale and m some physical scale. Such large contributions
need to be understood and included in the way we do calculations. We must
also make sure that no results for physical measurements depend on Λ.
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Therefore, we need to catalogue the diagrams in which UV divergences
can occur. To do this one follows the procedure outlined for diagrams B and
D of the last subsection, a procedure called power counting. To determine
the potential divergence of a loop diagram (such as B) or sub-diagram (such
as in D), one adds up the following integers:

• for each loop, leading to a
∫

d4l integration: +4

• for each vertex which carries a momentum factor lµ: +1

• for each fermionic propagator with a l/ numerator: +1

• for each propagator, with its 1/l2 denominator: −2

• for each power of a momentum entering the loop: −1.

This sum is called the superficial degree of divergence. If the result is positive
or zero, the diagram or sub-diagram has a UV divergence: a log divergence if
the answer is zero, a power divergence if it is positive. If the sum is negative,
the diagram is finite. For instance, for diagram B above, these rules give
4 + 0 + 2 − 8 + 0 = −2, and the diagram is finite: for diagram D, they
give 4 + 0 + 2 − 6 + 0 = 0, and the diagram is potentially logarithmically
divergent. For diagram F, the sum is 4+0+2−4 = 2, but as we discuss in a
moment, evaluating the diagram will involve two powers of the momentum
which enters the loop, so the total is 4 + 0 + 2− 4− 2 = 0, a log divergence.

There is an alternative way of finding the degree of divergence, in a 4-
dimensional renormalizable theory. Shrink the loop in question to a point.
Add up the dimensions of the fields for each line entering the point: 1 for
scalars and gauge bosons, 3

2 for fermions. If the result will depend on a
power of one of the external line momenta, add that power. The superficial
degree of divergence is 4 minus this sum. For instance, diagram B has 4
fermions entering the loop, so the degree of divergence is 4 − 4 × 3

2 = −2.
For diagram D, with one boson and two fermions, it is 4− 1× 1− 2× 3

2 = 0.
For diagram F , it is 4− 2× 1 = 2, except that the result will be quadratic
in the external gauge boson line’s momentum, so the degree of divergence is
4− 2× 2− 2 = 0.

Large l in momentum space means small separation in position space.
Therefore, a large l divergence occurs when the vertices which the momen-
tum l flows through, become arbitrarily close together. The contribution of
the UV divergent part of a diagram must then be the same as that of a local
interaction. Pictorially, a divergent piece in a diagram can be shrunk to a
pointlike effective interaction:
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The power counting we just presented means that the only such local inter-
actions which loops can contribute, give contributions which act like vertices
or propagator corrections of dimension 4 or smaller, and consistent with the
symmetries of the theory. These are precisely the vertices and kinetic terms
already present in a renormalizable theory. The potential divergences in a
theory are in one-to-one correspondence with the interactions and kinetic
terms of that theory.

7.4.3 Renormalization*

We will refer to the coupling constants which appear in the Lagrangian as
the bare couplings of the theory, and subscript them with a 0, so the elec-
tromagnetic coupling in the Lagrangian will be written e0. Experiments
measure the sum of the bare coupling and the contribution of loops. For
instance, the electromagnetic coupling α is determined by measuring low
energy interactions of electrons—essentially, the process we considered in
figure 7.3. The measured α is given by the sum of the diagrams shown
there, including the large UV contributions of D, E, and F. To avoid large
and cutoff-dependent corrections, we need a procedure for absorbing such
contributions automatically be a re-definition of the couplings and field nor-
malizations, a procedure called renormalization. The easiest way to explain
renormalization is to illustrate it with an explicit example. Therefore we will
carry out part of the calculation of the electromagnetic scattering problem.

Our power counting rules show that diagrams D, E, and F are poten-
tially divergent. The degree of divergence of D is 0, so it can be–and is–
logarithmically divergent. The degree of divergence of E is +1, and of F

is +2. However, the result for E must be linear in the momentum entering
the loop, and the result of F must be quadratic in the momentum entering
the loop, so the degrees of divergence are only logarithmic. Let us briefly
see why.

As we argued, the divergent part of a graph must be local, and it must
respect the symmetries of the theory. In particular, it must satisfy Lorentz
and gauge symmetry. The potentially linearly divergent part of E contains
an odd power of gamma matrices; so must the result. But it must behave
like a local operator quadratic in fermion fields, and the lowest dimension
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operator with an odd power of γ is ψ̄/∂ψ, which contains a derivative–that is,
a power of the external momentum. So E is linear in the external momen-
tum, which reduces its superficial degree of divergence by 1. Now consider
diagram F . The result must be gauge invariant. The lowest order gauge
invariant operator, quadratic in the gauge field, is the field strength squared,
Aµ(q2ηµν − qµqν)Aν , which is quadratic in the momentum; so the divergent
piece must be quadratic in the external momentum, and is therefore only
log divergent.

Furthermore, it turns out that the log divergences arising from D and
E cancel, due to an identity called the Ward identity, which follows from
gauge invariance. We will not give the details. Physically, this cancellation
occurs because the corrections look respectively like ψ̄ /Aψ and ψ̄/∂ψ. Gauge
invariance requires that these appear in the combination ψ̄ /Dψ: the size
of a divergent correction to ψ̄ /Aψ must be Qe times the correction on the
propagator, and this ensures that their contributions to the scattering rate
cancel.

Now we must focus on diagram F. The contribution of this diagram is the
same as of diagram A, except with the propagator replaced with

e2
[ −iηµν

q2 − iε

]
⇒ e2

[ −iηµα

q2 − iε

] (
iΠαβ(q)

) [ −iηβν

q2 − iε

]
, (7.26)

Παβ(q) ≡ ie2
∫

d4l

(2π)4
Tr

[−i(−il/+m)
l2 + m2 − iε

γα −i(−il/−iq/+m)
(l+q)2 + m2 − iε

γβ
]

.

Παβ(q) is referred to as the photon self-energy. Before going any further in
evaluating it, we should figure out everything we can about it on symmetry
grounds alone. Lorentz symmetry tells us that it must be of form, ηµνA(q2)+
B(q2)qµqν , since these are the only rank-two tensors that can be formed
which depend only on q. Gauge invariance requires that a gauge boson only
couple to a conserved current, which means qαΠαβ(q) = 0 must be satisfied.
This imposes A = −q2B, so

Παβ(q) =
(
q2ηαβ − qαqβ

)
Π(q2) , (7.27)

with Π(q2) a scalar function we need to determine. This confirms the claim
above that Παβ(q) must be quadratic in q.

The evaluation of Π(q2) is rather technical. We will take it up at the end
of this section; here we just quote the result:

Π(q2) = − e2

12π2
log

(
Λ2

M2

)
,



7.4 Running couplings 249

M2 ≡ exp
(

6
∫ 1

0
dx x(1−x) log

[
m2 + x(1−x)q2

])

M2 →
{

m2 m2 À |q2| ,
q2e−5/3 |q2| À m2 .

(7.28)

Here Λ is the UV cutoff scale, that is, roughly, the scale beyond which the
effects of UV modes are discarded.

Measurements of the electromagnetic coupling at macroscopic scales find
e2 = 4π/137.036. However, this is not e2

0, the coupling appearing in the La-
grangian. Instead, it is the result from summing all graphs which contribute
to scattering in the q2 → 0 limit. The leading order interaction is of form,

e2
0

(−iηµν

q2

)
JµJν , (7.29)

and the contribution from diagram F is,

e4
0

(−iηµα

q2

) −i(q2ηαβ − qαqβ) log(Λ2/m2
e)

12π2

(−iηβν

q2

)
JµJν

=

(
−e4

0 log(Λ2/m2
e)

12π2

) (−i

q2

) (
ηµν − qµqν

q2

)
JµJν . (7.30)

The appearance of qµqν here is harmless because the currents are conserved,
and so qµJµ = 0. Therefore, we can sum these two contributions to find,

e2
meas = e2

0 −
e4
0

12π2
log

(
Λ2

m2
e

)
+ O(e6) . (7.31)

Now for the crux of renormalization theory. Every electromagnetic in-
teraction involves one photon propagator for every power of e2

0. For each
diagram in which a propagator appears, there is another diagram which is
identical except that a self-energy insertion Παβ appears on that propagator.
Therefore, e2

0 always appears with a −(e4
0/12π2) log(Λ2/m2) correction, with

m2 some physical scale. When we carry out any arbitrary calculation of an
electromagnetic process in terms of e2

0, if we invert Eq. (7.31) and substitute
e2
0 in terms of e2

meas, all reference to Λ will always cancel. Therefore all
physical electromagnetic processes can be computed in terms of e2

meas and
will be Λ independent.

To see how this works explicitly, consider high energy electromagnetic
scattering with large momentum transfer, q2 À m2

e. Evaluating the same
diagrams as above gives a matrix element of the form,

M∝ e2
0 −

e4
0

12π2
log

(
Λ2

q2e−5/3

)
+ O(e6

0) . (7.32)



250 Effective Lagrangians

Eliminating e0 in favor of emeas by substituting Eq. (7.31), this becomes,

M∝ e2
meas −

e4
meas

12π2
log

(
m2

e

q2e−5/3

)
. (7.33)

We simply replace e4
0 by e4

meas in the second term but because the difference
is of order e6 the requirement to use emeas can only be seen by working to
one higher loop order than we have done.

The renormalization procedure just outlined eliminates all dependence on
the cutoff. But it does not necessarily optimize the convergence of the per-
turbative expansion (the expansion in powers of emeas). This is because the
coefficients in this series can contain large logarithms such as the log(m2

e/q2)
in Eq. (7.36); which is around 22 for q2 = M2

Z , for instance. Many of these
logarithms can be absorbed into the definition of the renormalized coupling
itself. For instance, all dependence on the cutoff Λ would be equally well
removed if we were instead to define a ‘running’ renormalized coupling by:

e2
R(µ) = e2

0 −
e4
0

12π2
log

(
Λ2

µ2

)
, (7.34)

where µ is an arbitrary scale we choose for later convenience. Using this in
the above scattering amplitude gives

M∝ e2
R(µ)− e4

R(µ)
12π2

log

(
µ2

q2e−5/3

)
, (7.35)

and so if our interest is in scattering with momentum transfer near q = q0,
then it might be convenient to choose µ2 = q2

0e
−5/3, in which case the

amplitude becomes

M∝ e2
R(q0)− e4

R(q0)
12π2

log

(
q2
0

q2

)
. (7.36)

With this choice for µ there are no explicit large logarithms in the series for
M(q2) (for q2 near q2

0) once it is expressed in powers of eR(q0). The same
would be true for other processes defined a momentum transfers q2 ∼ q2

0

once these are expressed in terms of the renormalized coupling e2(q0). The
utility of this approach is that all of the large logarithms are then contained
within the µ-dependence of eR itself, and these can be determined quite
generally, once and for all, as we shall now see.

To make this prescription useful, we need to know how eR varies with
µ. This can be found by eliminating e0 in terms of a physical quantity like
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emeas, using Eq. (7.31):

e2
R(µ2) = e2

meas −
e4
meas

12π2
log

(
m2

e

µ2

)
+ O(e6

meas) . (7.37)

A slightly more general way of expressing this same result is obtained by
differentiating Eq. (7.37) with respect to µ and using the fact that e2

meas —
the result of an experiment — must be µ independent:

µ2 de2
R(µ)
dµ2

≡ β(e2
R) =

e4
R

12π2
+ O(e6

R) . (7.38)

The function β(e2) is called the beta function, and once it is known integra-
tion of Eq. (7.38) gives eR(µ2).

Superficially it seems silly to differentiate Eq. (7.37) to obtain Eq. (7.38)
if we are simply going to integrate it again to get eR(µ). The point in so
doing is that Eq. (7.38) has a somewhat broader domain of validity than
does Eq. (7.37). This is because Eq. (7.38) relies only on the quantity eR(µ)
being small for the range of µ of interest, while Eq. (7.37) requires both
emeas and emeas log

(
µ2/m2

e

)
to be small. In fact this difference allows us to

trust the general solution to Eq. (7.38), which is

1
e2

R(µ)
=

1
e2

R(µ0)
+

1
12π2

log

(
µ2

0

µ2

)
, (7.39)

and to keep this result for e2
R(µ) to all orders in e2

R(µ0) log(µ2/µ2
0), and not

simply drop all terms which are higher order than e4
R(µ0).

The above result allows the determination of the beta function for the
electromagnetic coupling, including the contribution from loops involving
all charge carriers. Dropping the subscript ‘R’ one finds

β(e2) = bem
e4

4π
, bem =

1
3π

[
1
9
n−1/3 +

4
9
n2/3 + n−1

]
, (7.40)

with n−1/3 the number of charge −1
3 Dirac fermions, n2/3 the number of

charge 2
3 Dirac fermions, and n−1 the number of charge −1 Dirac fermi-

ons, remembering to count each color separately. A species contributes to
the beta function when its mass is less than the scale µ. The solution of
Eq. (7.38) for α = e2/4π is,

1
α(µ1)

=
1

α(µ2)
+ bem log

(
µ2

2

µ2
1

)
. (7.41)

The other coupling of relevance for low energy phenomena is the QCD
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Variable Measurement Scale Value

α Josephson Effect ≈ 500 keV 1/137.03599976 (50)
α (after running to MW ) ≈ 80 GeV 1/128.1
GF Muon Lifetime ≈ 100 MeV 1.16639(1) · 10−5 GeV−2

sin2 θW Electroweak fit ≈ 90 GeV 0.23113(15)

MWcalc (without logs) 77.5 GeV
MWcalc (with logs) 80.20 GeV
MWexp 80.423(39) GeV

Table 7.1. Computed and measured W± mass

coupling, for which a similar calculation gives

1
α3(µ1)

=
1

α3(µ2)
+ b3 log

(
µ2

2

µ2
1

)
, b3 =

1
12π

(2nq − 11N) , (7.42)

with nq the number of quark species and N = 3 is the number of colors.
Notice that for nq ≤ 16 the sign of b3 is opposite of the sign of bem. There-
fore, while α(µ) grows with increasing scale µ, α3 shrinks with scale. This
property, called asymptotic freedom, is central to QCD, and is discussed in
much more detail in chapter 8.

The other couplings of the standard model also renormalize: the complete
set of one loop beta functions appears in subsection 11.4.1. The beta func-
tion in a general theory is now known through two loops, and β(e2) and
β(g2

3) are known to 4 loops.

7.4.4 An application: the W -boson mass

To understand the utility of all this, it is useful to see a concrete example
in which it improves the reliability of a calculation in the standard model.
Consider the standard model relationship for the mass of the W boson:

MW =
g2v

2
=

e

25/4 sin θW

√
GF

=
(

πα√
2GF sin2 θW

) 1
2

. (7.43)

All three of the quantities on the right hand side of Eq. (7.43) are measurable
in low-energy experiments that may be performed below the threshold for
producing real W bosons. This equation may then be used to predict the
mass for the W boson, a result that may be compared with the measured
mass in order to test the model.
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The experimental values for these quantities are given in table 7.1. The
difference between the prediction and the measurement is around 3 GeV
out of 80. Whether this agreement/disagreement is adequate/inadequate
depends on just how accurate the prediction is. In the absence of large
logarithms the corrections to Eq. (7.43) should be roughly electroweak in
size: α/(4π sin2 θW ) ≈ 3 · 10−3—say, a percent. This turns out to be a fair
estimate of the error and the prediction and measurement of the W mass
would be unacceptably different if the first calculation given in table 7.1
were the whole story.

The main point is that the electromagnetic coupling constant, as deter-
mined by the Josephson effect, is the renormalized coupling at the scale
µ = me. To avoid large logarithms, this must be run up from me to the W

mass. With the renormalized couplings defined appropriately this may be
done by simply applying Eq. (7.41), in which the integers, nQ, only count
the number of Dirac fermions that have electric charge, Q, and have a mass
that is smaller than µ. As µ is raised above a charged-particle threshold
the coefficient bem is modified to include this new degree of freedom. This
prescription gives the following result:

1
α(M2)

=
1

α(m2
e)
− 1

3π

∑

f

Q2
f log

(
M2

m2
f

)
. (7.44)

Applying this formula to scales M < 1GeV is inappropriate because it com-
putes the running of α using quarks but at such low energies the relevant
degrees of freedom are the electrically-charged hadrons into which quarks
bind, which we shall meet in more detail in the next chapter. It is never-
theless possible to infer how the coupling runs at these energies by using a
powerful relation (not explained here) between the running of the coupling
α induced by hadrons and the ratio R, encountered in the last chapter, of
hadronic to muonic cross-sections in e+e− scattering (see Eq. (6.34) and
figure 6.3). Using this relation the experimental measurement of R allows
an inference as to how α runs.

At the W mass we find that α(µ2 = M2
W ) = 1/128.1. The one-loop

correction to GF turns out not to involve large logs and so to the present
approximation GF need not be similarly run from mµ to MW . (This is
because the coupling GF arises due to a heavy particle, the W boson. Its
radiative corrections therefore always involve the heavy scale MW , even if the
momenta in question are small.) This gives the recomputed values in Table
7.1, which include the large logs. The large logarithm in this case makes
the difference between agreement and disagreement of the standard model
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with experiment! (A more complete calculation together with a number of
standard model measurements to determine the parameters of the model
yield a value for the W mass which agrees with experiment at the level of
the experimental error, that is, at the 0.05% level as of the date of writing
[2005].)

7.4.5 Evaluation of the self-energy*

We next return to see how the quantity Π(q2) is evaluated. Since this evalu-
ation is quite technical, and the technical details are not used in subsequent
chapters so this subsection may be skipped in a first reading. We include it
to give the interested reader an introduction to the techniques which must
be used to conduct calculations beyond the leading order.

To begin, since we know that Παβ(q) = (ηαβq2− qαqβ)Π(q), we can elim-
inate the tensorial structure by contracting against ηαβ:

ηαβΠαβ(q) = (D − 1)q2Π(q) . (7.45)

Here D = 4 is the dimensionality of spacetime, which we introduce because
we will need to keep track of it later. The contraction simplifies Eq. (7.26)
to

(D−1)q2Π = ie2
∫

d4l

(2π)4
Tr

[−i(−il/+m)
l2 + m2 − iε

γα −i(−il/−iq/+m)
(l+q)2 + m2 − iε

γα

]
. (7.46)

The γ matrices simplify using γαγµγα = (2−D)γµ and γαγα = D, giving

(D−1)q2Π(q) = 4ie2
∫

d4l

(2π)4
(2−D)l · (q+l)−Dm2

[(l+q)2 + m2 − iε][l2 + m2 − iε]
. (7.47)

We will need two tricks and one deep method to evaluate this. The first
trick is called the Feynman parameter trick. As the integrand stands, q · l
appears in the denominator, which makes doing the l integral difficult. We
can fix this as follows. Note that

1
ab

=
∫ 1

0
dx

1
[ax + b(1− x)]2

, (7.48)

and use this on the denominator:

(D−1)q2Π(q) = 4ie2
∫

d4l

(2π)4

∫ 1

0
dx

(2−D)l · (q+l)−Dm2

[xl2 + (1−x)(l+q)2 + m2 − iε]2
.

(7.49)
Now rewrite xl2+(1−x)(q+l)2 = [l+(1−x)q]2+x(1−x)q2. Then it is natural
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to move the x integration outside the l integral and shift l by (1−x)q, leaving

4ie2
∫ 1

0
dx

∫
d4l

(2π)4
(2−D)l2 − (2−D)x(1−x)q2 −Dm2

[l2 + x(1−x)q2 + m2 − iε]2
+ O(l · q) . (7.50)

We have not written out the term proportional to l ·q because it is odd both
under l → −l and x → 1−x, and so integrates to zero.

The next trick is called Wick rotation, and consists of rotating the contour
of the l0 integration. The l0 integration, writing non-covariantly, is of form,

−i

∫
dl0

2π

1 or − (l0)2

[l2 + x(1−x)q2 + m2 − iε− (l0)2]2
. (7.51)

Consider l0 as a complex parameter. The poles in the complex l0 plane
are just below the axis at

√
l2 + m2 + x(1−x)q2 and just above the axis

at −√
l2 + m2 + x(1−x)q2. Therefore, we can rotate the contour to run

along the imaginary axis from −i∞ to i∞. Defining l0E = −il0, the integral
becomes,

(D − 1)q2Π(q) = −4e2
∫ 1

0
dx

∫
d4lE
(2π)4

(2−D)l2E − (2−D)x(1−x)q2 −Dm2

[l2E + x(1−x)q2 + m2]2
,

(7.52)
with l2E = (l0E)2 + l2. The 4-vector (l0E, l) behaves as a positive metric (Eu-
clidean) variable. Henceforth we will drop the subscript.

The rotation we just performed implicitly assumed that q2 > −4m2.
When this is not so, the poles in the l0 plane are pure imaginary for some
values of x and |l|, which will lead to an imaginary part in the self-energy—
in fact, exactly the imaginary part we encountered in section 6.4. The value
of the imaginary part can be determined from the positive q2 expression via
analytic continuation.

The integral we obtain is large l divergent. At this point we need to
regulate, that is, to remove the contributions of very large l, in some way.
However, this must be done in a way which respects all symmetries of the
theory, particularly gauge invariance. The easiest procedure, simply cutting
off the integral at some lE value, breaks gauge invariance. This is because
a gauge transformation changes pµ to pµ + Aµ, that is, shifts momenta. We
must maintain invariance under momentum shifts, which a simple cutoff
does not.

The deep technique we need is called dimensional regularization. The idea
is as follows. The integral we need to conduct has an integrand which gets
smaller at large l as 1/l4. But the volume of momentum space grows as l3dl,
which is just fast enough to compensate. However, if there were D = 4− 2ε

dimensions, rather than 4, then the volume of momentum space would be
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smaller in the ultraviolet, and the integral would converge. We can at least
formally define the integral in 4 − 2ε dimensions, evaluate it, identify the
physical scale where the cutoff is occurring, and continue towards ε → 0.
This is the reason we have kept factors of D in the calculation so far.

To compare different dimensionalities, we must introduce some scale µ

where the momentum space volume is equivalent between the 4 dimen-
sional and 4−2ε dimensional theories. That is, we have to replace

∫
d4l

with µ2ε
∫

d4−2εl, to get the dimensions right. The scale Λ where the size
of momentum space becomes significantly smaller than in 4 dimensions is
where (µ/Λ)2ε becomes significantly smaller than 1, roughly Λ2 = µ2e1/ε or
log(Λ2/µ2) = 1/ε. Therefore we will interpret factors of 1/ε in the result as
logarithms of the UV cutoff, log(Λ2/µ2) (up to a constant).

If this procedure looks mysterious to you, you are not alone. One should
not try to make any physical interpretation of changing the dimensionality
of spacetime. It is just a trick for getting integrals to converge in the UV,
which has the advantage that it is gauge invariant. This is important, be-
cause it looks like the integral we are faced with, Eq. (7.52), will not give
something proportional to q2, as we believe it must. In particular, there
is one contribution proportional to m2 rather than q2, and another which
behaves as l2d4l/l4 which looks to be quadratically divergent, which we
also argued cannot happen. However, in any gauge invariant regularization,
these problems will take care of themselves.

Now let us carry out the integrations. Write

µ2ε
∫

d4−2εl

(2π)4−2ε
= µ2ε (2π)−4+2ε

∫
dΩD

∫
l3−2εdl , (7.53)

with ΩD the angular coordinates in 4− 2ε dimensions. The first integration
gives the volume of the sphere in D dimensions, which turns out to be

∫
dΩD =

2πD/2

Γ(D/2)
, (7.54)

with Γ the usual gamma function, Γ(n+1) = n!. One can check using
Γ(1/2) =

√
π, Γ(n+1) = nΓ(n) that this expression agrees with the well

known results in 1, 2, 3, and 4 dimensions, in which the area of the sphere
is 2, 2π, 4π, and 2π2 respectively. The integral we need to know, in order
to evaluate the radial piece, is,

∫
l2x−1dl

(l2 + α)y
= αx−y Γ(x)Γ(y − x)

2Γ(y)
. (7.55)

This result strictly only holds for x > 0 and y−x > 0; otherwise we define
the answer by analytic continuation.
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Using Eq. (7.54) and Eq. (7.55) to evaluate Eq. (7.52) gives,

−4e2
∫ 1

0
dxµ2ε

∫
dDl

(2π)D

(2−D)l2 − (2−D)x(1−x)q2 −Dm2

(l2 + x(1−x)q2 + m2)2

=
4e2

(2π)4
(
(2π)2µ2

)ε
∫ 1

0
dx

∫
dΩD ×

(
(D−2)

∫
l2(3−ε)−1dl

(l2 + x(1−x)q2 + m2)2
+ Dm2

∫
l2(2−ε)−1dl

(l2 + x(1−x)q2 + m2)2

+(2−D)x(1−x)q2
∫

l2(2−ε)−1dl

(l2 + x(1−x)q2 + m2)2

)

= − 4e2

(4π)2
(
4πµ2

)ε
∫ 1

0
dx×

(
[m2 + x(1−x)q2]1−ε 2(−1+ε)Γ(3−ε)Γ(−1+ε)

Γ(2)Γ(2−ε)

−m2[x(1−x)q2 + m2]−ε 2(2−ε)Γ(2−ε)Γ(ε)
Γ(2)Γ(2−ε)

+x(1−x)q2[x(1−x)q2 + m2]−ε 2(1−ε)Γ(2−ε)Γ(ε)
Γ(2−ε)Γ(2)

)
(7.56)

Now using nΓ(n) = Γ(n+1) werever available, the m2 terms cancel between
the first two expressions, and the whole simplifies to,

(3−2ε)q2Π(q) = −q2 e2

2π2

∫ 1

0
dx x(1−x)

(
4πµ2

m2 + x(1−x)q2

)ε

(3−2ε)Γ(ε) .

(7.57)
The result is proportional to q2, as required by gauge invariance.

Since we want the answer in 4 spacetime dimensions, we must take the
small ε limit of this expression. The small ε behavior of Γ(ε) is

Γ(ε) =
1
ε
− γE + O(ε) . (7.58)

The 1/ε behavior is easily understood: Γ(1+ ε) is almost 0! = 1, and Γ(ε) =
Γ(1 + ε)/ε. In fact the function Γ(x) has a 1/ε type pole at all negative
integers. The presence of the 1/ε factor means that we need other quantities
to O(ε) accuracy; in particular, note that

xε = eε ln(x) ' 1 + ε ln(x) , (7.59)
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which allows us to handle the bracketed quantity to obtain,

Π(q2) = − e2

2π2

(
1
ε

+ γE + ln 4π + ln
µ2

m2

) ∫ 1

0
dxx(1−x) ln

m2

m2 + x(1−x)q2
.

(7.60)
As we discussed, the appearance of 1/ε should really be interpreted as an
appearance of ln(Λ2/µ2). It is conventional to absorb the ln(4π)− γE with
the 1/ε in making this identification, meaning that the quantity we find is,

Π(q2) = − e2

12π2
ln

Λ2

M2
, (7.61)

with M2 defined as in Eq. (7.28).
When computing in MS at renormalization point µ2, a factor of ln(Λ2/µ2)

is to be absorbed into the definition of the coupling, which means that Λ2

should be replaced by µ2 in this final expression. In other words, the MS
prescription is simply that all factors of 1/ε + ln(4π)− γE are simply to be
dropped from final results.

7.5 Higgsless effective theory

Having seen how physics below MW is efficiently described by an effective
field theory, we can ask what happens if the Higgs boson is very heavy
compared to the W boson? Presumably, it should be possible to construct
an effective theory valid for energy scales above MW and MZ , but below the
Higgs mass. For scales below mt, one can also remove the top quark from
the low-energy fields as well. What would such an effective theory look like?

There is another reason for considering this kind of effective theory, in-
dependent of the wish to identify the main ways through which a heavy
Higgs boson enters into observables within the standard model. This rea-
son asks what if the Higgs is absent from the theory altogether? After all,
there is no direct experimental evidence for a Higgs particle to date (2005).
What should we expect if we keep all of the standard model fields except
the Higgs? This question is not purely academic, since there are explicit
models for which the electroweak gauge group is spontaneously broken by a
composite field which is bound together by a new type of strong interaction
(often called ‘technicolor’).

Such an effective theory contains some but not all of the fields in certain
SUL(2) × UY (1) representations. That is, at scales below mt, the theory
contains the left handed bottom quark but not the left handed top, even
thought they fit in the same SUL(2) doublet, Q. At scales below mH , the
theory contains three of the four components of the Higgs doublet, which
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have become the longitudinal components of the W± and Z bosons, but
not the fourth component, the Higgs boson. Therefore the effective theory
must explicitly break SUL(2) × UY (1). More properly, SUL(2) × UY (1) is
nonlinearly realized. The effective theories we will discuss can therefore
contain renormalizable operators which would be forbidden in the standard
model Lagrangian. The result, as we shall see, is that the effective theory
contains a host of possible effective operators and is less predictive than the
full model. Unlike the standard model, it must also break down at energies
not too far above MW /α, since at energies higher than this certain cross
sections become impossibly large due to the absence of the Higgs particle in
the effective theory.

7.5.1 Realizations of broken gauge symmetries

A key assumption in writing down an effective field theory is the low-energy
particle content, since this is required in order to exhaustively identify what
kinds of interactions are possible having any given dimension. This assump-
tion is also crucial in another way, since it governs how symmetries can
restrict the form of the low-energy theory.

The main casualty following from omitting the Higgs is SUL(2) × UY (1)
invariance, at least in the linear realization we use throughout this book.
This symmetry must change because without the physical Higgs particle
there is no SUL(2) multiplet which can contain the three longitudinal modes
of the W and Z bosons, corresponding to the three would-be Goldstone
bosons of the Higgs doublet. What happens to the symmetry is most easily
seen by taking the limit where the Higgs gets heavy within the standard
model, and integrating it out explicitly, leaving an effective theory containing
all of the other standard model particles. This can be done without running
into problems with a nonperturbative Higgs self-coupling if the Higgs mass
is not too large – say mH < (400− 500) GeV.

Such studies show that there are two equivalent ways to think about the
three spontaneously-broken generators of SUL(2) × UY (1) in the resulting
low-energy theory. Either:

• Nonlinear Realization: include the would-be Goldstone bosons in the low-
energy theory, and require the Lagrangian to be invariant under nonlin-

early realized gauge transformations; or
• No Gauge Symmetry: do not include the would-be Goldstone bosons at all

in the low-energy theory and completely ignore the spontaneously broken
gauge symmetries.
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The second case can be regarded as the first, evaluated in an appropriate
unitary gauge.

Each of these formulations is most useful for different kinds of applications.
The nonlinearly-realized form is most useful when computing loop graphs
in the low-energy theory, which arise once one goes beyond leading order in
the low-energy expansion. The second formulation is more convenient for
identifying the kinds of independent effective interactions which arise within
the low-energy Lagrangian, and when exploring their physical consequences
in tree graphs.

It is simplest to see how this works in a toy example of an abelian gauge
field, although the same arguments also generalize to the nonabelian case.
Consider for these purposes a minor modification of the scalar electrodynam-
ics model introduced in subsection 1.6.2, consisting of two complex charged
scalar fields, φ and χ, coupled to electromagnetism with the following La-
grangian,

L = −1
4
FµνF

µν −Dµφ∗Dµφ−Dµχ∗Dµχ− V (φ, χ)

V (φ, χ) = λ2(φ∗φ− v2)2 + m2χ∗χ + · · · , (7.62)

where the ellipses represent various quartic interactions involving χ (whose
form does not concern us), and the covariant derivatives are Dµφ = ∂µφ −
ieAµφ and Dµχ = ∂µχ− ieqAµχ. The U(1) gauge symmetry of this model
acts on the fields as φ → eie ωφ, χ → eieq ωχ and Aµ → Aµ + ∂µω.

The potential V is minimized when the fields take on values φ = v and
χ = 0, which spontaneously breaks the gauge symmetry, and leads to a mass
mχ = m for the real and imaginary parts of the χ field, and mass 2λv for
the real part of φ. Im φ is the would-be Goldstone boson, which through the
Higgs mechanism is ‘eaten’ by the gauge boson to give it its mass, mA = ev.
We choose parameters e ¿ λ and m ¿ λv to ensure mχ, mA ¿ mH , and
integrate out the heavy scalar H.

Our goal is to identify the low-energy Lagrangian and how it realizes the
gauge symmetry, and this is most easily done explicitly by writing φ = Heiξ,
so that the gauge transformation properties are H → H and ξ → ξ + e ω.
The low-energy theory obtained after integrating out H then consists of all
possible Lorentz-invariant interactions

Leff =
∑

I

cIOI(χ̃, Ãµ) , (7.63)

built from the low-energy fields χ̃ = e−iqξχ and Ãµ = Aµ − ∂µξ/e.
Now comes the main point: the form of the low-energy interactions, OI ,
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are completely unconstrained by the broken gauge interactions! It is uncon-
strained because both of the fields χ̃ and Ãµ do not transform at all, since
their ξ-dependence is chosen to cancel the transformation properties of the
original fields χ and Aµ. Furthermore, the fields χ̃ and Ãµ reduce to the
original fields χ and Aµ in unitary gauge, which in these variables is defined
by the gauge-fixing condition ξ = 0.

We see from this example the two equivalent ways described above to think
about spontaneously-broken gauge symmetries in a low-energy effective the-
ory. Nonlinear realization corresponds to keeping the would-be Goldstone
bosons (ξ) in the low-energy theory in addition to the low-energy fields (χ
and Aµ). In this picture the couplings of ξ to the other fields are restricted
by the nonlinearly-realized gauge symmetry. Conversely, in the alternative
formulation the low-energy theory does not depend on ξ at all, and depends
only on the low-energy fields (χ̃ and Ãµ). (In this picture the would-be
Goldstone particles are the longitudinal spin states of the explicitly mas-
sive spin-one fields.) The Lagrangian is completely unconstrained by any
spontaneously-broken gauge symmetries because these have been fixed by
setting ξ = 0.

The same conclusions apply to more complex nonabelian gauge groups,
such as for SUL(2) × UY (1), for which the nonlinearly realized transforma-
tions can also be characterized quite generally. The result for the three
standard model would-be Goldstone bosons is very similar to the nonlinear
transformation of the pseudoscalar meson multiplet, M, under the sponta-
neously broken chiral symmetries of QCD in the effective theory defined in
subsection 8.3.6 for use below the QCD scale. The quarks and leptons sim-
ilarly transform under the broken gauge symmetries in a complicated way
involving the would-be Goldstone boson fields, in much the same way as do
the baryon fields under the broken chiral symmetries.

7.5.2 Application to the standard model

We now summarize the kinds of effective interactions which arise in the
low-energy effective theory without a Higgs particle. To do so we use
the formulation wherein we ignore both the would-be gauge bosons and
the spontaneously-broken gauge symmetries. The field content of the the-
ory consists of the three neutrinos, νn, plus Dirac spinors representing the
charged leptons, `m, and quarks, um and dm. There is no Higgs particle, and
the massless gauge bosons are the gluons and photon: Gα

µ and Aµ for the
gauge symmetry SUc(3) × Uem(1). Finally, there are massive vector fields,
W and Z. If the t-quark is included then such a theory would apply at
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energies above the t-quark mass, and if it is not then it could apply above
the Z boson mass.

Lowest-dimension interactions

Since the standard model works so well, it is useful to write the effective
theory in the form L = LSM + δL, where LSM denotes the standard model
lagrangian density and we can take the coefficients of the deviation terms,
δL, to be small. We further imagine working in the physical mass basis of
fields, for which the mass and kinetic terms appearing in LSM are already
diagonalized. The lowest-dimension terms which are possible in δL given
the above field content and gauge symmetries have dimension two:

δLdim2 = −w m̃2
W W ∗

µWµ − z

2
m̃2

Z ZµZµ , (7.64)

corresponding to small (but otherwise arbitrary) corrections to the W and
Z boson masses. Here we scale out for convenience factors of the standard
model mass parameters, m̃2

W and m̃2
Z , so that |w|, |z| ¿ 1 denote small

dimensionless parameters. We write tilde’s over all standard model parame-
ters because, as we shall see, the presence of the new terms in δL changes the
connection between these parameters and observable quantities like physical
particle masses masses. For instance, this means that m̃W = m̃Z c̃w, where
c̃w = cosθ̃W , even though the physical masses and mixing angles, MW , MZ

and θW , need not satisfy this relation (even at tree level) when w, z 6= 0.
Since the W and Z mass terms arise from a single term in LSM — i.e.

the kinetic term of the Higgs doublet — we expect that one combination
of w and z can be reabsorbed into LSM by suitably redefining fields and
parameters, leaving only one combination of w and z to have physically-
observable implications. This expectation is borne out by explicit calculation
below.

The next-lowest-dimension effective interactions arise at dimension three,
corresponding to arbitrary corrections to the fermion mass matrices. Unfor-
tunately, since there is already a separate parameter in the standard model
for each term in these mass matrices, the presence of these new dimension-3
terms are difficult to detect. The main exception to this statement is the
presence of majorana neutrino masses,

δLdim3 = −1
2

(mν)ijνiPL νj + h.c. , (7.65)

which are no longer forbidden by SUL(2)×UY (1) invariance. The diagonal-
ization of such masses introduce new CKM-type matrices into the leptonic
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charged-current interactions, about which we have much more to say in
chapter 10.

Still more interactions arise at dimension four, including

δLdim4 = −a

4
F̂µνF̂

µν − b

2
Ŵ ∗

µνŴ
µν − c

4
ẐµνẐ

µν +
k

2
F̂µνẐ

µν

− ẽ

s̃wc̃w
Ẑµ f iγ

µ(PL δg̃L
ij + PR δg̃R

ij)fj

− ẽ√
2 s̃w

Ŵ ∗
µ f iγ

µ(PL δh̃L
ij + PR δh̃R

ij)f
′
j + · · · , (7.66)

where (as before) tilde’s denote the parameters which appear in the stan-
dard model part of the lagrangian and the ellipses include other dimension-
4 terms, like kinetic terms for fermions and self-interactions amongst the
spin-one particles. We drop these terms here for simplicity, since they are
less well-constrained than are the ones which are explicitly written. We
anticipate our later comparison with experiments and imagine all of the
dimensionless effective parameters appearing here, a, b, . . . to be small.

We write ‘hats’ over the boson fields in the above expressions since the
kinetic and mass terms for these must be re-diagonalized due to the presence
of δL. Working to linear order in the small effective couplings we see that
this is accomplished by the following redefintions:

Âµ =
(

1− a

2

)
Aµ + k Zµ

Ẑµ =
(

1− c

2

)
Zµ (7.67)

Ŵµ =
(

1− b

2

)
Wµ .

Once this is done the W and Z mass terms become−M2
W W ∗

µWµ−1
2 M2

ZZµZµ,
with the physical masses now given in terms of the lagrangian parameters
by

M2
W = m̃2

W (1 + w − b) M2
Z = m̃2

Z(1 + z − c) . (7.68)

Observable implications

Having made this redefinition it is convenient to identify the combination of
parameters which appears in observables. We must first identify the three
parameters which define the standard model part of the electroweak physics,
and we follow standard practice by choosing these to be the best-measured
quantities: the physical Z mass, MZ, the electromagnetic coupling, α =
e2/4π, and Fermi’s constant as measured in muon decays, GF .
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To this end we may use Eq. (7.68) to eliminate everywhere m̃Z in favor of
MZ . We similarly write the fermion electromagnetic couplings in terms of
the newly-diagonalized field Aµ, to find

Lem = −ẽ

(
1− a

2

)
Aµ ifγµQf , (7.69)

and from this we see that the physical electric charge is given by

e = ẽ

(
1− a

2

)
, (7.70)

which we use from here on to eliminate ẽ in favor of e. Finally, calculating
the Fermi constant which would be inferred from measurements of muon
decay we find (to linear order)

GF√
2

=
ẽ2

8s̃2
wc̃2

wm̃2
Z

(
1− w + ∆e + ∆µ

)
, (7.71)

where

∆` =

[∑

i

∣∣∣δνi` + δhL
νi`

∣∣∣
2
]1/2

− 1 ≈ 2Re δhL
ν``

. (7.72)

Here the sum is over all three neutrino flavors and the last approximate
equality holds if we linearize in the ‘new’ left-handed lepton couplings, δhL

νi`
.

Finally, if we define the physical weak mixing angle, cw = cos θW and sw =
sin θW , in terms of the measured quantities e, MZ and GF , by

GF√
2
≡ e2

8s2
wc2

wM2
Z

, (7.73)

then we may use these expressions to eliminate s̃w and c̃w in terms of sw

and cw to get

s̃2
w = s2

w

[
1 +

c2
w

c2
w − s2

w

(a− c− w + z + ∆e + ∆µ)

]
. (7.74)

These redefinitions express the freedom to absorb the new effective cou-
plings into the definitions of standard model fields and couplings, and so
once they have been done the remaining parameters express physically-
measurable deviations between the predictions of LSM+δL and the standard
model. For instance, only three of the six quantities a, b, c, k, w and z appear
in physical observables after the above redefinitions, because three of them
can be absorbed into the three standard model operators which describe the
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gauge boson masses and kinetic terms. A conventional parameterization of
the three physical combinations of parameters is given by

αS = 4s2
wc2

w

[
a− c− k

(
c2
w − s2

w

cwsw

)]

αT = w − z

αU = 4s2
w

[
a− b

s2
w

+ c

(
c2
w

s2
w

)
− 2k

(
cw

sw

)]
. (7.75)

where α is the physical electromagnetic coupling.
It is now straightforward to find how observables depend on the physical

effective couplings, since this can be obtained by perturbing the relevant
standard model expression to linear order in the deviations parameterized
by δL. For instance, the physical W mass is given by Eq. (7.68) using
m̃W = m̃Z c̃w, leading to

M2
W = (M2

W )SM

[
1− αS

2(c2
w − s2

w)
+

c2
wαT

c2
w − s2

w

+
αU

4s2
w

+
s2
w(∆e + ∆µ)

c2
w − s2

w

]
,

(7.76)
once expressed in terms of the physically-relevant parameters. In this ex-
pression (M2

W )SM = M2
Zc2

w+(δM2
W )r.c. is the standard model value, including

any relevant radiative corrections. (Because these radiative corrections are
performed as if the standard model were true, they paradoxically involve
an implicit choice of fiducial values for the t-quark and Higgs boson, even
though these do not appear within the effective theory.)

Almost all other precisely-measured observables come down to measure-
ments of the couplings of the W and Z couplings to fermions, which in the
physical basis are

δLcc = − e√
2 sw

W ∗
µ f iγ

µ(PL δhL
ij + PR δhR

ij)f
′
j + h.c.

δLnc = − e

swcw
Zµ f iγ

µ(PL δgL
ij + PR δgR

ij)fj , (7.77)

with the physical charged-current couplings given by δhR
ij = δh̃R

ij and

δhL
ij = δh̃L

ij + Vij

[
− αS

4(c2
w − s2

w)
+

c2
wαT

2(c2
w − s2

w)
+

αU

8s2
w

− c2
w(∆e + ∆µ)
2(c2

w − s2
w)

]
,

(7.78)
where Vij is the relevant CKM-type mixing angle for the fermions of interest.
The physical neutral-current couplings are similarly

δg
L(R)
ij = δg̃

L(R)
ij +

1
2

δij g
L(R)
i

[
αT −∆e −∆µ

]
(7.79)
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−δij Qi

[
αS

4(c2
w − s2

w)
− c2

ws2
wαT

c2
w − s2

w

+
c2
ws2

w(∆e + ∆µ)
c2
w − s2

w

]
.

Here gL
i = T3i − Qis

2
w and gR

i = −Qis
2
w denote the usual standard model

Z couplings, with T3i and Qi denoting the relevant fermion electric charge
and diagonal weak isospin.

The implications for observables are quite simple to compute, because
they are obtained by computing the result to lowest order as a function of
MW , g

L(R)
ij = (gL(R)

ij )SM + δg
L(R)
ij , etc. and then using the above expressions

giving MW , δ
L(R)
ij in terms of the effective couplings αS, αT , αU , ∆e and so

on. It typically suffices to work to linear order in these couplings, and this
is justified a posteori by the comparison with precision electroweak observa-
tions, which shows that deviations from the standard model values must be
small.

For instance, the ρ-parameter defined as the relative strength of the low-
energy neutral-current and charged-current lepton couplings, receives con-
tributions from δh, δg and MW , and is given by

ρ = 1 + αT . (7.80)

Similarly, the quantities ∆` measure violations of lepton universality, with

Rπ ≡ Γ(π → eν)
Γ(π → µν)

= RSM
π

[
1 + 2∆e − 2∆µ

]

Rτ ≡ Γ(τ → eνν)
Γ(µ → eνν)

= RSM
τ

[
1 + 2∆τ − 2∆µ

]

Rµτ ≡ Γ(τ → µνν)
Γ(µ → eνν)

= RSM
µτ

[
1 + 2∆τ − 2∆e

]
. (7.81)

Finally, observables in e+e− scattering near the Z pole are obtained by using
the above coupling in the expression Γf = [αMz/(6s2

wc2
w)][|gL

ff |2 + |gR
ff |2],

leading to

Γf = (Γf )SM

[
1 + αT −∆e −∆µ +

2gL
f δg̃L

ff + 2gR
f δg̃R

ff

(gL
f )2 + (gR

f )2
(7.82)

−
(

2gL
f + 2gR

f

(gL
f )2 + (gR

f )2

)
Qf

(
αS

4(c2
w − s2

w)
− c2

ws2
w(αT −∆e −∆µ)

c2
w − s2

w

)]
.

Using these formulae the success of the comparison of standard model
predictions with observations can be parlayed into quantitative constraints
on the size of the effective interactions in δL which are permitted by the
data. Although a complete discussion goes beyond the scope of this book,
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fits to the many well-measured electroweak observables restrict the ‘oblique’
parameters S, T and U to be in the range

S = −0.13± 0.10 T = −0.17± 0.12 U = 0.22± 0.13 , (7.83)

where 1-σ errors are quoted. The quantities ∆e and ∆µ are similarly con-
strained to be smaller than O(10−3). The bounds on the direct couplings,
δh̃ij and δg̃ij , depend on the fermion species involved, but are comparably
strong.

Sensitivity to a heavy top quark and Higgs boson

As an application of the above formalism it is instructive to compute the
dominant contribution of virtual top quarks and Higgs bosons to precision
electroweak observables. Assuming only that both are heavy compared with
the Z boson (as we know to be true for the top quark), this can be done by
first computing the effective interactions which describe their virtual effects
at low energy, and then asking how the effective couplings in δL depend on
their masses, mt and mH .

There are two advantages of performing the calculation in this way. The
first is that it allows us to be systematic in identifying those places which
depend strongly on these masses, since on dimensional grounds the most
dominant dependence arises for the coefficients of the lowest-dimension in-
teractions. The second advantage is that this type of calculation is compar-
atively easy to do. After all, once we find how the effective couplings like
S or T depend on mt and mH we may simply use the above expressions for
observables in terms of these couplings, and need not laboriously rederive
their dependence on top quarks and Higgs bosons.

Since the strongest dependence on heavy masses is likely to come from
the lowest-dimension interactions, we focus first on the dimension-2 effec-
tive couplings, w and z, which we expect can depend quadratically on the
relevant heavy mass. We have seen that only the combination αT = w − z

enters observables, so only this quantity need be computed. Although in
principle the Higgs boson could contribute to this quantity through a loop
graph in which a W or Z temporarily splits into a Higgs loop, we know that
all of the m2

H contributions cancel in αT . We know this because αT con-
tributes to the low-energy ρ parameter, but such a contribution is forbidden
for the Higgs within the standard model by the Higgs sector’s approximate
custodial SU(2) symmetry, discussed in subsection 2.3.2.

The same is not true for the top quark, however, because the custodial
symmetry is broken by the mass difference between the t- and b-quarks. Its
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size can be determined by computing the top and bottom quarks’ contri-
butions to the one loop self-energy of the W and Z bosons. If all fermion
masses are neglected except for mt, then the contribution obtained for T is

(αT )quad ≈ 3α

16π sin2 θW

(
m2

t

M2
W

)
' 0.0095 . (7.84)

We have seen that αT contributes to many electroweak observables, and in
particular to MW . If the tree-level mass relation between the W and Z boson
masses were exact, then the value of sin2 θW quoted earlier, together with
MZ = 91.187 GeV, would predict MW = 79.955 GeV, which is substantially
off from the experimental value, MW = 80.423(39) GeV. However, including
the above correction from the top loop gives MW = 80.334 GeV, in much
better agreement.

The dominant mH dependence can be identified in a very similar way.
Since O(m2

H) contributions to dimension-2 interactions in δL are precluded
by the standard model’s custodial symmetry, the next-largest contributions
(for large mH) should be O(log mH) contributions to dimension-4 interac-
tions. Such contributions (as well as log mt terms) are indeed generated at
one loop within the standard model by the Higgs contribution to the W and
Z self-energies, and show up in δL as contributions to S of the form

(αS)log =
α

12π

[
log

(
m2

H

m̂2
H

)
− 2 log

(
m2

t

m̂2
t

)]

(αT )log =
3α

16π

[
log

(
m2

t

m̂2
t

)
− log

(
m2

H

m̂2
H

)]
(7.85)

(αU)log = − α

2π
log

(
m2

t

m̂2
t

)
. (7.86)

Here m̂t and m̂H represent the fiducial values of the top and Higgs mass
which are used to define the standard model predictions which are the ref-
erence against which δL is compared.

It is through contributions like this that precision fits of standard model
predictions to electroweak measurements acquire a dependence on the Higgs
mass. At this writing (2005) the success of these fits gives a preference for
a comparatively light Higgs, 53 GeV < mH < 213 GeV at 90% C.L. (as
opposed to the direct-search limit mH > 114.4 GeV) providing at present
the only experimental indication we have that the Higgs exists.

Contributions to parameters like T and S can also be generated by new
heavy particles in theories beyond the standard model, particularly those
for which there is no Higgs boson or the Higgs boson is very heavy. Al-
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though contributions to T can be suppressed in these theories if the W and
Z couplings are not protected by custodial symmetries, the same is not typ-
ically true of S, which tends to strongly constrain such theories because
of the good observational bounds on how big S can be. One of the main
motivations for taking a doublet Higgs field seriously is the existence of the
custodial symmetry and its success in describing the precision electroweak
measurements.

Unitarity constraints

Because gauge invariance does not relate the various W and Z couplings
in δL, severe problems arise if one tries to push too high the mass scale
of new physics which provides the theory’s ultraviolet completion. In par-
ticular the tree-level cross section for processes like e+e− → W+W− and
W+W− → W+W− computed using the generic couplings of this Lagran-
gian grows like dσ/d cos θ ∼ α2E2

cm/M4
W at high center-of-mass energies,

Ecm (see problem 3). But growth this fast with energy is inconsistent with
general upper bounds based on the unitarity of the underlying S matrix.
Such an absurd result can only happen if an approximation in the calcula-
tion is breaking down, and the fatal approximation in this instance is the
low-energy expansion which is always implicit when using an effective field
theory.

This tells us that the effective field theory having generic W and Z cou-
plings must break down at energies for which α2E2

cm/M2
W are order unity, or

Ecm of order 1 TeV. If there is no Higgs boson, then some other new degrees
of freedom must intervene at energies at or below this energy in order to
cure this problem.

We note in passing that the standard model itself does not have a sim-
ilar restriction because within the standard model there are cancellations
between the graphs contributing to the problematic processes. For instance,
for the process e+e− → W+W−, cancellations between graphs involving
the exchange of a virtual photon, Z boson and neutrino occur when one
imposes the special relations amongst the W and Z couplings which gauge
invariance enforces. Similarly, as seen in problem 3, Higgs exchange can-
cels the would-be divergence in the WW → WW cross-section. It is only
for gauge-invariant couplings that the effective interactions of the massive
spin-one particles can make sense up to energies Ecm À MW /α.

7.6 Problems

[7.1] Running b quark mass
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The mass of the b quark, listed in appendix A, is 4.24 GeV. In chapter 5,
problem 2, you were instructed to use 3.1 GeV, which is substantially
smaller. In this problem we see why.

At leading order in α3, the scale dependence of the strong coupling g3(µ)
and of h33(µ) (the Yukawa coupling responsible for the bottom mass) are,
in the regime mb < µ < mt,

µ
∂g3

∂µ
(µ) = − 23

3
g3
3(µ)
16π2

,

and

µ
∂h33

∂µ
(µ) = −8

h33(µ)g2
3(µ)

16π2
.

The former expression neglects corrections suppressed by a further g2
3/4π2,

and the latter neglects corrections smaller by a factor of g2
2/g2

3.
The value of g3(µ) is such that α3(µ = MZ) = 0.118. The value of h33 is

determined by the tree level expression, mb = h33v/
√

2, IF you evaluate
h33(µ) using µ = mb, that is, h33(µ = mb) = mb

√
2/v (since this is the

energy scale relevant to the physical mass of the b quark).
The Higgs decay process involves the Hbb̄ vertex at a large energy scale

' mH . Therefore, it is h33(µ = mH) which is relevant in evaluating the
Higgs decay width.

Evaluate h33(µ = mH), assuming mH = 120 GeV. You should be able
to solve for h33(µ = mH) explicitly (that is, analytically without resort to
numerical methods). However, if you get frustrated, solve the differential
equations by numerical means.

Using the tree level relation mb = h33

√
2/v, evaluate what b mass you

should use, to evaluate the Higgs decay width.

[7.2] Hypercharge beta function
Find the expression for b1 the coefficient describing the scale dependence

of the hypercharge coupling, in analogy with Eq. (7.41). Argue from its
sign that Eq. (7.41) for hypercharge predicts that at some ultraviolet
scale Λ, the hypercharge coupling becomes infinite. Use the value for
g2
1(µ = MZ) from appendix A determine what this scale Λ is. Do you

expect that the energy scale Λ you found will ever be experimentally
probed?

[7.3] WW scattering and Unitarity
This problem shows why there must be a Higgs boson, or some ad-

ditional fields beyond those which have been detected experimentally to
date.
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Consider the process W+W− → W+W−. For simplicity, work in the
limit g1 = 0, which is the same as setting e = 0 and e = cot θW = g2.
Furthermore, for simplicity, consider only the scattering of longitudinally
polarized W bosons into longitudinally polarized W bosons (in the CM
frame, which you should use throughout). Write the W energy as E and
the W momentum as p =

√
E2 −M2

W .

[7.3.1] Define the angle between p1 and k1, in the rest frame of the system,
to be θ. For a particle with momentum p, take two of the polarization
vectors, the transverse ones, to be purely spatial and orthogonal to p,
that is, ε(p, λ1, λ2)·p = 0 and ε0(p, λ1, λ2) = 0. The third, longitudinal,
polarization, is defined so that ε(p, λ3) ·p = 0, ε(p, λ3) · ε(p, λ1, λ2) = 0,
ε2(p, λ3) = 1, and ε0(p, λ3) > 0.
Working in spherical coordinates with ~p1 along the z axis, find explicit
expressions, in terms of p and θ, for the longitudinal polarization vectors
for each particle, that is, for the momenta p1, p2, k1, and k2.

[7.3.2] Forget for a moment that there is a Higgs boson.
Find the three tree-level Feynman diagrams which contribute to the ma-
trix element for W+W− → W+W−. Draw them. (The fourth diagram,
photon exchange, is absent because we took e = 0.)
Evaluate each diagram’s contribution to the matrix element for longi-
tudinally polarized W bosons to scatter into longitudinally polarized
W bosons, at general angle θ. Be VERY CAREFUL to find correctly
the relative signs of the different matrix elements.

[7.3.3] Show that, in the limit s →∞ (the large energy limit), that indi-
vidual matrix elements diverge as E4/M4

W . However, when you add the
three matrix elements together, the divergence is ameliorated to “only”
E2/M2

W . Find an expression for the sum of the matrix elements.
Unitarity requires that, if M is decomposed into spherical harmonics,

M(θ) =
∑

`

M`(2`+1)P`(cos θ) ,

with P` the `’th Legendre polynomial, that

M` ≤ 16π ,

the maximum value allowed in a partial wave analysis. Show that the
result violates this bound for ` = 0 above about s ' (2500 GeV)2.

[7.3.4] Now, find the two additional Higgs boson mediated graphs. Evalu-
ate their matrix elements, and show that, when summed with the other
matrix elements, the combination is well behaved in the large E limit,
that is, the matrix element does not grow with a power of E for generic
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θ. What limit may be placed on mH to ensure that this asymptotic
value satisfies the unitarity bound?



Part III

Applications: hadrons





8

Hadrons and QCD

Up until this point quarks and gluons have been treated in basically the
same manner as have leptons, with little acknowledgement of the plain fact
that quarks and gluons are never directly seen in experiments in the same
way as are electrons, protons and pions. This voluntary blindness has been
possible to the extent that we have always considered processes that have
the following two important properties:

(i) They never involve any strongly interacting particles in the initial
state, and

(ii) They never involve any specific combinations of strongly-interacting
particles in the final state—so-called exclusive processes.

The only reactions involving hadrons that have been contemplated are inclu-

sive ones, i.e. those for which we have summed over all possible combinations
of hadrons that could be produced, sometimes subject to some general flavor
conservation rules.

This is obviously a fairly serious handicap, since the vast bulk of the re-
actions that are seen in experiments involve strongly-interacting particles of
one sort or another. In order to be considered a success, the standard model
must provide at least a qualitative, but preferably also a quantitative, pic-
ture of these processes. The model does indeed provide such a framework.
The next chapters are devoted to outlining to what extent predictions and
post-dictions can be made and to what extent they are successful. The
goal is to focus here on those calculations that can be made with the min-
imum of modeling of the unknown dynamics of strongly-coupled physics.
The present chapter is devoted to collecting together the general qualitative
features of strong-interaction physics as it is understood using Quantum
Chromodynamics (QCD).

275
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8.1 Qualitative features of the strong interactions

Since all of the strongly-interacting particles whose properties are meant
to be understood, except for the top quark, are light compared to the W

and Z bosons, it is convenient to work to leading order in 1/MW and so
formulate the analysis in terms of the low-energy effective Lagrangian that
was developed in chapter 7. This Lagrangian is constructed in just such
a way as to efficiently include the dominant contributions of the standard
model at energies that are low compared to MW .

The leading terms of this low-energy Lagrangian are given by L0 of chap-
ter 7:

L0 = Lkin + Lstr + Lem . (8.1)

The three terms in this expression are given by Eq. (7.2), Eq. (7.3), and
Eq. (7.4). This low-energy Lagrangian splits very naturally into a theory of
a number of fermion flavors that interact through two kinds of interactions:
strong and electromagnetic. The third low-energy interaction—the weak
interaction—has coupling strength GF and so is higher order in 1/M2

W than
those given in L0.

The terms in L0 that involve just the strongly-interacting particles of the
low-energy theory—the quarks and gluons—are given by Lstr together with
the quark kinetic– and mass–terms. These, taken together, make up the
QCD Lagrangian:

LQCD =
∑
q

[
−q(/∂ + mq)q +

ig3

2
Gα

µ qγµλαq

]
+

−1
4
Gα

µνG
µν
α − g2

3Θ3

64π2
εµνλρGα

µνG
α
λρ . (8.2)

Since experiment requires that the parameter Θ3 must be extremely small
(see subsection 11.4.2) we take it to be zero in what follows.

For comparison, the terms that involve just the electromagnetically inter-
acting particles—the QED Lagrangian—are:

Lem =
∑

f

[
−f(/∂ + mf )f + ie Aµ fγµQf

]
− 1

4
FµνF

µν . (8.3)

The forms of these two Lagrangians are clearly very similar. The fermion
couplings in each differ only in the current to which each type of gauge boson
couples. Their principal difference is that the gluons couple directly to one
another while the photon does not. The strength of these two interactions
are respectively described in terms of dimensionless gauge couplings, g3 and
e.
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8.1.1 Asymptotic freedom and the strong-coupling regime

As measured at energies of the order of the mass of the Z boson, the strong
and electromagnetic coupling strengths are:

α3(µ2 = M2
Z) ≡ g2

3

4π
(µ2 = M2

Z) = 0.12

α(µ2 = M2
Z) ≡ e2

4π
(µ2 = M2

Z) =
1

128
= 7.8 · 10−3 . (8.4)

The strong coupling is stronger (hence the name), although both are small
enough at this scale to have some confidence in perturbative methods.

At lower energies, these couplings run differently and so take different val-
ues depending on what scale is of interest. For mb < µ < MZ their running
is given by Eq. (7.42) to Eq. (7.41), which are reproduced for convenience
here:

1
αi(µ)

=
1

αi(MZ)
+ bi log

(
M2

Z

µ2

)
,

with : b3 =
1

12π
[2nq − 33] ; (8.5)

and : bem =
1
3π

[(
1
9

)
n−1/3 +

(
4
9

)
n2/3 + n−1

]
.

In these expressions nq represents the number of Dirac fermions whose mass
is smaller than µ that transform as triplets of SUc(3). nQ with Q = −1, 2

3

and −1
3 similarly counts the number of light Dirac fermions in the theory

having each of these electric charges. In practice, for µ greater than the
b-quark mass (mb ≈ 5 GeV), nq = 5, n2/3 = 6, n−1/3 = 9, and n−1 = 3.
With these numbers we have b3 = −0.61 and bem = +0.71.

Since bem is positive, the electromagnetic coupling decreases with decreas-
ing µ. Although the running is only logarithmic and so is very slow, in
principle perturbative methods become more and more accurate for electro-
magnetic processes at lower energies.

By contrast b3 is negative, so the strong coupling gets increasingly strong
for lower scales µ. As was mentioned in chapter 7, a coupling such as g3

that decreases with increasing µ is said to be asymptotically free. Eventually,
for µ sufficiently small, the strong coupling must become large enough to
invalidate perturbation in g3. Putting in the numbers, and remembering to
remove the contribution of each fermion species as µ falls below its mass
threshold, we find:

α3(MZ) = 0.12 ,

α3(mb) = 0.20 ,
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α3(mc) = 0.30 ,

α3(ms) = 1.7 . (8.6)

Since the combination α3/(4π) counts loops, we may estimate that, al-
though it is a good approximation to work perturbatively in α3 for µ =
MZ ≈ 90 GeV or mb ≈ 5 GeV, and marginally acceptable at mc ≈ 1.4 GeV,
the perturbative expansion is expected to fail at several hundred MeV,
µ ∼ ms ≈ 200 MeV. At these scales we should instead expect nonpertur-
bative phenomena to play the dominant role. At these scales, the one-loop
approximation to the scale-dependence of the coupling constant, Eq. (8.5),
should itself be suspect.

We see that there is a natural scale associated with an asymptotically free
interaction such as the QCD coupling, g3. This is the scale at which the
coupling constant becomes ‘strong’. Precisely what this scale is will depend
on just what is meant by ‘strong’. For QCD it has become conventional to
define the QCD scale, ΛQCD, as the point at which the perturbative running
takes α3 to infinity† That is, given the value for the strong coupling at
a particular scale—such as in Eq. (8.4)—and ignoring thresholds, ΛQCD is
determined by solving Eq. (8.5) (or its higher-loop generalization) for µ once
1/α3(µ) is set to zero. The result naturally depends on the value chosen for
nq, and is given at one loop for nq = 3, 4 or 5 by:

Λ(nq)
QCD = MZ exp

(
1

2b3α3(MZ)

)

so : Λ(3)
QCD = 220 MeV

Λ(4)
QCD = 140 MeV

and : Λ(5)
QCD = 80 MeV . (8.7)

It is, of course, not to be believed that the strong coupling really does
diverge at ΛQCD as given in Eq. (8.7). Instead, ΛQCD simply provides a fairly
idiosyncratic way of parameterizing the strength of the strong coupling, since
knowledge of ΛQCD is completely equivalent, by Eq. (8.7), to knowledge of
α3 at some particular scale. The main point is that there really is a physical
scale, in the ballpark of several hundred MeV, at which α3 does become
strong. At this scale, our ability to make firm quantitative predictions for
the behavior of QCD becomes quite limited.

For certain quantities, numerical techniques called lattice QCD are avail-
able, and allow predictions at the ' 5% level. In particular, the masses and

† Strictly speaking this is ΛQCD in the minimal or modified minimal subtraction renormalization
scheme.
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spins of the QCD bound states, to be discussed in the remainder of this
chapter, can be computed from the QCD Lagrangian by lattice methods,
and are in good agreement with observations. To some extent, symmetry
arguments allow for fairly precise statements. For instance, as we will dis-
cuss in section 9.3, the low energy interactions of the lightest hadrons can
be described fairly accurately by an effective theory, chiral perturbation the-
ory, which is based only on symmetry arguments and a few experimental
inputs. However, to a good extent, detailed quantitative understanding is
simply lacking. Nevertheless, we must push ahead and see what we can say
qualitatively or semi-quantitatively.

8.1.2 Bound states

We know that electromagnetic phenomena are well described by Quantum
Electrodynamics, which is equivalent to the electromagnetic part, Lem, of
the low-energy standard model Lagrangian, L0. Even such a weakly-coupled
theory has an extremely rich spectrum that includes many bound states such
as ordinary atoms, molecules or states involving more exotic particles such
as positronium or muonium. The same should be expected to be true in
spades for a more strongly coupled theory such as QCD.

Furthermore, since QED and QCD are so very similar in the form of the
couplings between the elementary fermions and the gauge bosons, they can
be expected to have very similar predictions for the energy levels and decay
widths for states that are heavy enough to lie within the perturbative regime
for QCD. In this section we flesh out this similarity to argue that QCD tends
to bind the quarks and gluons into color-neutral bound states.

To this end, consider the interaction energy, Eint, due to the strong inter-
actions of a quark–antiquark state, |qr, qs〉. For simplicity of presentation
we suppress here all quark indices except for the color labels r and s. Eint

represents the difference between the energy of the two-quark state (in the
center-of-mass frame) and the energy, E0 = E(q) + E(q), of the noninter-
acting quark and antiquark. In perturbation theory this interaction energy
arises for the first time at second order in the quark-gluon interaction Hamil-
tonian:

Eint =
∫

dp
〈qr, qs|Hint|p〉〈p|Hint|qt, qu〉

E(q) + E(q)− E(p)

with Hint = − ig3

2

∫
d3x (qγµλαq) Gα

µ . (8.8)

Introducing the notation, E , for the reduced matrix element once all of the
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coupling constants and color indices have been made explicit, the result
becomes

Eint = −g2
3

4
E

8∑

α=1

(λα)rt (λα)us , (8.9)

where the eight Gell-Mann matrices, λα, are given explicitly in Eq. (1.186).
For the purposes of comparison, the electromagnetic interaction energy of

the same two-quark state is, to leading order in perturbation theory,

Eint(em) = −e2Q1Q2 δrt δus E , (8.10)

for the same matrix element E . Qi is the electric charge of quark type i.
The main observation here is that because both matrix elements involve
only the initial quarks themselves as well as intermediate massless spin-one
particles, the two interaction energies only differ at leading order in their
explicit coupling-constant and color factors.

Now, since the electric charge of the antiquark is −Q and since opposite
electric charges attract and like-sign charges repel, we know that the sign of
the matrix element is positive: E > 0. This ensures that, say, an up quark
and an up antiquark would lower their energy through the electromagnetic
interaction and so attract one another. We can use this information to learn
how the sign of the interaction energy depends on the color combination
taken by the two quarks.

Since each quark comes in three colors, there are a total of nine color
combinations that a two-quark state could take. These nine combinations
transform under SUc(3) as an octet or a singlet: 3 ⊗ 3 = 8 ⊕ 1 (see ap-
pendix B). These combinations may be found by taking the following linear
combinations of the quark-antiquark state:

|q, q;1〉 =
√

1
3

3∑

r=1

|qr, qr〉

=
√

1
3

Tr[|q, q〉] ;

and |q, q;8α〉 =
√

1
2

3∑

r,s=1

(λα)sr|qr, qs〉

=
√

1
2

Tr[λα|q, q〉] , α = 1, ..., 8 . (8.11)

Using the following properties of the color matrices, Tr [λαλβ] = 2δαβ and∑
α Tr[λαλβλαλβ] = −4/3 (see appendix B), we see that the perturbative

energy of interaction within QCD of the octet and singlet quark–antiquark
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combinations is,

Eint(1) = −g2
3

12
E

8∑

α=1

Tr [λαλα]

= −4
3

g2
3 E ;

and : Eint(8β) = −g2
3

8
E

8∑

α=1

Tr [λαλβλαλβ]

= +
1
6

g2
3 E . (8.12)

Notice that, given that E is positive, the color-singlet combination has an
attractive interaction energy and the color-octet combination is repulsive.

Just as for electromagnetism, we expect bound states to form in the cases
where the interaction energy is negative. In the same way that it is ener-
getically favorable to form electrically neutral bound states within QED, we
see that it is favorable within perturbative QCD to form bound states that
are colorless.

This argument can be repeated for other combinations of quarks and glu-
ons in order to decide which combinations can be expected to bind together
into bound states. In all cases it is the color–neutral combination which most
prefers to bind. The quantum numbers of strongly-interacting bound states
should therefore be equivalent to those of the color-singlet combinations of
quarks and gluons.

There are two particularly simple color-singlet combinations of quarks
and antiquarks. These are the singlet quark–antiquark pair discussed above,
together with the completely antisymmetric combination of three quarks (or,
equivalently, antiquarks):

|q, q, q;1〉 = εrst|qr, qs, qt〉 . (8.13)

εrst here is the completely antisymmetric symbol, which is an invariant ten-
sor of SUc(3). As we shall see, these combinations of quarks have the correct
quantum numbers to account for all of the known long-lived hadrons—with
no extras left over, and with perhaps one exception. The quark–antiquark
combinations describe the strongly interacting mesons such as the pions,
kaons and rhos etc.. The three-quark configurations correspond to the
baryons: the protons, neutrons, deltas and such. The three antiquark com-
binations are the antibaryons.

Moving beyond the simplest combinations of quarks, there are a few other
ways strongly interacting particles might bind together into hadrons: glue-
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balls, exotics, and multi-quark objects. We return to this possibility briefly
at the end of subsection 8.3.4 but just note here that if such combinations ex-
ist, they produce highly unstable particles, with perhaps a single exception:
the pentaquark Θ+ with strangeness +1.

8.1.3 The confinement hypothesis

The precise one-to-one correspondence between the color-singlet combina-
tions of quarks and antiquarks and the observed spectrum of strongly-
interacting hadrons is strong circumstantial evidence in favor of the in-
terpretation of these particles as bound states of quarks and antiquarks.
This evidence is further strengthened by the equally perfect agreement be-
tween the predicted and observed quantum numbers of these states under
the conserved and approximately-conserved quantities of the strong interac-
tions. (More about this in subsequent sections.) Even better, the pièce de
résistance is furnished by the extremely successful, quantitative understand-
ing of high-energy inelastic hadron scattering that is possible once hadrons
are recognized as composites of quarks and gluons. As discussed in sec-
tion 9.2, data in these experiments are very well described in terms of hard,
incoherent scattering among the constituents. This agreement includes fea-
tures that are sensitive to the properties of the constituents, and which bear
out the properties expected from the quark-composite picture.

There is an experimental flaw in all of this theoretical ointment, however.
This flaw is the complete failure to directly experimentally observe any of
the constituent quarks or gluons. That is, free quarks have never been
observed. After all, even though bound states arise in QED, the constituent
electrons and nuclei are themselves frequently observed, as are the processes
such as ionization in which constituents are released from their bondage by
a sufficiently large transfer of energy. The analogues of these processes have
never been seen for strongly interacting particles, even though the putative
bound states have been submitted to collision energies that are many times
the rest energy of the bound particles themselves.

What appears to be the resolution to this conundrum may be formulated
as the following conjecture about to the spectrum of QCD:

• The Confinement Hypothesis: The only energy eigenstates of the QCD
Hamiltonian which have finite energy are color neutral.

In principle it should be possible to derive this hypothesis from the QCD
Lagrangian. At this time, no rigorous derivation exists, so it is not abso-
lutely clear that the confinement hypothesis is a bone fide prediction of QCD.
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However, a good deal of circumstantial evidence in its favor has accumulated
over the years, not least by direct attempts to compute the spectrum nu-
merically, via lattice QCD. A non-rigorous but plausible physical picture for
how confinement works has also been developed, and checked to some ex-
tent by lattice QCD. Since the confinement hypothesis seems quite bizarre
at first sight, it is useful to present this physical picture in at least a little
detail.

Consider a bound state, which for the sake of simplicity we take to be
a bound state of two heavy quarks. Imagine that we could “grab hold” of
the quarks and pull them apart from each other. At short distances, we
would encounter a perturbative potential V ∼ α3(r)/r. As r increased to
the scale 1/ΛQCD, however, α3 would become large, and the potential would
rise more steeply than as 1/r. In fact, it is believed that, in the absence of
light quarks, the potential would rise linearly with separation, V ∼ σr. Such
behavior is called linear confinement. Lattice gauge theory has presented
some evidence for this behavior, and even allows an estimate of the string

tension σ, namely σ ∼ 800 MeV/fermi. Therefore, as we attempted to get
the quarks further and further apart, a large investment of energy would
become necessary. Eventually, this energy would be enough to create a
quark-antiquark pair out of the vacuum. The quark would be attracted to
the heavy anti-quark and would form a bound state with it; the anti-quark
would act similarly with the heavy quark. We could then pull the heavy
quark pair apart from each other as far as we liked, but we would not be
creating isolated colored particles. Instead, we would be separating color
neutral bound states, formed from the original particles and extra particles
created out of the vacuum.

This thought experiment tells us an important feature that should be
expected of confining bound states in asymptotically free theories. Colored
constituents should have apparently contradictory properties. They should
behave for small separations as if they are only very weakly interacting,
since the coupling at these small distances is weak. They are nonetheless
effectively confined to within a definite confinement radius, rc, whose size
is set by the condition that the strong coupling, α(Λc), becomes large at
the scale Λc = 1/rc. From what we know about the running of the strong
coupling, we expect that Λc should be in the neighborhood of the only other
scale in this problem: ΛQCD. This would put it in the range of several
hundred MeV. The confinement radius is then in the neighborhood of a
fermi, 10−13 cm.

Notice also that, by the uncertainty principle, particles that are confined
to a region with these linear dimensions should have momenta of order
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p ≈ Λc. For light quarks, this is large compared to the rest mass of the
constituent, and the energy is determined by this momentum, E = p ≈ Λc.
The upshot is that the energy scale which characterizes the mass of such a
bound state is set by the strong interaction scale, Λc, provided only that the
constituents are quite light in comparison.

8.1.4 The hadronic zoo

We are led to expect that all bound states involving only light constituents—
i.e. gluons, up quarks, down quarks and (possibly) strange quarks—should
all cluster in energy independent of the masses of the constituent quarks that
are involved. The energy of these bound states, and the spacing between
energy levels, should be around ΛQCD in order of magnitude. This is in
the vicinity of hundreds of MeV. Conversely, bound states involving heavier
quarks, such as c or b, should have masses that are more dominated by the
intrinsic mass of the quarks they contain.

Consultation of the particle data book shows that, with a few important
exceptions such as the pions, which are discussed further below, this ex-
pectation is borne out by what is experimentally observed. There are very
many strongly-interacting resonances whose energies and energy-spacings
range from half to several GeV. Although they tend to be somewhat heav-
ier than Λc, they have the expected energy to within the accuracy of the
very rough estimate.

It is natural, then, to divide the discussion of the general features of the
QCD spectrum into two qualitatively different cases, according to whether
the masses of the constituent particles are larger or smaller than the con-
finement scale. The next two sections deal with each of these cases in turn.

8.2 Heavy quarks

If the bound particles happen to be much heavier than the confinement
scale, mq > Λc, then they can be expected to be nonrelativistic. In this
case, much of the formalism that has arisen over the years for describing
nonrelativistic bound states can be expected to apply.

8.2.1 Quarkonia

Consider for definiteness a quark–antiquark bound state in which both the
quark and the antiquark are heavy. Concrete examples of this type would
be the bb or cc bound states which are respectively believed to describe the
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q mq α3(mq) r−1
b = α3(mq)mq α3(rb) α3(rb)mq

b 5,000 MeV 0.20 1,000 MeV 0.35 1,750 MeV
c 1,400 MeV 0.30 420 MeV 0.62 870 MeV
s 200 MeV 1.7 340 MeV 0.77 150 MeV

Table 8.1. Zero-point momenta for the heavier qq systems

experimentally observed Υ and J/ψ resonances. The main thing to establish
is just how widely separated the constituents are within these bound states,
since this sets the size of the relevant strong coupling. For heavy quarks
such as these, the existence of confinement should be largely irrelevant, at
least for the lowest-lying states, since the quark and antiquark pair can be
easily contained inside a region of radius rc without acquiring an appreciable
zero-point energy.

To the extent that the size of the bound state is indeed small compared to
rc, it should be very similar to the corresponding electromagnetic particle–
antiparticle system in which an e+e− pair bind into a positronium ‘atom’.
(The quark analogues of this system have borrowed the name and are simi-
larly called quarkonium states.) From experience with the electromagnetic
problem, we know that the size of this type of bound state is set by the
analogue of the Bohr radius: rb ≈ 1/(α3mq), in which mq is the mass of
the bound quark. The corresponding zero point energy is then p ≈ α3mq,
giving a binding energy of order Ebind = p2/(2mq) ≈ α2

3mq.
Clearly, provided that the size of such a bound state is much smaller

than the confinement scale, rb ¿ rc (or equivalently α3mq À Λc), this
gives a consistent picture of a positronium-like bound state of quarks. As
may be seen from the last column in table 8.1, if we take Λc to be in the
neighborhood of several hundred MeV, this condition is well satisfied by the
bb state (bottomonium), is acceptable for the cc system (charmonium), but
is at best marginal for ss.

The cc and bb states may be labelled with their angular momentum quan-
tum numbers, ` and m, their principal quantum number, n, and by the
spin quantum numbers, s and sz, of the quarks. The same spectroscopic
nomenclature is commonly used that is used for atoms. That is S,P,D,F,...
represent the ` = 0, 1, 2, 3, ... eigenstates, etc.

8.2.2 Quantum numbers

Among the most basic properties of these bound states that can be pre-
dicted are their quantum numbers, masses, and lifetimes. The predictions
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for quantum numbers are robust in the sense that they do not depend on the
details of how the inter-quark potential is modeled. They are also impor-
tant, both from the point of view of classifying the observed spectrum and
for understanding the selection rules that allow a qualitative understand-
ing of the expected rates for various transitions among the various energy
levels. For this reason, we defer a discussion of masses and lifetimes to the
literature and focus here on the quantum numbers of the expected bound
states.

It should be emphasized that these quantum number assignments that
are derived in this section are not restricted to bound states that are made
up exclusively of heavy quarks. This is because nothing need be assumed
about the form for the wavefunctions of the states, or about how complicated
the overlap with various many particle states might be. As a result, the
conclusions drawn within the present section can be applied quite generally
for any color-singlet quark combination.

The exact symmetries of the strong interaction Lagrangian, LQCD, are
discussed in some detail in section 7.3. Since Θ3 is known from experiment
to be extremely small, we take it here to be zero. In this case, the strong
interactions conserve separately each of the discrete symmetries, C, P and T.
There is also a U(1) flavor symmetry which ensures the conservation of each
species, i.e. up, down, strange, charmed etc., of fermion. Baryon number,
B, may be defined in terms of these charges by taking their sum.

Since gluons are neutral under the flavor symmetries, the quantum num-
bers of the quark bound states may be simply read off from the quantum
numbers of the valence quarks that are being bound. To see this in more
detail, taking the quarkonium systems as our example once more, we write
the bound-state energy eigenfunction, |Ψ`mssz〉, in the following way:

|Ψ`mssz〉 =
∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) a∗pσ a∗p′σ′ |G〉+ · · · , (8.14)

where
∫
p,p′ means

∫
d3pd3p′/[(2π)62p02p′0]. |G〉 here represents the gluonic

piece of the two quark component of the state, and ψ`mssz(p, σ;p′, σ′) rep-
resents the amplitude for finding valence quarks having the given linear mo-
mentum and spin. The dots represent other terms which involve additional
quark-antiquark states.

The main observation is that, since the conserved charges commute with
the QCD Hamiltonian, each term in this sum must always involve states
which share the same flavor quantum numbers. For the purposes of iden-
tifying the quantum numbers of the full state, Ψ, it is therefore sufficient
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to identify the quantum numbers of the term that is explicitly displayed in
Eq. (8.14).

To take a simple example, given that each quark carries baryon number
1
3 and each antiquark has baryon number −1

3 , we have,

[B, a∗pσ] =
1
3
a∗pσ

and : [B, a∗pσ] = −1
3
a∗pσ . (8.15)

Since the baryon number of the glue state |G〉 is zero, this implies that the
baryon number of |Ψ〉 is the sum of that of the valence quark and antiquark,
and so is zero. Schematically,

B|Ψ〉 =
∑ ∫

ψBa∗a∗|G〉

=
∑ ∫

ψ

[
1
3
a∗ + a∗B

]
a∗|G〉

=
∑ ∫

ψa∗a∗
[
1
3
− 1

3
+ B

]
|G〉 (8.16)

= 0 .

The identical argument gives the eigenvalues of the other flavor quantum
numbers. Clearly, the three-quark states, |qqq〉, carry baryon number B = 1,
and the three-antiquark states, |qqq〉, have B = −1 etc.

A less trivial example is given by the quantum numbers of the meson states
under C and P. Mesons can be classified according to their parity eigenval-
ues. If the quark and antiquark in a meson should have the same flavor
then they may also be labelled by their eigenvalue under charge-conjugation.
Quark-antiquark states that are eigenstates of these symmetries must, on
general grounds, have eigenvalues that are determined by their other quan-
tum numbers. This is because the transformation properties of the quark
and antiquark are necessarily related to one another. The transformation
rules for particle states are given by Eq. (2.104) in section 2.5:

Pa∗p,σP∗ = ηpa
∗
−p,σ

Ca∗p,σC∗ = ηcā
∗
p,σ . (8.17)

In these expressions j denotes the spin of the particle involved and σ repre-
sents the eigenvalue of the z-component of angular momentum. The overbar
on the creation operator indicates that it creates an antiquark. Although
we are ultimately interested in the case j = 1

2 we will keep the quark spin,
j, arbitrary here in order to outline how the final result would change for
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different quark spins. The undetermined phases, η, may differ from particle
type to particle type.

The crucial point for what follows is that general principles require that
the antiparticles must transform with phases that are the complex conjugates
of those of Eq. (8.17):

Pa∗p,σP∗ = (−)2jη∗pa
∗
−p,σ ,

Ca∗p,σC∗ = η∗ca
∗
p,σ . (8.18)

Notice also the additional sign that arises in the parity transformations for
half-integer spin particles. This relation between the C and P phases for
particles and antiparticles can be seen from the requirement that the fields
transform properly under C and P. As was discussed in section 1.2, causality
requires that creation and annihilation operators only appear together in the
schematic combination ψ(x) ∼ (a + a∗). This is only consistent if a∗ and a∗

transform as indicated under C and P.
Eq. (8.17) and Eq. (8.18) imply the following properties for the meson

eigenfunctions, |Ψ`mssz〉:

C|Ψ`mssz〉 =
∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) C a∗pσ a∗p′σ′ |G〉+ · · ·

= (ηcη
∗
c )

∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) a∗pσ a∗p′σ′ C |G〉+ · · · .(8.19)

Notice that the unknown phase, ηc, only enters through the combination
ηcη

∗
c , and so drops out of the final result.

The goal is to manipulate the right-hand-side of this last equation in order
to put it into the form of Eq. (8.14). To this end, we relabel p ↔ p′ and
σ ↔ σ′ and interchange the order of a∗pσ and a∗p′σ′ . This last interchange
introduces an overall factor of (−)2j due to the statistics of the quarks.

After these steps, the right-hand-side would have the same form as in
Eq. (8.14)—assuming the quark and antiquark are the same flavor—except
that ψ`mssz appears with (p, σ) interchanged with (p′, σ′). Now, this wave-
function is either even or odd under the interchange of these arguments
depending on the values of ` and s. In particular, states with orbital angu-
lar momentum, `, acquire a sign (−)` when the three-momenta of the quark
and antiquark are swapped. The singlet spin state, s = 0, is always anti-
symmetric when the quark spin is half-integer, j = n + 1

2 , and symmetric
when it is integer, j = n. The triplet state, s = 1, is similarly even under
interchange of half-integer quark and antiquark spins, or is odd under inter-
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` s J C P (
j = 1

2

) P(j = 1)

0 0 0 + − +
0 1 1 − − +
1 0 1 − + −
1 1 0,1,2 + + −

Table 8.2. C and P eigenvalues for quark-antiquark bound states

change of integer-spins. Exchanging quark and antiquark spins within the
spin wavefunction therefore introduces a further sign (−)2j+s.

Combining all of these signs, and using C|G〉 = |G〉, gives the following
result:

C|Ψ`mssz〉 = (−)2j(−)`(−)2j+s
∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) a∗pσ a∗p′σ′ |G〉+ · · ·

= (−)`+s|Ψ`mssz〉 . (8.20)

An identical argument may be made for parity:

P|Ψ`mssz〉 =
∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′)P a∗pσ a∗p′σ′ |G〉+ · · ·

= (−)2jηpη
∗
p

∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) a∗−p,σ a∗−p′,σ′ P |G〉+ · · ·

= (−)2j
∑

σ,σ′

∫

p,p′
ψ`mssz(−p, σ;−p′, σ′) a∗p,σ a∗p′,σ′ P |G〉+ · · ·

= (−)2j+`
∑

σ,σ′

∫

p,p′
ψ`mssz(p, σ;p′, σ′) a∗pσ a∗p′σ′ |G〉+ · · · .

= (−)2j+`|Ψ`mssz〉 . (8.21)

Notice that the parity eigenvalue here depends on the spin, j, of the con-
stituent quarks, and is completely independent of the unknown parity phase
ηp.

These results have been summarized for some simple quantum numbers
in table 8.2. In this table J represents the total angular momentum of the
bound state and j is the spin of the underlying quarks. The physical case
j = 1

2 is contrasted with what would be predicted for hypothetical bound
states of spin-one quarks.

Since the ` = 0 states correspond to the ground states for the quark-
antiquark pair, these should represent the observed stable mesons. (‘Stable’,
in this context, means stable in the absence of electromagnetic and weak
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interactions.) Excited states should be expected to be able to decay via the
strong interactions (unless they are forbidden from doing so by a selection
rule) and so should be unstable resonances. We may therefore predict the
properties of the stable mesons from the first two rows of table 8.2.

This prediction agrees with the observed meson spectrum provided that
the quarks carry spin one-half. There are two features of the spectrum that
point to j = 1

2 . The first is that stable mesons are either spinless or carry
spin one, i.e. J = 0 or J = 1. This is precisely what would be expected for
two spin-half constituents. By contrast, spinless quarks could not give J = 1
with ` = 0, and spin-one quarks would also predict ` = 0, J = 2 states. Spin-
half quarks also precisely reproduce the correct P and C quantum numbers.
The ground-state spinless mesons are parity-odd and C-even, and the stable
spin-one mesons are similarly parity-odd but are also C-odd.

8.3 Light quarks

If the bound particles are very light compared to the confinement scale,
mq ¿ Λc, then the bound state is not positronium–like at all. In this case
the mass of the bound state is set by zero-point energy, E ≈ p ≈ Λc, that
arises due to the confinement of the constituents within the confinement ra-
dius, rc. Since mq ¿ E, the constituent quarks within such states are highly
relativistic, and so may be well approximated as being massless. This con-
dition is appropriate for bound states that contain the up and down quarks.
Strange quarks lie in the middle ground between this ultrarelativistic case
and the nonrelativistic system considered previously.

Weak coupling methods are not expected to give a good approximation
within this regime, and so it is much more difficult to extract definite pre-
dictions. Much of what can be said in a model-independent way about the
spectrum and the interactions for light-quark bound states therefore relies
purely on symmetry arguments. The symmetries that are used, and their
implications, are the topic of the present section.

8.3.1 Chiral symmetry

We are interested in the symmetry properties of the QCD Lagrangian,
Eq. (8.2). Since only the lightest quarks—u, d and possibly s—are of inter-
est for the present purposes, we work within the low-energy effective theory
defined at scales below the charmed-quark mass threshold, µ < 2mc. In this
energy regime, the most important strong interactions are the usual ones,
but only involving the lightest three quark types.
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There is one main observation upon which all of the rest of the analysis is
based. It is that the quarks involved are very light in comparison to the only
other scale of the problem, Λc or ΛQCD. This suggests the massless limit
as a fruitful first approximation. The effects of nonzero quark masses can
then be incorporated perturbatively as small corrections to the massless—or
chiral—limit.

We therefore split the QCD Lagrangian into a zeroth-order Lagrangian,
Lch, and a mass term, Lm:

LQCD = Lch + Lm (8.22)

with Lch = −1
4
Gα

µνG
µν
α −

(
u d s

) 


/D
/D

/D







u

d

s


 ,

and Lm = −

(
u d s

) 


mu

md

ms







u

d

s


 .

This is just the three-quark QCD Lagrangian with the quarks written out
as an explicit column vector. As usual, a slash indicates contraction with
the gamma-matrices and Dµ is just the QCD covariant derivative, Dµ =
∂µ−ig3TαGα

µ, in which Tα are the SUc(3) generators that are given explicitly
in section 2.1. It is important to keep in mind that these 3×3 matrices act on
the color quantum numbers of the quarks and do not act in the space spanned
by the columns, u, d and s, that are written out explicitly in Eq. (8.23).

To first approximation the quark mass matrix, M ,

M =




mu

md

ms


 , (8.23)

may be neglected. Within this approximation the bound states whose prop-
erties are of interest should reflect the symmetries of Lch. Any symmetries
of Lch that are broken by the mass term, Lm, will then be only approximate
symmetries whose implications for the spectrum are corrected order-by-order
in the quark masses.

8.3.1.1 Chiral SU(3)

The symmetries of Lch are easily determined following the results of sec-
tion 2.5. The kinetic term for nf flavors of Dirac fermions is invariant under
the symmetry group U(2nf ). The group is U(2nf ) rather than U(nf ) be-
cause each Dirac fermion is made up of two Weyl (or Majorana) fermions.
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In order to preserve the gauge couplings of Eq. (8.23), the candidate sym-
metry must also commute with the SUc(3) generators that appear within
the covariant derivative. This implies that it cannot act at all on the color
indices of the quarks and must act purely in flavor space. It also forbids
transformations between triplets and anti-triplets of SUc(3).

The symmetry subgroup of U(2nf ) that satisfies all of these conditions
is the UL(nf )× UR(nf ) which separately shuffles the left- and right-handed
parts of the nf quark flavors. For the nf = 3 quarks of concrete interest, the
action of these symmetry transformations on quark fields may be explicitly
written out:

δ




u

d

s


 =

[
i

2
ωa

LλaPL +
i

2
ωa

RλaPR

]



u

d

s


 . (8.24)

PL = 1
2(1+γ5) projects onto the left-handed components of each of the quark

fields, and PR = 1
2(1−γ5) similarly projects onto the right-handed part. For

a between 1 and 8, λa represents the eight traceless Gell Mann matrices of
Eq. (1.186). Here they are taken to act on the explicitly-written three-by-
three column vectors in flavor space (rather than on color space). For a = 0,
λ0 =

√
2
3I, in which I is the 3 × 3 unit matrix. The normalization ensures

that these matrices satisfy the property Tr(λaλb) = 2δab. ωL and ωR are
the nine spacetime independent group parameters for each of the factors of
UL(3)× UR(3).

8.3.1.2 Anomalies

Of course, symmetries of the classical Lagrangian need not survive quan-
tization. Before extracting the implications of the approximate symmetry
group, UL(3) × UR(3), it is also necessary to check that it is anomaly free.
The criteria for anomaly freedom are spelled out in subsection 2.5.3. Since
we are neglecting all interactions here save for the strong interactions, it
suffices to check only those anomalies that involve both UL(3) × UR(3) and
SUc(3) generators. Anomalies due to the other interactions are dealt with
in subsequent sections.

In order to perform the anomaly-cancellation analysis, it is convenient
to use a different basis of generators of UL(3) × UR(3) than those that are
given in Eq. (8.24). It is preferable in this case to define ωa

L = ωa
V + ωa

A and
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ωa
R = ωa

V − ωa
A. In this case, Eq. (8.24) becomes

δ




u

d

s


 =

[
i

2
ωa

V λa +
i

2
ωa

Aλaγ5

]



u

d

s


 . (8.25)

The vector combination, parameterized by ωa
V , is independent of γ5, and so

rotates left- and right-handed quarks in the same way. The axial genera-
tors, corresponding to ωa

A, are explicitly proportional to γ5, and so act with
opposite sign on left- and right-handed quarks.

Only the axial transformations are potentially anomalous. This is be-
cause the vector generators treat left- and right-handed fermions equally,
and are therefore automatically anomaly-free by the general arguments of
subsection 2.5.3. Even for the axial generators, there is only one nontrivial
condition to be satisfied. That is, since all of the generators of SUc(3) have
zero trace, the only potential anomaly is the mixed anomaly which involves
two SUc(3) generators and one UL(3) × UR(3) generator. This anomaly is
proportional to the trace of the corresponding UL(3) × UR(3) generator, so
the only symmetries with anomalies are those that are both axial and which
have a nonvanishing trace.

The Gell Mann matrices are explicitly traceless. This is because they
generate an SU(3) subgroup of U(3) and so their exponential must have unit
determinant. The only generator of U(3) with a nonzero trace is λ0 =

√
2
3I.

Being proportional to the unit matrix, this commutes with all of the Gell
Mann matrices, and so generates a U(1) subgroup of U(3). Since λ0, together
with the Gell Mann matrices, form a complete basis of 3 × 3 Hermitian
matrices, they span the Lie algebra of U(3). Therefore, U(3) is locally
equivalent to SU(3)× U(1).

The upshot is that there is only a single generator of UL(3)× UR(3) that
is anomalous and so does not survive as a symmetry of the spectrum of the
quantum theory. This is the axial λ0 generator: UA(1). Only the SUA(3)
transformations in UA(3) are bona fide symmetries. Combining this with
the vector part of the group, UV (3) = SUV (3)×UV (1), the full anomaly-free
symmetry group of Lch is therefore G = SUL(3)× SUR(3)× UV (1).

We will now explore the implications of this symmetry group for hadrons.

8.3.2 Exact symmetries: baryon number

As we shall see in the next section, although the group G = SUL(3) ×
SUR(3)× UV (1) is a symmetry of the strong interactions amongst massless
quarks most of it is broken by the other interactions within the standard
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model. It can therefore only be regarded as providing an approximate sym-
metry, to the extent that these other interactions only make small contribu-
tions to the physics of interest and so can be regarded as being perturbations
to the dominant strong interactions. Historically, this pattern of approxi-
mate symmetries had been identified on phenomenological grounds, and it
counts to the standard model’s credit that it provides an explanation for
these symmetries and the pattern of their breaking.

A special role is played by exact symmetries, and the only part of G which
remains a symmetry when extended to the rest of the standard model is the
UV (1) subgroup. Since this rotates all quarks by a common phase, it is
equivalent to the UB(1) symmetry which is responsible for Baryon number
conservation. For this reason in what follows we use the notations UV (1)
and UB(1) interchangeably.

8.3.3 Chiral symmetry breaking effects

The symmetry group G is only an approximate symmetry of the full theory.
Before applying its symmetries to the hadron spectrum, we pause to consider
the size of the effects which can break these symmetries. This is necessary
in order to estimate the accuracy of any given prediction.

There are two ways in which the symmetries of Lch can fail to be symme-
tries of the entire Lagrangian.

(i) They can be explicitly broken by other terms in the Lagrangian.
In decreasing order of importance, the most important symmetry-
breaking terms are the mass terms, Lm, the electromagnetic interac-
tions, Lem, and the weak interactions, Lwk.

(ii) They can have mixed anomalies with the electromagnetic or weak
gauge interactions.

The accuracy of any particular symmetry prediction depends therefore on
the strength of the terms in the Lagrangian which do not respect it, or on
the strength of the interaction which is responsible for the anomaly. Since
there are several interactions with varying strengths which can spoil any
given symmetry, we expect to see a hierarchy of symmetries, each of which
is more and more accurate. In order to explore the nature of this hierarchy,
we next examine the transformation properties of the various interactions.

8.3.3.1 Mass terms

There are no nonzero fermion mass terms which are invariant under ax-
ial transformations. The quark mass terms therefore completely break the
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SUA(3) elements of UL(3) × UR(3). It is noteworthy, though, that the up-
and down-quark masses are both much smaller than the strange-quark mass.
We therefore expect that the SUA(2) transformations that involve only the
u and d quarks will be much less strongly broken than are the rest of the
axial transformations.

The mass term also breaks most of the vector transformations. After
performing a vector transformation, the change in the quark mass matrix is

δMq =
i

2
ωa

V [Mq, λa] . (8.26)

Given that none of the quark masses are equal, the only UV (3) transforma-
tions for which this vanishes are those generated by λ3, λ8, and λ0. These
correspond to three linear combinations of the generators of up number,
down number, and strange number. These three symmetries are preserved
by mass effects, but rotations of one quark type into another are not.

It is useful to identify which symmetries would survive in the approxi-
mation in which just the strange quark is massive. In order to do so, it is
convenient to rewrite the mass matrix as a linear combination of the UV (3)
generators, λa:

Mq =




mu

md

ms


 ,

= m0

√
2
3




1
1

1


 +

m8√
3




1
1

−2


 +

m3

2




1
−1

0


 ,

= m0λ0 + m8λ8 + m3λ3 . (8.27)

The three parameters, m0, m8, and m3 represent the following combinations
of quark masses:

m0 =
1√
6
(mu + md + ms)

m8 =
1

2
√

3
(mu + md − 2ms)

m3 =
1
2
(mu −md) . (8.28)

The utility of this split is that each successive term in Eq. (8.27) preserves
fewer and fewer of the symmetries. The term proportional to λ0 does not
break any of the vector symmetries at all, since it commutes with each
of them. (As we have seen, this corresponds to the exact UB(1) baryon-
number symmetry of the standard model.) The λ8 term commutes with
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an SUI(2) × US(1) subgroup. The SUI(2) factor here is the isospin group,
which shuffles only the u and d quarks. US(1) is the symmetry under which
only the strange quark gets rotated by a phase. The generator of this group
is the strangeness charge, whose normalization is

S =




0
0

−1


 . (8.29)

For historical reasons it is conventional to assign strangeness S = −1 to the
strange quark, s. Finally, the last term breaks even this subgroup down
to Uu(1) × Ud(1) × US(1). The only SUV (3) symmetry-breaking effect of a
nonzero strange-quark mass on the vector symmetries is therefore through
the term proportional to λ8.

An estimate of the size of the corrections to the symmetry predictions
that arise from the mass matrix would be m/M , in which m is the relevant
quark mass combination from Eq. (8.28). M is an estimate of the matrix
elements of the unperturbed Hamiltonian within the bound state of interest,
which we take of order of the bound state’s mass. Since most of the bound
states involving only light quarks have masses in the vicinity of 1 GeV,
we expect that SUL(3) × SUR(3) predictions should be accurate to within
roughly ms/M ≈ 20%. The SUI(2)× US(1) subgroup that survives even in
the presence of a strange quark mass should be much more accurate, with
corrections of order md/M ≈ 1%.

8.3.3.2 Electromagnetic interactions

Electromagnetic interactions can break flavor symmetries in either of two
ways. They may be explicitly broken by the electromagnetic couplings in the
Lagrangian, and there may be nonzero mixed electromagnetic anomalies. In
either case, one might expect symmetry-breaking effects of order α/(4π) ≈
0.1%.

The vector symmetries are broken only in the first of these ways. The
subgroup that remains unbroken by electromagnetic effects is therefore that
which commutes with the electric charge operator:

Q =




2
3

−1
3

−1
3


 . (8.30)

The unbroken symmetry therefore corresponds to a phase rotation of the up
quark, u, together with an SU(2) transformation among the d and s quarks.

The axial symmetries, on the other hand, are not explicitly broken by the
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electromagnetic interactions. This is because the electromagnetic current,
ψ̄γµψ, contains a γµ, and the γ5 of the chiral transformation anti-commutes
across it. However, there may be mixed electromagnetic anomalies. There
are potentially two such anomalies depending on whether one or two factors
of the electromagnetic current are involved. The two anomaly coefficients
are

A(T, Q,Q) = Tr(TQ2) ,

and A(T, T ′, Q) =
1
2

Tr({T, T ′}Q) , (8.31)

in which T and T ′ represent two generators of SUA(3) and Q is the electro-
magnetic charge matrix of Eq. (8.30).

For example, in subsection 9.3.4 we will consider a symmetry which, if
unbroken, would unacceptably suppress π0 decay; namely, the symmetry
generated by T = 1

2λ3. For this generator these two anomaly coefficients
become

A(T,Q, Q) = 2Tr




2
9

− 1
18

0


 =

1
3
6= 0 ,

and A(T, T,Q) = 2Tr




1
6

− 1
12

0


 =

1
6
6= 0 . (8.32)

We shall see that this nonvanishing value turns out to be essential to un-
derstanding the very short lifetime of the π0 meson.

We now turn to the applications of these symmetries to the hadron spec-
trum.

8.3.4 Flavor SUf (3): the ‘eightfold way’

One of the most basic implications of a symmetry for the spectrum of any
theory is the existence of degeneracies. The prediction is that any two par-
ticle states must have the same mass if they are related by a symmetry that
leaves the ground state invariant—i.e. one that is not spontaneously bro-
ken. As a result, the particle spectrum should organize itself into multiplets
of particles with equal masses which form representations of the symmetry
group.

This section explores how the low energy hadrons are grouped into repre-
sentations of the vector subgroup, SUV (3), of the chiral symmetry group G.
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This subgroup is often called flavor SUf (3) (rather than SUV (3)) in much
the same way as the strong gauge group is known as the color SUc(3).

If the symmetry is only approximate rather than exact, as is the case
here, then the particles within any such multiplet will have mass splittings
that are governed by the strength of the non-invariant interactions. From
the estimates of the previous section we see that we therefore expect to find
particles in SUf (3) representations whose masses are split by roughly 20%.
Each of these SUf (3) multiplets may themselves be broken up into SUI(2)
representations whose elements should be degenerate to within roughly 1%.

The experimental fact that the hadron spectrum does indeed seem to
be so organized gives us evidence that the QCD ground state does not
spontaneously break SUf (3).

8.3.4.1 Mesons

Consider first the qq bound states. From table 8.2, we know that with spin-
half quarks the stable mesons should have the quantum numbers JPC = 0−+

and JPC = 1−−. Each of these should come in any of nine flavors since each
quark type can be either u, d or s.

For the purposes of displaying the SUf (3) transformation properties, it is
convenient to write these nine flavor states as a 3× 3 Hermitian matrix:

M =




u

d

s




(
u d s

)

=




uu ud us

du dd ds

su sd ss


 . (8.33)

We would like to determine how these quark pairs transform under SUf (3).
From the quark transformation rules, Eq. (8.25), the matrix M inherits the
following transformation property: δM = i

2ωa
V [λa,M]. The combinations

which form irreducible representations of the flavor group may be identified
by expanding M in terms of the generators λa, a = 0, ..., 8: M =

∑
a µaλa.

Clearly, since λ0 is proportional to the unit matrix, it is a flavor-invariant
state, or singlet. Also, since the eight remaining Gell Mann matrices satisfy
the commutation relations of SUf (3), the eight combinations, µa, a = 1, ..., 8,
form an eight-dimensional representation—a flavor octet. This decomposi-
tion of M into irreducible representations may be summarized by the sym-
bolic equation: 3⊗ 3 = 8⊕ 1.

The nine pseudoscalar (JPC = 0−+) quark-antiquark states having defi-
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nite SUf (3) transformation properties, µa, carry the following names:

M =
9∑

a=1

µaλa

=




µ3 + 1√
3
µ8 +

√
2
3µ0 µ1 − iµ2 µ4 − iµ5

µ1 + iµ2 −µ3 + 1√
3
µ8 +

√
2
3µ0 µ6 − iµ7

µ4 + iµ5 µ6 + iµ7 − 2√
3
µ8 +

√
2
3µ0




=




π0 + 1√
3
η8 +

√
2
3η0

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8 +

√
2
3η0

√
2K0

√
2K− √

2 K
0 − 2√

3
η8 +

√
2
3η0


 .

(8.34)

Comparing these flavor eigenstates with the quark combinations shown in
Eq. (8.33) allows us to solve for the valence-quark content of each particle
type:

π0 = µ3 ∼ 1
2
(uu− dd)

π+ =
1√
2
(µ1 − iµ2) ∼ ud

π− =
1√
2
(µ1 + iµ2) ∼ du

K+ =
1√
2
(µ4 − iµ5) ∼ us

K− =
1√
2
(µ4 + iµ5) ∼ su (8.35)

K0 =
1√
2
(µ6 − iµ7) ∼ ds

K
0 =

1√
2
(µ6 + iµ7) ∼ sd

η8 = µ8 =
1

2
√

3
(uu + dd− 2ss)

η0 = µ0 =
1√
6
(uu + dd + ss) .

As may be seen from their quark content,the superscripts 0, + and − rep-
resent the electric charges of the corresponding states.
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The pseudovector states, with JPC = 1−−, are similarly labelled:

M̃ =




ρ0 + 1√
3
ω8 +

√
2
3ω0

√
2ρ+

√
2K+∗

√
2ρ− −ρ0 + 1√

3
ω8 +

√
2
3ω0

√
2K0∗

√
2K−∗ √

2 K
0∗ − 2√

3
ω8 +

√
2
3ω0


 .

(8.36)
The valence-quark content of each of these states is identical to that of the
corresponding pseudoscalar meson.

The pseudoscalar η0 and the pseudovector ω0 are the SUf (3) singlet states.
The pseudoscalar octet consists of π0, π±,K0, K

0
,K± and η8. The 1−− octet

is ρ0, ρ±,K0∗, K0∗
,K±∗ and ω8. In the limit that SUf (3) is unbroken, all of

the mesons within an octet would be degenerate in mass.
Since (md−mu) ¿ (ms−md), invariance under SUI(2) is a much better

approximation than SUf (3). It is therefore useful to know how the SUf (3)
octets break up into isospin representations. Since the isospin generators are
given by λa, with a = 1, 2, 3, the combinations (π0, π±) and (ρ0, ρ±) form
triplets of SUI(2). Since the corresponding generators also commute with
the strangeness generator, S, these two triplet representations each have
S = 0. Each octet also contains two isodoublets: (K+, K0) and (K+∗, K0∗)
with S = +1, and (K−, K

0) and (K−∗, K
0∗) with S = −1. Finally, both η8

and ω8 are isospin singlets having S = 0. Each of these isospin multiplets
should be degenerate to within much greater accuracy than are the octets.

We return to the size of the expected mass splittings within a flavor mul-
tiplet in a subsequent section.

8.3.4.2 Baryons

The transformation properties of the baryons may be performed in a similar
way. Since the baryons contain three valence quarks, the counting of the
states proceeds slightly differently. The typical valence contribution to the
baryon state is

|Ψ〉 =
∑

σ1,σ2,σ3

∑

λ1,λ2,λ3

∫ ∏

i

d3pi

2p0
i (2π)3

ψ(p1, σ1; ...,p3, σ3)a∗1a
∗
2a
∗
3|G〉+ · · · .

(8.37)
λi, σi and pi here represent the flavor, spin and momentum quantum num-
bers of quark type ‘i’.

Since the ground state is expected to have vanishing relative angular mo-
mentum for all of the quarks, the spin of the stable baryons should be
completely determined by the spin of the quarks they contain. Since each
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quark carries spin half, the potential baryon spin states are determined by
the rules for the addition of angular momenta:

1
2
⊗ 1

2
⊗ 1

2
=

1
2
⊕ 1

2
⊕ 3

2
. (8.38)

There are also potentially 33 = 27 flavor combinations that may be taken
by the three quarks in the baryon. Together with the eight possible spin
states, this would superficially allow 8 × 27 = 216 possible combinations
of quantum numbers. Not all of these combinations are actually realized
in the spectrum, however, because statistics requires that the entire wave-
function must be completely antisymmetric under the interchange of any
two quarks. (No such restriction exists for the mesons because a quark and
an antiquark are distinguishable.) Since the color part of the wavefunc-
tion is proportional to the completely antisymmetric invariant tensor, εrst,
of SUc(3)—c.f. Eq. (8.13)—it is by itself already completely antisymmetric.
This means that the rest of the wavefunction must be completely symmetric.
Given no relative angular momentum between quarks in the ground state,
the wavefunction is automatically symmetric under the interchange of any
two of the quark three-momenta, pi. This implies that the flavor and spin
parts of the wavefunction must also be completely symmetric.

There are a total of 56 states that satisfy these symmetry conditions.
The completely symmetric combination of all three of the quark spins forms
a j = 3

2 spin state. This must transform as a 10 of SUf (3) since this is
the completely symmetric combination of three triplets. The only other
allowed combination is a spin-half SUf (3)-octet of baryons which has mixed
symmetry under the interchange of only spins or only flavors. We would
therefore predict a decuplet of spin-3

2 baryons together with an octet of spin-
half baryons, which agrees with the observed multiplets of stable baryons.
(This adds up to 56 states because there are 2 allowed spin states for each
spin-half baryon and 4 allowed spin states for each spin-3

2 baryon.)
Notice that this agreement between predictions for the quantum numbers

and the observed spectrum relies crucially on the color degree of freedom.
It also relies on the requirement of the color-neutrality of the bound state,
since this is what implies that the state is completely antisymmetric with
respect to the interchange of any of its color indices. Historically it was the
requirement that the observed quantum numbers agree with the statistics
requirement that first led to the hypothesis that quarks carry color.

The baryon octet can be written in the same matrix form as were the
meson octets, M and M̃. Besides exhibiting the SUf (3) transformation
laws explicitly, this allows the determination of the valence quark content



302 Hadrons and QCD

of any particular octet baryon. The principal observation that is necessary
is that an antisymmetric combination of two quarks must transform just as
does an antiquark under SUf (3). This is because the two may be related
using the completely antisymmetric invariant tensor of SU(3): qi = εijkqjqk.
For example, [u, d] = ud−du transforms under SUf (3) in precisely the same
way as does s.

This quark content may be found by comparing the octet quark matrix,



u[d, s] u[s, u] u[u, d]
d[d, s] d[s, u] d[u, d]
s[d, s] s[s, u] s[u, d]


 , (8.39)

with the λa basis of baryons:

B =




Σ0 + 1√
3
Λ8 Σ+ p

Σ− −Σ0 + 1√
3
Λ8 n

Ξ− Ξ0 − 2√
3
Λ8


 . (8.40)

The SUf (3) transformation rules for these states are δB = i
2ωa

V [λa,B]. The
antibaryons similarly lie in a distinct octet, B.

The valence-quark content of these octet baryons therefore is

Σ0,Λ8 ∼ dus, Σ+ ∼ uus, Σ− ∼ dds; (8.41)

Ξ0 ∼ uss, Ξ− ∼ dss ; (8.42)

and : p ∼ uud, n ∼ udd . (8.43)

The SUI(2) × US(1) quantum numbers of these states may be seen by
comparing with the meson octet and/or by examining the valence quark
content. We see that there is an S = −1 isotriplet of baryons, (Σ0 and Σ±);
an S = 0 isodoublet of nucleons—i.e. the proton and neutron—(n and p);
an S = −2 isodoublet of cascade particles, (Ξ0 and Ξ−); and an S = −1
isoscalar baryon Λ8.

The quantum numbers of the decuplet of spin-3
2 baryons is similarly given

by an isospin-3
2 , S = 0 multiplet,

∆− ∼ ddd , ∆0 ∼ ddu , ∆+ ∼ duu , ∆++ ∼ uuu ; (8.44)

an isotriplet S = −1 multiplet,

Σ−∗ ∼ dds , Σ0∗ ∼ dus , Σ+∗ ∼ uus ; (8.45)

an S = −2 isodoublet,

Ξ−∗ ∼ dss , Ξ0∗ ∼ uss ; (8.46)
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and an S = −3 isosinglet,

Ω− ∼ sss . (8.47)

These ten baryon flavors would be degenerate in the limit of SUf (3) invari-
ance, but have this degeneracy lifted by correction terms which we explore
later. Inspection of the particle data book shows that the isospin multiplets
that lie within the baryon octet and decuplet are indeed split from one an-
other in mass by roughly 25%, as our order-of-magnitude estimate would
indicate. The flavor SU(3) was discovered phenomenologically, carrying the
name the eightfold way, well before the unraveling of the theory of the strong
interactions. Splitting within the isomultiplets themselves are much smaller,
and are of the order of the 1% effects that we expect.

8.3.4.3 Glueballs, exotics

So far we have only considered hadrons which can be considered to be com-
posed of a qq pair or three quarks. There are other ways of combining quarks
and gluons into colorless combinations, which we now briefly address.

Two gluons can combine together in a singlet color combination, forming
an object rather prosaically named a glueball. Similarly, a gluon can bind a
quark-antiquark pair in a color octet combination, to form an exotic meson
(or three quarks and a gluon can form an exotic baryon). However, the
masses of such objects are expected to be quite large–for instance, lattice
simulations attribute a mass to the lightest glueball, the JPC = 0++ glueball,
of around 1.6 GeV. Since there are combinations of mesons with the same
quantum numbers and much smaller combined masses than any glueballs or
exotics, these bound states are expected to be very short lived, which makes
their clean experimental identification very difficult. Although strongly-
interacting states have been observed which might be interpreted as being
glueballs, as of this writing (2005) experimental difficulties have precluded
a definitive glueball interpretation for any of them.

Similarly, it is possible to construct colorless combinations of 4 quarks
and an anti-quark, called a pentaquark, or of 6 quarks, called a hexaquark.
There are some theoretical arguments that a SUV (3) singlet, JPC = 0++

hexaquark (containing 2 up quarks, 2 down quarks, and 2 strange quarks)
should be strongly bound, but there has never been compelling evidence for
such a combination. Similarly, pentaquarks are expected to be heavy and
very short-lived, with one possible exception.

A pentaquark would consist of 4 quarks and an anti-quark. The most
attractive color channel between two quarks is for their colors to be anti-
symmetrized, εrstqsqt, forming a 3. If the 4 quarks combine in this way,
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they form two diquark 3’s, which together with the 3 of the anti-quark can
form a color singlet combination. If the diquark flavors also combine into
3’s of SUV (3), then the problem of combining these is somewhat similar to
the case of baryons. The lightest combination is theoretically expected to
be the 10 flavor combination. The isospin singlet state is s = +1, consisting
of uudds, and is called the Θ+. Opposite to the case of the baryon decuplet,
the other states have a higher average s content and are heavier. Because
of its positive total strangeness, the Θ+ cannot decay into a π+Λ, but must
decay to K0p or K+n. The Θ+ may be only slightly heavier than this com-
bination, which would phase-space restrict the decay, leading to a narrow
state.

As of this writing (2005), the experimental situation is unclear, with some
evidence for a state of mass 1540 MeV and a width of at most a few MeV,
decaying through this channel, but with other experiments failing to find
such a state. If this pentaquark exists, it is the sole narrow QCD bound
state not understood as a meson or a baryon. We will not address this state
further.

8.3.5 Spontaneous chiral symmetry breaking

Up until this point we have only discussed the experimental implications of
the vector subgroup, SUf (3), of the full chiral symmetry group, SUL(3) ×
SUR(3). The axial symmetries have consequences that are just as successful
as are those of the vector symmetries. These are explored in the present
section.

We have already discussed, both in section 1.4 and in the treatment of the
vector symmetries, the transformation rules of particle states depend cru-
cially on the transformation properties of the ground state. If the ground
state is invariant under the symmetry, then the spectrum will fall into multi-
plets of degenerate (or approximately degenerate) particles that form repre-
sentations of the symmetry group. This was what we found in the previous
pages with the vector symmetry, SUf (3), and what we found even earlier for
Lorentz transformations themselves. If, on the other hand, the ground state
is not a singlet, so the symmetry is spontaneously broken, then particles
that are related by symmetry transformations need not have equal masses.

In principle, the transformation properties of the ground state may be de-
termined by directly constructing the lowest-energy eigenstate of the Hamil-
tonian and applying a symmetry transformation to it. Indeed, although this
cannot yet be done for QCD, there are strong theoretical arguments that
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the QCD ground state must spontaneously break the chiral symmetry group,
SUL(3)× SUR(3)× UB(1), down to the vector subgroup, SUf (3)× UB(1).

In the absence of a direct demonstration of this symmetry-breaking pat-
tern, we must in practice infer the ground-state symmetries by comparing
the observed spectrum with the symmetry predictions. Since the QCD spec-
trum is consistent with the approximately degenerate multiplets of the vector
subgroup, SUf (3) × UB(1), we infer that if QCD is the correct underlying
theory then this vector subgroup cannot be spontaneously broken.

Using the same logic, it is clear that the axial symmetry transformations,
SUA(3), have to be spontaneously broken for consistency with the observed
spectrum. This is because, were these symmetry transformations not bro-
ken, then particles would have to fall into multiplets under both SUL(3) and
SUR(3) transformations. This is inconsistent with the fact that the number
and quantum numbers of the observed stable mesons precisely agree with the
particle content that is predicted by the SUf (3) multiplets that are outlined
above.

To see this inconsistency in more detail, notice that quarks and antiquarks
respectively transform under SUL(3) × SUR(3) as a (3,1) ⊕ (1,3) and a
(3,1)⊕ (1,3) representation. In this notation, the pair of numbers gives the
representation of each of the group factors, SUL(3) and SUR(3), and each
term in the sum represents the right- or left-handed part of the fermion field.
If SUL(3)× SUR(3) were not spontaneously broken, then the mesons would
therefore have to transform as the product of these representations:

[(3,1)⊕ (1,3)]⊗ [(3,1)⊕ (1,3)] = (8,1)⊕ (1,8)⊕ (3,3)⊕ (3,3)⊕ 2(1,1).

This represents many more flavor states than the nine that are observed.
A spontaneously-broken (global) symmetry does, however, carry implica-

tions for the spectrum of the theory. The most important of these is the
existence of a set of massless particles, called Goldstone particles. If the
symmetry is only an approximate symmetry then these particles are not
exactly massless, since the effects that explicitly break the symmetry can
generate masses for them. The size of the mass grows with the strength of
the explicit symmetry breaking. A not-quite-massless would-be Goldstone
particle for an approximate symmetry is often called a pseudo-Goldstone

particle. In order to see what the predictions would be in the particular
case of QCD, it is necessary to make an aside about the properties of these
Goldstone particles.
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8.3.5.1 Goldstone’s theorem

Suppose a we have a Lagrangian which is invariant under a global, continu-
ous symmetry whose conserved current is jµ. The corresponding conserved
charge is Q =

∫
d3x j0. If we perform the symmetry transformation with a

spacetime dependent, infinitesimal parameter ω(x), the states in the Hilbert
space are transformed by the operator R[ω] = i

∫
d3x ω(x)j0(x). That is,

the change in a state, |ψ〉, is δ|ψ〉 = R[ω]|ψ〉, and the change in a field
operator is δF (x) = [R(ω), F (x)]. Notice that R reduces to iω0Q in the
special case of a constant parameter ω = ω0. We introduce here the artifice
of a space-dependent symmetry parameter even though the transformation
generated by R is only really a symmetry for constant ω in order to sidestep
some technical issues, and intend a limit towards constant ω at the end of
the analysis.

By definition a symmetry is spontaneously broken if the ground state, |Ω〉,
is not invariant: δ|Ω〉 = R[ω]|Ω〉 6= 0, but in practice this is not so useful
a criterion when working with field theories. For this reason it is usually
more convenient to work with an order parameter, δF (x), which is a field
having the following two properties: (i) it is assumed to be the variation of
some quantity, δF = [R,F ], under the symmetry transformation; and (ii)
its expectation value is not zero in the ground state: 〈Ω|δF (x)|Ω〉 6= 0. The
existence of such an order parameter is useful because it is a sufficient con-
dition for the spontaneous breaking of a symmetry, as may be seen because
R[ω]|Ω〉 = 0 implies 〈Ω|δF |Ω〉 = 0.

The existence of such an order parameter also has other important im-
plications, most notably it implies the existence of a special ‘Goldstone’
state, |G〉, whose properties we now explore. To this end suppose that a
complete set of four-momentum eigenstates is inserted into the matrix ele-
ment 〈Ω|[R, F ]|Ω〉 6= 0. Since we know the result is nonzero we see that
there must exist an energy eigenstate, |G(p, n)〉, for which the summed
matrix element

∑
n 〈G(p, n)|R[ω]|Ω〉 6= 0 for ω sufficiently slowly varying.

The argument, p, here denotes the four-momentum eigenvalue of this state,
Pµ|G(p, n)〉 = pµ|G(p, n)〉. The other index, ‘n’, represents all of the other
labels of this state.

An equivalent way to say the same thing is that there must be an energy
eigenstate, |G(p, n)〉, for which the summed matrix element,

Aµ(p;x) ≡
∑
n

〈G(p, n)|jµ(x)|Ω〉

=
∑
n

〈G(p, n)|eiPxjµ(0)e−iPx|Ω〉 (8.48)



8.3 Light quarks 307

= eipx
∑
n

〈G(p, n)|jµ(0)|Ω〉

= fpµ eipx

6= 0 .

We assume here that the symmetry generator, R, commutes with Poincaré
transformations, as is true for any internal symmetry. This, together with
the Lorentz-invariance of the ground state, implies the state |G〉 is spinless.
The spinlessness of |G〉 and Poincaré invariance is also used in the last
equality to make the dependence of the matrix elements on p and x explicit.
Lorentz invariance further implies that the unknown scalar quantity, f 6= 0,
can only depend on the invariant p2, since there is no other invariant after
the sum over all other labels, n, has been performed.

The state |G(p, n)〉 defined in this way is the Goldstone state, and all of its
properties follow from this nonvanishing matrix element. We list the most
useful ones here:

(i) Current-conservation, ∂µjµ = 0, implies that the state, |G(p, n)〉, is
massless: p2 = pµpµ = 0:

p2 f eipx = −i∂µAµ(p;x)

=
∑
n

〈G(p, n)|∂µjµ(x)|Ω〉

= 0 . (8.49)

(ii) As has already been mentioned, given that 〈G(p, n)|j0(x)|Ω〉 6= 0 and
j0 is a rotational scalar, it is possible to show that |G(p, n)〉 must
have spin zero.

(iii) In a parity-invariant theory |G(p, n)〉 must be a pseudoscalar if jµ

is an axial vector, as would be required for the axial symmetries of
QCD. To see this we use the following transformation properties:
P|G(p, n)〉 = η|G(pP , n)〉, P|Ω〉 = |Ω〉 and Pjµ(x)P∗ = −Pµ

νj
ν(xP ).

The subscript ‘P ’ denotes the parity-transformed vector: e.g. xµ
P =

Pµ
νx

ν . The matrix Pµ
ν is as defined in section (2.5), and reflects

the spatial components of any vector on which it acts. The following
argument shows that the parity phase, η, must be η = −1:

fpµ eipx =
∑
n

〈G(p, n)|jµ(x)|Ω〉

=
∑
n

〈G(p, n)|P∗Pjµ(x)P∗P|Ω〉

= −η∗Pµ
ν

∑
n

〈G(pP , n)|jν(xP )|Ω〉
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= −η∗ fPµ
νp

ν
P eipP xP

= −η∗ fpµ eipx . (8.50)

These Goldstone boson properties hold as exact statements if the sponta-
neously broken symmetry in question is an exact symmetry of the system.
However we know that the symmetry of present interest, SUA(3), is only
an approximate symmetry in QCD, which is broken by terms like quark
masses and by electromagnetic interactions in the standard model action.
We should therefore expect that if the SUA(3) symmetry is spontaneously
broken then there are pseudo-Goldstone bosons for which the above Gold-
stone properties are only approximately true. In particular, although we do
not expect these states to be precisely massless we do expect them to be
systematically lighter than the system’s generic particle states.

8.3.5.2 Pions as pseudo-Goldstone bosons

If consistency with the QCD spectrum is only possible if the approximate
SUA(3) transformations are spontaneously broken, there must be a set of
eight pseudo-Goldstone bosons in the spectrum. Using arguments like those
that were just given, it is possible to infer the quantum numbers of these
Goldstone modes from the properties of the corresponding spontaneously-
broken conserved current.

The current for the SUA(3) transformations may be constructed from the
Lagrangian, Lch, of Eq. (8.23), and the transformation law, Eq. (8.25), using
the formalism of subsection 1.4.2. Introducing the notation Q = (u d s)T ,
the result is:

(jA)µ
a =

i

2
Qγµγ5λaQ . (8.51)

It is clear from the previous section that the properties of this current imply
that the Goldstone bosons must be pseudoscalar particles. Identical argu-
ments also imply that the eight Goldstone modes must transform as an octet
under SUf (3), and those that are charge-conjugation eigenstates must have
C = +1.

The prediction is that there should be an SUf (3) octet of JPC = 0−+

particles which should be significantly lighter than are the typical hadrons
that just involve light quarks. This should be particularly true for the
SUI(2) triplet of mesons within this octet, which are the pseudo-Goldstone
bosons for this much less strongly broken axial symmetry, SUA(2), which
just involves the u and d quarks.

Such a multiplet certainly is seen in the spectrum. It is the pseudoscalar
octet of Eq. (8.34). Indeed, the very small mass of the lightest members
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of this multiplet—the pions π0 and π±—would otherwise have been a real
puzzle from the general qualitative estimates of section 8.1. We develop a
more quantitative picture of their masses, and of the other hadrons, within
the next section.

8.3.6 Mass relations

The next step is to quantify the predictions for the mass splittings within
the various hadron multiplets in order to see more precisely whether they
agree with what is observed. We do so by perturbing in the terms of the
Lagrangian that explicitly break SUL(3) × SUR(3). The simplest way to
do so is to work within the effective low-energy Lagrangian which is di-
rectly expressed in terms of the low-energy degrees of freedom—the mesons
and baryons. This effective Lagrangian could be derived, in principle, by
computing the properties of these mesons and baryons from the underly-
ing dynamics of QCD. Since this is at present too difficult a task, we must
content ourselves with writing down the most general low-energy Lagran-
gian which is consistent with the symmetries of the underlying theory. Any
parameters in the low-energy theory that cannot be determined purely by
symmetry arguments must be left as unknown parameters whose values are
to be determined by experiment.

8.3.6.1 The meson octet

Since the lightest hadrons are the would-be Goldstone bosons of the pseu-
doscalar meson octet, we start with the effective action at energies that
are sufficiently low as to be below the threshold for producing any other
particles. In the chiral limit, that is, for vanishing quark masses and elec-
tromagnetic interactions, the resulting Lagrangian must be a function of
only the meson fields, M, of Eq. (8.34) and must be invariant under the
chiral SUL(3)× SUR(3) group.

The action of the symmetry group, SUL(3)×SUR(3), on M is completely
determined by the symmetry-breaking pattern: SUL(3)× SUR(3)→ SUf (3).
It is most easily formulated in terms of the variable ξ, which is defined as
the exponential of M:

ξ = exp
[
iM
f

]
. (8.52)

f here is a constant with the dimensions of mass which can be expected to
be of order the QCD scale, ΛQCD, in size. If L and R are 3 × 3 unitary
matrices which respectively live in the groups SUL(3) and SUR(3), then it
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can be shown that ξ transforms under SUL(3)×SUR(3) in same way as does
the following combination of quark fields: QLQR, or

ξ → L ξ R† . (8.53)

For the unbroken diagonal (i.e. vector) subgroup of SUL(3)×SUR(3) L and
R are related by L = R ≡ U . In this case, Eq. (8.53) reduces to a similarity
transformation,

ξ → U ξ U † , (8.54)

which, when restricted to infinitesimal transformations, becomes

δM =
i

2
ωa

V [λa,M] , (8.55)

in agreement with the rule given in the paragraph immediately following
Eq. (8.33).

The transformation law, Eq. (8.53), is more complicated for axial trans-
formations, for which L = R† ≡ V . For infinitesimal transformations the
axial transformation rule becomes

δξ =
i

2
ωa

A{λa, ξ} . (8.56)

Unlike the transformation law, Eq. (8.55), this last result is neither linear
nor homogeneous in the field M. Indeed, expanding in powers of M gives

δM = fωa
Aλa +

i

2
ωa

A{λa,M}+ o(M2) . (8.57)

It is significant that the first term in the variation of M should be inde-
pendent of M, and so acts to shift M rather than multiply it by a matrix.
This is the classic transformation rule for a Goldstone boson since it shows
that there is no preferred value of the field M corresponding to the vacuum
- instead all such values are related by a symmetry transformation (precisely
as would be expected for a spontaneously broken symmetry, for which the
vacuum is not invariant). As we see in more detail in the next chapter, this
transformation implies that M can only couple through derivative couplings
that vanish in the limit when the four-momentum of the boson goes to zero.
In particular, this also implies that all of the mesons in M are massless in
the SUL(3)× SUR(3)-invariant limit.

The most general SUL(3)×SUR(3)-invariant Lagrangian that involves just
M, and involves the smallest possible number—two—of derivatives, is

Lgb =
f2

4
Tr

[
ξ†∂µξ ξ†∂µξ

]
, (8.58)
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= −1
4

Tr [∂µM∂µM] +
1

24f2
Tr

[
M2∂µM∂µM−M∂µMM∂µM

]

+O(M6) .

In the chiral-symmetry limit, the Lagrangian is seen to be completely
determined in terms of the constant f , which is ultimately to be determined
by comparison with experiment. This is all the more remarkable since,
besides the kinetic terms, Eq. (8.58) contains all of the self-interactions
of the meson octet in the chiral limit that involve the fewest numbers of
derivatives. Since they are all determined in terms of a single constant, it
becomes possible to derive a system of soft-pion theorems that relate the
low-energy scattering of the light mesons. These consequences for low-energy
meson scattering are explored in more detail in section 9.3.

The next step is to incorporate the symmetry-breaking effects of the var-
ious quark masses. We wish to derive the corrections to Lgb that arise to
lowest—i.e. linear—order in these masses. In order to determine the form
these corrections take, we must determine the SUL(3)×SUR(3) transforma-
tion properties of the quark mass terms of Eq. (8.23) and Eq. (8.23).

The main observation is that the quark mass term in the QCD Lagrangian,
Lm, may be written in the following way:

Lm = −QMqQ
= −Tr

[
Mq(PLQQPL + PRQQPR )

]
. (8.59)

As before, Q denotes the column vector containing the three light quark
species, u, d and s. Under an SUL(3) × SUR(3) transformation, the quark
operators that appear in this mass term transform as

PLQQPL → L (PLQQPL ) R†,
and : PRQQPR → R (PRQQPR ) L† . (8.60)

We must construct a term, LM , for the effective Lagrangian involving the
meson field, M, that satisfies the following properties:

(i) It must have the form Tr[M(O + O†)], in which the operator O =
O(M) transforms under SUL(3)× SUR(3) as O → L O R†, and

(ii) it must involve the fewest number of derivatives.

The unique solution to these conditions is to choose O proportional to ξ

itself, giving

LM =
cf2

4
Tr[Mq(ξ + ξ†)],
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=
cf2

2
TrMq − c

4
Tr[MqM2] +

c

48f2
Tr[MqM4] + o(M6) . (8.61)

Here, c represents an unknown constant having dimensions of mass. It
might reasonably be expected to be of order the strong-interaction scale
on dimensional grounds. The first term of Eq. (8.61) describes a vacuum
energy and may be dropped. The meson interactions in LM are of no further
interest here but are discussed in more detail in section 9.3. This leaves the
mass term:

LM = − c

4
Tr[MqM2] (8.62)

= − c

2

(
π0 η8

)(
1
2(mu + md) 1

2
√

3
(mu −md)

1
2
√

3
(mu −md) 1

6(mu + md + 4ms)

) (
π0

η8

)

− c

2
(mu + md)π+π− − c

2
(mu + ms)K+K− − c

2
(ms + md)K

0
K0.

Some of the meson masses may be read off immediately:

m2
π± = (mu + md)

c

2
,

m2
K± = (mu + ms)

c

2
,

and : m2
K0 = (ms + md)

c

2
. (8.63)

The mass matrix for the self-conjugate mesons must be diagonalized, since
the isospin eigenstates, π0 and η8, mix with one another in the presence of
an isospin-breaking mass difference mu −md. The eigenvectors of this two-
by-two matrix are

(
π0′

η

)
=

(
cos θ sin θ

− sin θ cos θ

) (
π0

η8

)
, (8.64)

where the mass eigenvalues are

m2
π0 =

c

3
[(mu + md + ms)−R] ,

m2
η =

c

3
[(mu + md + ms) + R] , (8.65)

with R =
√

m2
u + m2

d + m2
s −mumd −mums −mdms .

Comparing these meson masses with those that are measured allows a de-
termination of the values of the light quark masses, mu, md and ms. This
is one source of the numerical values for the meson masses that appear in
the particle data book, and are used throughout this book.
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The main SUI(2)-breaking effects are the isospin mass splittings, and the
π0 − η8 mixing angle, θ:

m2
K0 −m2

K± = (md −mu)
c

2
;

m2
π± −m2

π0 =
c

6
[(mu + md − 2ms)−R]

≈ (md −mu)2

8ms
c ; (8.66)

and tan 2θ =
√

3 (md −mu)
2ms −mu −md

≈
√

3
2

(
md −mu

ms

)
.

Since the ratio (md − mu)/ms ≈ 1/40, we see that predictions that are
based on isospin invariance should be quite accurate. Within this approx-
imation there is no mixing of neutral mesons and the above formulae for
the masses of the three isomultiplets within the octet simplify dramatically.
Taking md ≈ mu ≡ m we find,

m2
π ≈ m c ,

m2
K ≈ 1

2
(ms + m) c , (8.67)

m2
η ≈ 1

3
(2ms + m) c .

Notice in particular that, since the unknown scale c only enters as an overall
factor, the three independent ratios of these masses are fixed in terms of two
parameters, m and ms. By eliminating these two parameters from the three
mass ratios we derive the following mass formula:

4m2
K = 3m2

η + m2
π . (8.68)

This relation is indeed extremely well satisfied by the measured masses.
Using mπ = 137 MeV, mK = 496 MeV and mη = 549 MeV, we find:
4m2

K = 0.98 GeV2 and 3m2
η + m2

π = 0.92 GeV2.
Alternatively, these formulae may be used to infer the numerical values of

the parameters m, ms and c given the experimentally-measured values for
the meson masses. Since light quarks cannot be produced individually to
have their masses measured, this kind of reasoning is how the values of the
light-quark masses are actually determined in practice.

8.3.6.2 The pseudoscalar singlet: η′

If we work our way up in energy we may include more and more fields
into our effective Lagrangian. The Lagrangian is constructed in the same
way as before: we write all possible terms that are consistent with their
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transformation properties under SUL(3)×SUR(3). As more fields are added,
more unknown constants appear in the couplings between the fields.

Perhaps the simplest such meson to include is the remaining pseudoscalar,
η0. η0 does not transform at all under SUL(3)× SUR(3). Starting with the
chiral limit, the most general SUL(3) × SUR(3)-invariant effective Lagran-
gian involving both η0 and M and containing just terms with up to two
derivatives is therefore

L = −V (η0)− 1
2
G(η0)∂µη0∂

µη0 − F (η0)Tr
[
ξ†∂µξ ξ†∂µξ

]
. (8.69)

Since η0 and M are both parity odd, parity invariance of the strong interac-
tions implies that the otherwise arbitrary real functions, V , G and F , must
be even under η0 → −η0.

Expanding this result about the minimum of the potential, V (η0), and
canonically normalizing the fields then gives

L = −1
2
µ2

0η
2
0 −

1
2
∂µη0∂

µη0 − 1
4

Tr [∂µM∂µM] + · · · . (8.70)

µ2
0 here represents an unknown mass for η0 which should, on dimensional

grounds, be taken of order the strong interaction scale. Clearly the η0 need
not be particularly light since, unlike the octet pseudoscalar mesons, its mass
need not vanish in the limit that the quarks are massless. The dots represent
cubic and higher interaction terms. As expected, there is no mixing in the
absence of SUL(3)× SUR(3) breaking.

Incorporating SUL(3)×SUR(3) breaking by perturbing in the quark masses
gives, as before,

δL = H(η0)Tr[Mq(ξ + ξ†)]

= − c

4
Tr[MqM2] + aη2

0 Tr[MqM2] + · · · . (8.71)

The second equation uses parity invariance to rule out any odd powers of
η0 in H. We see that even after including leading-order symmetry-breaking
terms we do not generate any mixing between η0 and the members of the
scalar-meson octet. This absence of mixing follows from the requirement
that the octet mesons must become massless in the chiral-symmetry limit.
We therefore expect the heavy stable pseudoscalar mass eigenstate, called
the η′, to be entirely an SUf (3) singlet, and the lighter mass eigenstate, η,
to be entirely octet.

8.3.6.3 The pseudovector nonet

We next apply this analysis to the nine JPC = 1−− stable mesons. These
massive spin-one particles may be represented by an octet of four-vector
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fields, M̃µ as in Eq. (8.36),

M̃µ =




ρ0
µ + 1√

3
ω8

µ

√
2ρ+

µ

√
2K+∗

µ√
2ρ−µ −ρ0

µ + 1√
3
ω8

µ

√
2K0∗

µ√
2K−∗

µ

√
2 K

0∗
µ − 2√

3
ω8

µ


 , (8.72)

and a singlet vector, ω0
µ. Under SUf (3) transformations the octet transforms

as M̃µ → U M̃µ U †, and the singlet is invariant. Both fields may be cho-
sen to be invariant under the spontaneously-broken axial transformations,
SUA(3), by absorbing appropriate powers of ξ into the fields. Once the fields
have been chosen in this way, the Lagrangian need only be constructed in
an SUf (3)-invariant way. The most general mass term for these fields that
would be consistent in the symmetry limit is

Lmass = − µ̃2
0

2
ω0

µω0µ − µ̃2
8

4
Tr[M̃µM̃µ] . (8.73)

This Lagrangian represents an arbitrary mass, µ̃0, for the singlet particle,
ω0

µ, and a common mass, µ̃8, for all of the particles in the octet.
The mass terms that are allowed may be constructed with the following

trick. We need to know how the QCD quark mass term, Lm of Eq. (8.23),
transforms under SUf (3). The trick is to notice that although Lm is not
invariant under SUf (3), it would be invariant if the mass matrix, Mq, were
to transform as Mq → U Mq U †. The allowed mass terms are then those that
are bilinear in the vector meson fields, are linear in the quark mass matrix,
Mq, and would be SUf (3)-invariant if the mass matrix were to transform as
Mq → U Mq U †. The result is

δLmass = −a

4
Tr[MqM̃µM̃µ]− b

4
ω0

µ Tr[MqM̃µ] (8.74)

= −1
2

(
ρ0

µ ω8
µ ω0

µ

)
 δµ2

8







ρ0µ

ω8µ

ω0µ


− a

2
(mu+md)ρ+

µ ρ−µ

−a

2
(mu + ms)K+∗

µ K−∗µ − a

2
(ms + md)K

0∗
µ K0∗µ,

in which the 3× 3 mass matrix, δµ2
8, is


 δµ2

8


 =




a
2 (mu + md) a

2
√

3
(mu−md) b

4(mu−md)
a

2
√

3
(mu−md) a

6 (mu+md+4ms) b
4
√

3
(mu+md−2ms)

b
4(mu−md) b

4
√

3
(mu+md−2ms) 0


.

(8.75)
In order to get a qualitative picture of what the spectrum should look
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like, it is sufficient to completely neglect mu and md. This should be an
even better approximation here than it was for the pseudoscalar octet, since
the mass scale for the vector mesons is set by the invariant mass terms, µ8

and µ0, which should be much greater than all three of the quark masses.
In this limit, we have

m2
ρ ≈ µ2

8,

m2
K∗ ≈ µ2

8 +
a

2
ms , (8.76)

and the ω8 − ω0 mass matrix becomes

m2
0−8 ≈

(
µ2

8 + 2a
3 ms − b

2
√

3
ms

− b
2
√

3
ms µ2

0

)
. (8.77)

The mass eigenstates, to this approximation, are
(

ω

φ

)
=

(
cos θ sin θ

− sin θ cos θ

) (
ω8

ω0

)
, (8.78)

tan θ =
√

3
bms


µ2

8 − µ2
0 +

2a

3
ms +

√(
µ2

8 − µ2
0 +

2a

3
ms

)2

+
b2

3
m2

s


 ,

and the corresponding eigenvalues are

m2
ω =

1
2


µ2

8 + µ2
0 +

2a

3
ms −

√(
µ2

8 − µ2
0 +

2a

3
ms

)2

+
b2

3
m2

s


 ,

m2
φ =

1
2


µ2

8 + µ2
0 +

2a

3
ms +

√(
µ2

8 − µ2
0 +

2a

3
ms

)2

+
b2

3
m2

s


 . (8.79)

Clearly there can be a considerable amount of mixing between ω8 and ω0,
depending on whether ms is large or small compared to the splitting µ2

8−µ2
0.

If m2
s ¿ |µ2

8− µ2
0| then θ ≈ 0 and the mass eigenstates, ω and φ, are almost

purely octet and singlet. On the other extreme, if m2
s À |µ2

8 − µ2
0| then

the SUf (3)-invariant mass matrix is proportional to the unit matrix, and so
the mixing is completely governed by the ratio of the symmetry-breaking
coefficients a and b:

tan θ ≈ 2√
3

a

b


1 +

√
1 +

3b2

4a2


 , µ2

8 ≈ µ2
0 . (8.80)

Since there are as many free parameters as there are masses in the present
approximation, it is not possible to derive a general mass relation here, or
to predict the amount of mixing between ω8 and ω0. Experimentally it is
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found that these two states are strongly mixed, with one mass eigenstate,
φ, being approximately purely ss and the other being (uu + dd).

8.3.6.4 Baryons

We next briefly describe the results that can be obtained for the stable octet
and decuplet baryons. In these cases there is sufficient information to derive
mass relations among the different baryon species. The presentation is kept
fairly telegraphic since the considerations are similar to the meson systems
that have already been considered.

For the octet baryons, the rule for constructing the mass terms are the
same as for the pseudovector mesons. We must construct a mass term
which is at most linear in the quark mass matrix, and which would be
SUf (3)-invariant if the mass matrix were to transform as is described in the
paragraph immediately preceding Eq. (8.73).

A most general such mass has the form of a common mass for the baryon
octet, as well as two symmetry-breaking terms:

Lmass = Linv + δL ,

with Linv = −A

2
Tr[BB] ,

and δL = −F Tr(B[Mq,B])−D Tr(B{Mq,B}) . (8.81)

Because there are three parameters and four independent masses in the
octet, we derive the following Gell Mann–Okubo mass relation (in the isospin
conserving limit):

3mΛ + mΣ = 2(mN + mΞ) . (8.82)

N here represents the nucleon isodoublet, n and p. Comparison with the
observed masses demonstrates that this is a very successful prediction. For
instance, if we average members of each isospin multiplet, the two sides of
the equations add to 4540 and 4514 MeV, respectively.

Similarly, for the decuplet there are two possible parameters in the mass
term. One of these is a common SUf (3)-invariant mass for the entire multi-
plet, and the other is the only possible symmetry-breaking term to arise at
this order. Since there are a total of four isomultiplets within the decuplet,
there are two independent relations that may be derived:

mΩ −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −m∆ . (8.83)

These relations are also quite good; the mass differences all lie between 140
and 153 GeV.

We see, then, that even though it is at present impossible to quantitatively
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solve for the QCD spectrum from first principles, especially at low energies,
the theory nevertheless gives a comprehensive and impressive understanding
of the features of the hadron spectrum. A great deal of effort has gone into
providing a more detailed understanding of the observed energy levels within
the theory. We skip these here because with our current tools they all involve
some level of model dependence and their proper treatment is beyond the
goals of the this presentation.

QCD is at least equally successful in describing the collisions and decays of
these hadronic states, so it is to these that we turn in the following chapter.

8.4 Problems

[8.1] η0 mixing
Show that the potential η0 −M mixing term:

L = igf2η0 Tr[Mq(ξ − ξ†)]
= −gfη0 Tr[MqM] + · · ·
= gfη0π

0(md −mu)− gf√
3
η0η8(mu + md − 2ms),

violates both C and CP.

[8.2] Technical Issues in Goldstone’s Theorem
The proof of Goldstone’s theorem used the artifice of using a position-

dependent symmetry parameter, ω(x), with the limit of constant ω taken
at the end. This side-steps several technical issues, related to the normal-
ization of the states which are produced by performing symmetry trans-
formations. To illustrate these issues suppose that R[ω] = iω0 Q with
Q =

∫
d3x j0 and constant ω0. Show that the state |ψ〉 = R|Ω〉 has a

norm, 〈ψ|ψ〉, which is proportional to the volume, V , of space (and so di-
verges) if we assume: (i) Q commutes with all Poincaré transformations;
and (ii) the ground state is translation invariant: Pµ|Ω〉 = 0. For these
reasons it is preferable to formulate Goldstone’s theorem in terms of the
matrix element 〈G|jµ(x)|Ω〉 and of the commutator of R with local fields,
rather than working with ill-defined quantities like 〈G|R|Ω〉 = 〈G|ψ〉.

[8.3] Physical Interpretation of the Chiral Parameter c

We can find the physical interpretation for the parameter c, introduced
in Eq. (8.61), by comparing the vacuum energy density, ρV , for QCD as
computed in two equivalent ways. Using the QCD Lagrangian show that
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the dependence of ρV on the quark masses satisfies

∂ρV

∂mq
= 〈Ω|qq|Ω〉 , (8.84)

where |Ω〉 denotes the QCD ground state and q(x) is the appropriate quark
field. Compare this with the same quantity found by using the effective
meson Lagrangian given by Eq. (8.58) and Eq. (8.61) in the semiclassical
approximation. Show that in the limit mu = md = m, these results imply

m2
π = mc and 〈Ω|uu|Ω〉 = 〈Ω|d d|Ω〉 =

cf2

2
. (8.85)



9

Hadronic interactions

The last chapter has reviewed the hadronic particle content of the standard
model. We found that quarks and gluons are bound together, with a binding
energy ∼ ΛQCD ∼ 400 MeV. Nevertheless, it is possible with symmetry argu-
ments to guess correctly the general pattern (masses, spins, and conserved
or nearly conserved charges) of the bound states. However, we have not
shown how to make detailed predictions; indeed, with analytical, theoretical
tools alone it is not known how to make detailed predictions.

We now turn to interactions, such as scattering processes, of hadrons.
Two types of scatterings should be distinguished; those of hadrons off of
hadrons, and those of hadrons off of particles without strong interactions,
such as electrons, photons, and neutrinos. It is often easier to understand the
latter processes, since more of the problem (that part involving the electron,
photon, or neutrino) is well under control.

Scatterings are also distinguished by the energy involved, falling roughly
into four classes:

(i) low energy scatterings, such as e−p+ scattering with s−m2
p ¿ mpmπ

so there is nowhere near enough energy to probe the structure of the
proton;

(ii) low energy scatterings involving pions and kaons, such as ππ scatter-
ing or πp scattering;

(iii) intermediate energy scatterings, with excess kinetic energies in the
range of a few 100 MeV to a few GeV; and

(iv) high energy scatterings, with s > (few GeV)2.

The first of these is quite tractable, and we will discuss it first.
In the second energy range, it is possible to make fairly accurate pre-

dictions by invoking a symmetry principle, spontaneously broken chiral

320
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symmetry–the same symmetry which ensures the small masses of pions.
We discuss this in section 9.3.

The third case is truly complicated, because the energy is low enough
that the SUc(3) coupling is strong, and yet there is enough energy that
chiral symmetry is not helpful. Furthermore, at the higher energies, the
set of available final states for a collision process gets larger. There are no
good tools for first principles, theoretical predictions in this regime. Instead,
our knowledge is based on experimental data and phenomenological mod-
eling. In the lower energy range, scatterings are reasonably well described
as occurring due to a series of hadronic resonances (the ρ, f0, h1, ∆, N∗,
etc.). There is no good first principles understanding of the location of these
resonances, though there are phenomenological models (Regge theory, etc.)
which work relatively well. However, as the energy scale is raised, the reso-
nances become broader and denser until this description loses all utility. We
will not discuss this regime any further.

The last energy range is complicated, but tractable to some extent, be-
cause the large value of s sets a scale in the problem where the interactions
are weak. This means that some quantities are computable, or to be more
precise, one can derive relations between what will be measured in different
experiments. We discuss this at some length in section 9.2.

9.1 Quasi-elastic scattering

Perhaps the simplest situation for which hadronic scattering can be com-
puted quantitatively is in the limit where the energy transfer to the hadron
of interest is small compared to the scale ΛQCD. The case of a very heavy
quark is also relatively simple, and also permits a nonrelativistic approxi-
mation.

9.1.1 Non-relativistic hadrons

Consider the electromagnetic and weak interactions of stable or long lived
hadrons with photons and leptons, when the kinetic energy of the interaction
(
√

s−∑
mi, mi the masses of initial state particles) is small compared to the

scale ΛQCD. In this case, we can write an effective theory for the interactions
in which we treat the hadrons as point particles (since there is not sufficient
energy to probe their structure). One then writes down all terms consistent
with symmetries (C, P, electromagnetic gauge symmetry, and conservation of
baryon number, lepton number, strangeness, etc.) and the electromagnetic
charge assignments of the various particles. Weak (P and flavor violating)



322 Hadronic interactions

interactions can also be written down, suppressed by the Fermi coupling
GF . For instance, the renormalizable terms in the Lagrangian for the proton
would be

Lproton = −p̄ /D p−mp p̄ p , Dµ = ∂µ − ieAµ . (9.1)

The covariant derivative is determined by the charge, +1, of the proton. This
is exactly the Lagrangian term used to solve for the bound state spectrum
of the hydrogen atom, and it gives the correct fine structure. In general,
calculations with this Lagrangian (and the analogous renormalizable terms
for pions and ordinary leptons) are straightforward. One should remember
that the theory is only valid in the limit where kinetic energies are small
compared to hadron masses, so it is always legitimate to expand in the large
mass (nonrelativistic behavior) of the hadron. Also, it is forbidden to use
this effective theory to consider the interaction of two or more hadrons,
because the interaction energies of those hadrons can be large, even if the
kinetic energy of the interaction is not.

If the energy scale of interest is at the upper end of the range of validity
of this effective description, or if we desire high accuracy, one must also
remember that high dimension operators will be present. The coefficients of
high dimension operators involving electromagnetic interactions will be set
by the scale where the effective description breaks down, ΛQCD ∼ 400 MeV.
For instance, the first high dimension term involving the proton which can
appear is

Lµa = − iµa

4
p̄ [γµ , γν ] Fµν p , (9.2)

with Fµν = ∂µAν−∂νAµ the electromagnetic field strength. On dimensional
grounds, together with the fact that this is an electromagnetic interaction
with one power of Aµ, we can estimate that µa ∼ e/ΛQCD. However, we
cannot determine this coefficient exactly, unless we know how to solve QCD
to understand in detail the structure of the proton. Therefore µa must be
left as a parameter to be determined by experiment.

To understand the physical content of this term, consider the case where
Fµν is a static, background field, and compute the energy shift for a state
containing a proton at rest,

〈p(k = 0, σ) |Hµa | p(k = 0, σ)〉 . (9.3)

The p̄ and p operators in H annihilate the proton in the bra and ket re-
spectively, leaving spinors ū(k = 0, σ) and u(k = 0, σ). The combination
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[γ0 , γi] vanishes between these spinors, while the [γi , γj ] part becomes

− i

4
[γi , γj ]Fij =

1
2
εijkσ

kFij = ~σ · ~B . (9.4)

Therefore,

Hµa ' −µa p̄ ~σ · ~B p . (9.5)

We recognize this as a spin magnetic interaction; µa is an anomalous con-
tribution to the magnetic moment of the proton. The total proton magnetic
moment is

µp ≡ gpe

2mp
=

e

2mp
+ µa , or gp = 1 +

2mpµa

e
. (9.6)

Here gp is the gyroscopic ratio for the proton, defined as the ratio of the
true magnetic moment to the contribution arising from the Dirac equation,
e/2mp.

According to our previous estimate, µa ∼ e/ΛQCD. Since mp/ΛQCD ∼ 2,
we expect a large correction to the gyroscopic ratio of the proton, gp−1 ∼ 2.
The experimental value is gp = 2.793. This correction is quite important in
astrophysics, because the proton magnetic moment breaks the degeneracy
between the spin-singlet and spin-triplet 1s states of the hydrogen atom,
leading to the 21cm hydrogen emission line. The neutron also has a large
magnetic moment, µn = (−1.913)e/2mn. Since the neutron is charge zero,
the magnetic moment term gives its dominant electromagnetic interaction.

To give a concrete example of the utility of this expansion, consider the
photon-neutron scattering cross section, where the photon energy (in the
neutron rest frame) is small, l0 = |l| ¿ ΛQCD. Since the electric charge is
zero, at leading order only the dipole interaction need be considered. The
two diagrams contributing to photon scattering are the same as in figure 6.8,
except that the vertex Feynman rule is now

§̈
§̈
§̈

¥¦

¥¦

s- -p, j k, i

l, µ

−iµn

2
(γνγµ− γµγν)ij lν (2π)4δ4(p+k+l) . (9.7)

Writing the initial and final momenta as l, l′ for the photon and p,p′ for
the neutron, and the initial and final polarizations as ε and ε′, the matrix
element is

M = − iµ2
n

4

{
ū(p′)( l/′ε/′ − ε/′ l/′)

−i(/p+ l/) + m

(p+l)2 + m2
( l/ε/− ε/l/)u(p)
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+ ū(p′)( l/ε/− ε/l/)
−i(/p− l/′) + m

(p−l′)2 + m2
( l/′ε/′ − ε/′ l/′)u(p)

}
. (9.8)

To check that this is transverse, substitute εµ → lµ; ( l/ε/ − ε/l/) immediately
gives zero.

Squaring, and averaging/summing the initial/final spins and polariza-
tions, gives four terms. Using

( l/γµ − γµ l/)(−i/p + m)( l/γµ − γµ l/) = −16i p · l l/ , (9.9)

as can easily be verified by using l2 = 0, the square of the first term in the
matrix element reduces to

M2
1 =

−µ4
n

64(2p · l)2 (16p · l)(16p′ · l′)Tr
[
l/′(−i/p−il/+m) l/(−i/p−il/+m)

]
. (9.10)

Since l/l/ = l2 = 0 and p2 = −m2, the trace evaluates to −8(p · l)(p · l′).
The square of the second term in the matrix element is the same under the
substitution l → −l′, so it equals the square of the first term (in the small l

limit, where (p · l)2 = (p ·l′)2). After a great deal of unenlightening work, one
can show that the interference terms, in the limit l ¿ p, vanish at leading
order. Therefore, using p · l ' −mnl0 ' p · l′, the spin-averaged matrix
element squared becomes,

M2 = 16µ4
nm2

n(l0)2 . (9.11)

The cross-section is isotropic. Remembering that the relative velocity is 1
(the photon’s velocity), the total cross-section is (using the nonrelativistic
limit for the neutron energy)

σ =
1

2mn2l0

∫
d3p′d3l′

(2π)62mn2l0
(2π)4δ3(p′ + l′ − l)δ(|~l| − l0)16µ4

nm2
n(l0)2 ,

=
µ4

n(l0)2

π
. (9.12)

As the energy increases or more precision is needed, one must take into
account still higher order interactions. For instance, at dimension 6 there is
the interaction

Lp,6 = r2
chgp̄ DµDµ /D p , (9.13)

where rchg ∼ 1/ΛQCD ∼ 0.5 fm is another a priori unknown parameter,
traditionally called the charge radius of the proton because such a correction
would arise if the proton were a ball of radius rchg with its charge on the
surface. Numerically, rchg = 0.87 fm, as determined by electron scattering
and energy shifts in muonic hydrogen bound states.
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Weak interactions are handled similarly. To the extent that isospin is a
good symmetry, the weak interactions of the proton and neutron can be
handled as those of the respective isospins, except for the possibility of
numerical shifts in the coefficients. The neutron and proton are isospin 1/2,
with third component of isospin −1/2 and 1/2 respectively, exactly the same
isospin charges as down and up quarks. The charged current interactions,
c.f. Eq. (7.12), are given by

Lcc =
GF√

2
C∗

µCµ , Cµ = iēγµ(1+γ5)νe + V ∗
udn̄γµ(gV +gAγ5)p , (9.14)

with gV and gA coefficients to account for possible renormalizations in going
from the quark to the hadron level. The gV term, n̄γµp, is also the charged
current of SU(2) isospin. Therefore, to the extent that isospin is a valid sym-
metry, it should be a conserved current, which in particular means that there
is no renormalization with respect to the value we would obtain for quarks
of the same isospin; the proton to neutron coupling has the same coefficient
as the up to down quark coupling. This current is therefore referred to as
the conserved vector current. Renormalization of this current first appears
at quadratic order in isospin breaking, according to the Ademollo-Gatto

theorem;

gV = 1 + O

(
m2

d −m2
u

Λ2
QCD

)
= 1 + O(10−3) . (9.15)

The same is not true of the axial current, which does have a substantial
(though not enormous) renormalization with respect to the naive quark
model value of 1;

gA ' 1.267 , (9.16)

experimentally. Since no symmetry argument can fix this value, it must be
taken from experiment.

Similarly, the weak neutral current interactions for neutrons and protons
are those of isospin 1/2 particles with charges 0 and 1 respectively, except
that the axial current has a non-negligible renormalization:

Lnc =
GF√

2
Jµ

ncJnc µ , Jµ
nc = Jµ

nc,lept + p̄(gV ,p + gA,pγ
5)p + n̄(gV ,n + gA,nγ5)n .

(9.17)
Again, up to isospin breaking corrections, the vector charges are as expected,
T3−2Q sin2 θW , which is gV ,p = 1/2−2 sin2 θW for a proton and gV ,n = −1/2
for a neutron. The axial couplings experience larger radiative corrections
and must be determined from experiment. These interactions are relevant,
for instance, in neutrino nucleon scattering.
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This effective description is an efficient way of studying interactions when
the kinetic energy is ¿ 400MeV. However, we emphasize again two provi-
sos. First, the higher the energy, the more important the high dimension
operators become. There is no a priori way of determining their coefficients;
so the utility of the treatment breaks down as the energy increases. Second,
the effective theory cannot be used to study interactions between hadrons,
such as pp or pn scattering. This is because the energy scales involved in
such scatterings need not be small, even if the kinetic energies of the widely
separated particles are. At short ranges there can be large interaction en-
ergies due to exchange of strongly interacting particles, potentially leading
to bound states and strong scattering effects. This is nuclear physics, which
is a complicated field not well described by a simple low energy effective
theory. An exception is when there is an electromagnetic Coulomb barrier
which stops the hadrons from exploring separations ∼ 1/ΛQCD. This occurs
for same-charge hadrons at kinetic energies ¿ αΛQCD (the factor α entering
to account for the weakness of the electromagnetic Coulomb interaction).

9.1.2 Non-relativistic quarks: HQET*

For scattering and decay processes involving very massive and slowly moving
particles, relativistic effects are not important, and considerable simplifica-
tion is obtained by expanding observables in powers of the small velocities
of the massive particles (or, equivalently, the relevant momenta and ener-
gies divided by the heavy mass). This is a very instructive limit to take for
the heavy quarks (c, b and t), because it reveals new symmetries relating
different quark species and spins. Furthermore, for these quarks the QCD
interaction energies are small compared with their masses, and so these sym-
metries should be good approximations for mesons containing these quarks,
up to corrections which can be computed (in principle) in inverse powers
of the heavy mass. This leads to a systematic approximation scheme for
understanding many of the features of strongly-interacting heavy quarks.

Technically, this is accomplished by formulating the dynamics of inter-
est in terms of an effective low-energy theory, similar in spirit to that en-
countered in Chapter 7, called Heavy Quark Effective Theory (HQET). A
complete discussion of this approach goes beyond the scope of an introduc-
tory book like this one, and we content ourselves with a brief sketch of its
implications here.

The main idea on which this approach is founded is that some of the
symmetries which emerge in the non-relativistic limit are obscure when for-
mulated in terms of relativistic fields, such as those we use in the previous
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section for proton elastic scattering. The roots of this obscurity lie in the
necessity of carrying around both particle and antiparticle within the rela-
tivistic approach, due to the appearance of both in all fields when these are
expressed in terms of particle states, such as in

ψ(x) =
∑
σ

∫
d3k

(2π)32k0

[
akσ ukσ eikx + a∗kσ vkσ e−ikx

]
. (9.18)

Although having the underlying particle-antiparticle symmetry explicit pays
dividends in relativistic applications, it is an encumbrance in nonrelativistic
situations, for which the influence of virtual particle-antiparticle pairs is
negligible.

A simpler formulation is obtained by ‘integrating out’ such virtual pairs,
leaving an effective theory involving only the ‘particle’ part of the field, i.e.,
the part involving akσ and not akσ. The effects of virtual antiparticles can
all be expressed in such a theory in terms of various effective interactions,
in much the same way as the effective Fermi interaction captures the low
energy physics of virtual W exchange once these gauge bosons are integrated
out. The effective interactions obtained in this way have couplings propor-
tional to inverse powers of the relevant heavy mass, mQ, which justifies the
nonrelativistic limit, and these can be characterized systematically order by
order in powers of 1/mQ.

Our interest in what follows is in applications to things like the decays of
B mesons into final states involving D mesons, due to the underlying heavy-
quark decay b → c. Since there are two heavy particles in these reactions,
which can be moving (slowly) relative to one another, we phrase the non-
relativistic limit without assuming we are precisely in the heavy-particle’s
rest frame.

Consider therefore a single Dirac fermion, ψ, describing a heavy quark
having mass mQ, whose 4-velocity is vµ = pµ/mQ (satisfying vµvµ = −1).
It is convenient to define the particle and antiparticle parts of ψ by

ψ(x) = eimQv·x
[
χ+(x) + χ−(x)

]
, (9.19)

where Γ±χ± = χ± for Γ± = 1
2(1 ∓ i/v). This works because Γ± ∝ i/p ∓m,

which gives zero when acting on vkσ and ukσ respectively, according to the
Dirac equation, Eq. (1.88). The utility of the above definition for χ can be
seen by inserting it into the free Lagrangian, since

ψ(/∂ + mQ)ψ = (χ+ + χ−)(imQ/v + mQ + /∂)(χ+ + χ−)

= (χ+ + χ−)(2 mQΓ− + /∂)(χ+ + χ−) . (9.20)

Since Γ−χ+ = 0, this shows that terms which diverge as mQ →∞ drop out
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of the part of the Lagrangian involving the particle part, χ+. It is for this
reason that the large-mQ limit is simplest to see using these variables.

The next step is to integrate out the antiparticle part of the field, χ−,
and to leading order in 1/mQ this amounts to eliminating it in terms of χ+

using its equation of motion, leading to χ− = −( /D/2mQ)χ+ +O(m−2
Q ), and

so

ψ(x) = eimQv·x
[
1− 1

2mQ

/D
]
χ+(x) + O

(
m−2

Q

)
. (9.21)

Using this in the Lagrangian −ψ( /D + mQ)ψ then leads to the following ef-
fective low-energy Lagrangian governing the dynamics of the slowly-moving
fermions:

LHQET = −χ+

[
/D − /D /D

mQ

+
/DΓ− /D
2mQ

]
χ+ + O

(
m−2

Q

)

= −χ+

[
/D − /D /D

2mQ

− /DΓ+ /D
2mQ

]
χ+ + O

(
m−2

Q

)
(9.22)

= χ+

[
ivµDµ +

1
2mQ

(
DµDµ − i

2
γµνtaF

a
µν

)
− (vµDµ)2

2mQ

]
χ+ ,

up to O(m−2
Q ) terms. These equations use the identities Γ+ + Γ− = 1

and Γ+ /DΓ+ = −iΓ+vµDµ, as well as /D /D = DµDµ − i
2γµνtaF

a
µν where

γµν = 1
2 [γµ, γν ] and ta is the appropriate representation matrix for the

gauge generators (e.g. ta = eQ for electromagnetism and ta = 1
2 g3λa – with

λa denoting the Gell-Mann matrices – for SUc(3)).

9.1.2.1 Applications

The leading term in this Lagrangian is the term iχ v ·Dχ, and for N fields χi

this has a large symmetry group SU(2N), corresponding to unitary rotations
on both the ‘flavor’ index i = 1, ..., N and the (suppressed) 2-valued spinor
index. The mixing of spin and flavor symmetries in this way is possible
when mQ →∞ because in this limit spin-orbit couplings disappear and spin
essentially acts as just another internal symmetry.

To see what such a symmetry can imply, consider the decay, B → Dl−ν,
where B and D are mesons containing heavy b and c quarks respectively.
This requires evaluating the following matrix element:

〈D(p′)|cγµc|D(p)〉 = fD (p + p′)µ

〈B(p′)|bγµb|B(p)〉 = fB (p + p′)µ (9.23)

〈D(p′)|cγµb|B(p)〉 = f+ (p + p′)µ + f− (p− p′)µ ,

where the form factors fD, fB and f± are functions of the Lorentz-invariant
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combination, q2 = −(p− p′)2, of the appropriate meson momenta. Equiva-
lently, since

q2
D = −(pD − p′D)2 = 2m2

D(1 + v · v′)
q2

B = −(pB − p′B)2 = 2m2
B(1 + v · v′) (9.24)

q2
BD = −(pB − pD)2 = (mB −mD)2 + 2mBmD(1 + v · v′) ,

we may take them to be functions of the product of meson 4-velocities, v ·v′.
Now comes the main point. If the relative velocity of the D meson rel-

ative to the B is small, then we may make use of the approximate SU(4)
symmetry which rotates the flavor and spin of the b and c quarks, and there-
fore relates the matrix element relevant in the decay to the purely B and D

matrix elements. Keeping in mind the mass-dependence of our relativistic
normalization for momentum states, this implies these form factors are not
independent of one another:

fB(v · v′) = fD(v · v′) = f+(v · v′)
√

4mBmD

mB + mD

= −f−(v · v′)
√

4mBmD

mB −mD

.

(9.25)
This implies that all four form factors (at low velocities) are determined by
one unknown function, at least to leading order in 1/mc and 1/mb. What
is important here is this result is exact in the strong interactions since it is
a consequence of general symmetry properties in the heavy-quark limit.

The reader is referred to the extensive literature for more detailed expla-
nations and applications of these ideas.

9.2 Hard inelastic scattering: partons

After elastic collisions, perhaps the next simplest hadronic process to con-
sider is very inelastic scattering. These kinds of collisions might be expected
to be dominated by the collisions of the point-like quarks and gluons from
which the hadrons are made, and these collisions should be relatively simple
due to the asymptotic freedom of the strong interactions, as discussed in
section 7.4. This property states that the strong interactions become effec-
tively weak over short distances, and we see in this section that this ensures
that many features of these collisions are well-described perturbatively in
the strong coupling α3, because the right language to describe that part
of the process involving large energy exchanges should be the language of
quarks and gluons (in this context collectively called partons). Perturbation
theory in terms of quarks and gluons can then be applied to that subset of
the process. How the quark or gluon involved in the scattering process gets
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“found inside” the hadron is not a question perturbation theory can resolve.
After being struck, the parton has enough energy to escape the hadron, but
confinement subsequently requires that it produce additional partons, such
that they bind off into colorless hadrons. Hard processes typically produce
several such hadrons moving in the direction of the final state parton, col-
lectively called a jet. The question of how the jet forms is also not resolvable
by perturbation theory. However, each of these questions is universal in a
certain precise sense, meaning that once we learn how quarks and gluons
are found inside of a hadron or how they turn into hadrons in one process
at one energy, this information can be used to predict how it will occur in
other processes and at other energies.

The key idea in doing this is called factorization. It is the fact, rigorously
proven in some cases, that for sufficiently inclusive questions involving suf-
ficiently high energy scattering, the problem of computing how scattering
occurs divides into three parts. The hadron is described in terms of inco-
herent (free, independent) constituent quarks and gluons; the quarks and
gluons undergo the hard scattering; and quarks and gluons produced in the
scattering form into hadrons again. The middle part can be treated by per-
turbation theory. The first part cannot, but is universal; the description of
a hadron in terms of quarks and gluons is the same for all processes and
depends on energy in a predictable way. Therefore, measurements in one
experiment can be used to predict the results of other experiments. The
same is true for the final state part, provided one is only interested in suf-
ficiently inclusive details of the final state. All of these statements are true
only up to corrections of order Λ2

QCD/q2 with q2 the invariant characterizing
how high energy the process is.

To clarify these statements and present the details, we will begin with
the simplest scattering process involving hadrons, hadron-lepton scattering,
which is also where the ideas we discuss were originally tested. Then we
discuss hadron-hadron collisions. Initially our discussion will be made at
leading order in the strong coupling, but we end by discussing what happens
beyond this order. The subject we are discussing is quite vast, and it is only
our intention to introduce the relevant ideas and to present the techniques
for a lowest-order treatment.

9.2.1 Deep inelastic scattering

Consider first the process e−p → e−X, where X means any multi-hadron
final state When the energies are high and the electron makes more than



9.2 Hard inelastic scattering: partons 331

w§̈
§̈
§̈
§̈

¥¦

¥¦

¥¦
s

HHHHHH

HHHj
��
��
��

��
�*

- ���
�:
-XXXXz

���
���

XXXXXX
proton; p

e−; k e−; k′ = k − q

γ; q

X; p + q

Fig. 9.1. Kinematic variables for deep inelastic scattering

a glancing scattering from the proton, this process is called deep inelastic

scattering.

9.2.1.1 Kinematics

The first step to analyzing the process e−p → e−X is to study the kinematics
of the reaction. There is a standard notation for the kinematic variables
which we shall adopt.

Define the incoming four-momenta to be,

electron: k , with k2 = −m2
e ' 0; proton: p , with p2 = −m2

p , (9.26)

and the final four-momenta to be,

electron: k′ , with (k′)2 = −m2
e ' 0 Hadrons: p + k − k′ , (9.27)

as shown in figure 9.1. We also define the momentum transfer,

q ≡ k − k′ . (9.28)

The standard invariants for this system are,

s ≡ −(p + k)2 , Center of mass energy squared; (9.29)

q2 ≡ (k − k′)2 , Virtuality of the photon; (9.30)

ν ≡ −q · p
mp

, e− energy loss in proton rest frame; (9.31)

x ≡ q2

−2p · q =
q2

2mpν
, See below (9.32)

y ≡ q · p
k · p =

ν

E
, e− fractional energy loss in p rest frame; (9.33)

W 2 = −(p + q)2 , Mass squared of hadronic state X. (9.34)

The interpretation of x, often called Bjorken x, is as follows. If we imagined
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that the electron was striking a single massless quark, and that the quark
scatters elastically, then x is the fraction of the proton’s momentum the
struck quark was carrying, evaluated in a frame where the proton is initially
approaching the electron at very high energy (the infinite momentum frame
or Breit frame). To see this, note that

x ≡ q2

−2p · q , so

0 = −2q · (xp)− q2 ,

0 ' −(xp)2 − 2q · (xp)− q2 ,

0 ' −(xp + q)2 , (9.35)

so that, indeed, if the photon struck a quark with momentum fraction xp,
then the final quark would be on shell. In passing from the second to the
third line we have neglected the proton mass, which is appropriate if we are
not concerned about Λ2

QCD/q2 corrections.
We will not ask for the differential cross-section in terms of the specifics

of the final state X, but we will ask for the differential cross section in terms
of the leptonic final state. Its final state phase space is

1
vrel2k02p0

∫
d3k′

(2π)32k′0
. (9.36)

For simplicity we will only discuss spin averaged cross-sections here, in which
case there is no problem with performing the angular integration. We also
systematically ignore the lepton mass, so vrel2k02p0 = 2(s − m2

p). In the
proton rest frame, we may rewrite

1
2(s−m2

p)

∫
d3k′

(2π)32k′0
=

1
16π2(s−m2

p)

∫ 1

−1
d cos θkk′k

′dk′ . (9.37)

Furthermore, in this frame, y = k′0/k0, k0 = (s−m2
p)/(2mp), q2 = −2k ·k′ =

2(k0)2y(1−cos θkk′), and x = k0(1−cos θkk′)/mp, so this can be re-expressed
as

1
2(s−m2

p)

∫
d3k′

(2π)32k′0
=

1
32π2

∫ 1

0
ydy

∫ 1

0
dx

=
1

32π2

∫ 1

0
dx

∫ x(s−m2
p)

0

q2

x2(s−m2
p)2

dq2 . (9.38)
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9.2.1.2 Structure functions

Let us now write down the most general form that the spin averaged cross
section can take. This will define the “structure functions,” which parame-
terize our ignorance of hadronic cross-sections.

The probability to scatter is given by

σ =
∑

f

∣∣∣〈f |S | e−(k), p(p)〉
∣∣∣
2
, (9.39)

where S is the S-matrix and
∑

f is a summation over all final states differ-
ent from the initial state. Although we are largely ignorant of the strong
coupling states and their interactions, it is certainly safe to expand pertur-
batively in the electromagnetic (or weak) interactions. Looking at figure 9.1,
we see that S must contain at least two insertions of the electromagnetic cur-
rent, of which one is the leptonic part of the current and one is the hadronic
current;

〈f |S | e−(k), p(p)〉
= e2

∫

q,q′
〈f |T [Jµ

Had(q)Aµ(−q)Jν
lept(q

′)Aν(−q′)] |e−(k), p(p)〉 , (9.40)

plus terms higher order in the electromagnetic coupling. The A field opera-
tors tie off into a propagator, ηµν/q2 (2π)4δ4(q + q′), and for the rest of the
problem the electromagnetic and hadronic parts of the Hilbert space can be
treated independently;

∑

f

∣∣∣〈f |S | e−(k), p(p)〉
∣∣∣
2

=
e4

4vrelk0p0

∫
d3k′

(2π)32k′0
1
q4
×

〈e−(k) |Jµ(−q) | e−(k′)〉〈e−(k′) | Jν(q) | e−(k)〉
×〈p(p) | Jµ(q)

∑

f,had

| f, had〉〈f, had |Jν(−q) | p(p)〉

=
∫ 2πα2ydxdy

q4
Lµν(x, q2, s)Wµν(x, q2) . (9.41)

The leptonic tensor is easily evaluated (apply crossing to Eq. (6.18)),

Lµν = 2(kµk′ν + k′µkν − k · k′ηµν) , (9.42)

and the hadronic tensor can at least be compactly expressed by noting that
the final hadronic state sum in Eq. (9.41) is a sum over a complete set of
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hadronic final states, and is therefore the identity;

Wµν ≡ 1
2

∑
σ

1
4π

∫
d4zeiq·z〈p(p, σ) | [Jµ(z) , Jν(0)] | p(p, σ)〉 . (9.43)

The factor of 1/4π is conventional and was taken into account in the last line
of Eq. (9.41). The replacement of the ordered currents with the commutator
is harmless, because when the positive frequency J operates on the proton
state, it gives zero, for kinematic reasons–the energy of the proton cannot
be lowered by q0.

The quantity Wµν can only depend on the vectors q, p and the invariants
which can be formed from them, q2 and x. Based only on its tensorial
structure, and the condition qµWµν = 0, we can express W in terms of
three scalar functions of x and q2;

Wµν(x, q2) =
(

ηµν−qµqν

q2

)
F1(x, q2)− p̂µp̂ν

p · q F2(x, q2)−iεµναβ qαpβ

2p · qF3(x, q2) .

(9.44)
Here p̂µ ≡ pµ−qµp ·q/q2 = pµ− (1/2x)qµ. The quantities F1, F2, and F3 are
called structure functions, and they completely parameterize our ignorance
of the hadronic physics involved in total (inclusive) hadronic cross sections.
F1 and F2 are positive, while F3 is zero for electromagnetic interactions but
will be nonzero when we generalize to weak interactions (see problem 4). If
we were interested in spin dependent cross-sections, five additional structure
functions linear in the spin vector s would be required.

For electromagnetic scattering, we find by contracting Eq. (9.44) with
Eq. (9.42) that the differential cross-section is

dσ

dxdy
=

4πα2y

q4

(
q2F1(x, q2) +

[
(1− y)

q2

xy2
− xm2

p

]
F2(x, q2)

)
. (9.45)

9.2.1.3 Parton distribution functions

The hadronic current at spacetime point x, relevant in Eq. (9.43), is

Jµ(x) ≡
∑
m

−2i

3
ūm(x)γµum(x) +

∑
m

i

3
d̄m(x)γµdm(x) , (9.46)

with u, d the up and down type quarks and m an index running over the
generations. The current operator can be re-expressed in terms of number
operators for quarks; the current-current correlator, Eq. (9.43) is measuring
the probability (not the amplitude, because there are two J insertions) for a
quark to be in the proton, times the tensor such a quark would contribute to
the scattering problem. At large momentum, the theory is weakly coupled
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when described in terms of quarks and gluons, so this must be the right
language for describing Wµν(x, q2).

With this in mind, we define the parton distribution functions (henceforth
PDF’s) um, dm, ū, d̄m, g(x, q2), loosely, as follows; um(x, q2)dx is the proba-
bility that a probe of virtuality q2 will find an up type quark of generation
m in the proton, with a momentum fraction between x and x + dx of the
full proton momentum. ūm is the same for an up-type antiquark, g for a
gluon, and so forth.

It may sound counterintuitive, but it is possible to find anti-quarks in
a proton. Similarly, while we think of the proton as a bound state of
three quarks, the gluon PDF turns out to account for most of the parti-
cles, and about half the momentum, of the proton. To see why, reconsider
the collinear emission discussed in subsection 6.7.2. An electron involved
in a high energy scattering radiates off photons with probability of order
α ln(q2/m2

e). Similarly, even if we can describe a proton as a bound state of
three quarks at low energy, in a hard scattering a quark will emit additional
gluons with a probability of order α3 ln(q2/Λ2

QCD). However, Eq. (8.7) tells
us that α3(q2) ∼ 1/ ln(q2/Λ2

QCD). Therefore the gluon emission probability
is order 1. The emitted gluons in turn can split into quark-antiquark pairs,
also with probability O(1). The PDF’s at scale q2 are defined already to
include such radiations, and therefore the gluon and antiquark PDF’s will
be nonzero. The higher q2 we consider, the more such radiations will occur,
which means the PDF’s will have q2 dependence which can be predicted
using calculations similar to those in subsection 6.7.2. We return to this
point in subsection 9.2.3.

The splitting just described cannot change the total number of quarks mi-
nus anti-quarks in any flavor. Therefore, the fact that the proton carries the
flavor quantum numbers of two up quarks and a down quark is represented
by a sum rule on the PDF’s,

∫ 1

0
dx





u(x, q2)− ū(x, q2)
d(x, q2)− d̄(x, q2)
s(x, q2)− s̄(x, q2)





=





2
1
0

in a proton . (9.47)

To clarify, the PDF’s can also be defined for any other hadron. Properly
we should put an index on um, gm, . . . to indicate which hadron they refer
to, since the values depend on the hadron being probed. We will not do so
in the following to avoid cluttering the notation. For a neutron the u − ū

integral gives 1 and the d− d̄ integral gives 2, while for a π+ they give 1 and
−1 etc. The quarks represented by the difference u − ū(x, q2) are usually
referred to as the valence quarks, while the residual set of quarks and anti-
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quarks are called the sea quarks. It turns out that the valence quarks are
mostly at fairly large x, while the sea dominates at small x. Also, the total
momentum carried by all quarks, antiquarks, and gluons must equal the
total hadron momentum, so
∫ 1

0
dxx

(
g(x, q2) +

∑
m

um(x, q2) + dm(x, q2) + ūm(x, q2) + d̄m(x, q2)

)
= 1 .

(9.48)
To relate the parton distribution functions to the structure functions, we

need to determine the contribution of a quark with momentum fraction x′ to
the structure functions. Therefore, consider the case of a single quark with
momentum fraction x′. The cross-section for this quark to scatter from an
electron is,

Q2
qe

4

vrelx′p0k0

∫
d3k′d3p′

(2π)62k′02p′0
(2π)4δ4(k + x′p− k′ − p′)

1
q4

Lµν

×2
(
x′pµp′ν + x′pνp

′
µ − x′p · p′ηµν

)
, (9.49)

where Q2
q is the charge squared of the quark in units of the electric charge.

The final quantity in parenthesis is the result of evaluating the Dirac trace,
summed on the final and averaged on the initial spins, for the quark. To
evaluate this quantity, it is convenient to write

∫
d3p′

(2π)32p′0
=

∫
d4p′

(2π)4
2πδ(p′2) . (9.50)

The p′ integration is then performed trivially, using the energy and momen-
tum conserving delta function; it forces p′ = (x′p+q). We can also treat the
k′ integration in the same way as in Eq. (9.38). This gives,
∫ 2πα2ydydx

q4

1
4πx′

2πδ((x′p + q)2)Lµν2Q2
q

(
x′pµp′ν + x′pνp

′
µ − x′p · p′ηµν

)
,

(9.51)
where p′ is now defined to be (x′p+q). The delta function can be rewritten
(neglecting x′2m2

p next to q2) as

δ((x′p+q)2) =
1

|2p · q|δ
(

x′ +
q2

2p · q

)
=

x

q2
δ(x′ − x) , (9.52)

which just enforces that x′ of the initial quark and x of the leptonic kine-
matics are the same. The cross-section due to the quark has now become,

∫ 2πα2ydydx

q4
Lµν Q2

q

q2
δ(x′ − x)

(
xpµp′ν + xpνp

′
µ − xp · p′ηµν

)
. (9.53)
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Comparing with Eq. (9.41), and with the parameterized form of Wµν

written in Eq. (9.44), we can identify
(

ηµν − qµqν

q2

)
F1(x, q2)− p̂µp̂ν

p · q F2(x, q2)

= Q2
qδ(x− x′)

1
q2

(
xpµp′ν + xpνp

′
µ − xp · p′ηµν

)
. (9.54)

Now xp · p′ = xp · (xp + q) ' xp · q = −q2/2. Further,

x

q2

(
pµp′ν + pνp

′
µ

)
=

−1
2p · q (2xpµpν+pµqν+pνqµ)

=
−x

p · q
(

pµpν +
1
2x

(pµqν+pνqµ) +
1

4x2
qµqν

)
−K

qµqν

q2

= x
−1
p · q p̂µp̂ν − 1

2
qµqν

q2
. (9.55)

Therefore, the contribution of a quark, of momentum fraction x′, to the
structure functions F1(x, q2), F2(x, q2) is,

F1(x, q2) =
Q2

q

2
δ(x− x′) ,

F2(x, q2) = xQ2
qδ(x− x′) . (9.56)

More generally, in terms of the parton distribution functions defined above,
the structure functions are

F1(x, q2) =
1
2

∑
m

(
4
9
(um + ūm)(x, q2) +

1
9
(dm + d̄m)(x, q2)

)
,

F2(x, q2) = 2xF1(x, q2) . (9.57)

Therefore the structure functions directly determine the parton distribution
functions.

At this point the reader may ask whether we have just replaced one pa-
rameterization of our ignorance, in terms of F1 and F2, for another, in
terms of the parton distribution functions. This is not the case. For one
thing, the description of the proton in terms of partons gives us the relation
F2(x, q2) = 2xF1(x, q2) (the Callan-Gross sum rule), which need not be true
in general. This relation is obeyed by the data, up to O(α3) corrections
(which can in turn be computed by treating the scattering between the elec-
tron and quark at higher order in α3, and including scattering from gluons
which first occurs at this order). Second, there are definite predictions for
the q2 dependence of the PDF’s, which we present in subsection 9.2.3. Fi-
nally, the same PDF’s also apply to other processes, for instance, neutrino
scattering from hadrons or hadron-hadron scattering.
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Let us emphasize a few points about this calculation:

(i) The calculation we have just outlined, for the cross-section e−p →
e−X, is valid to leading order in α3. Corrections can be systemati-
cally computed by performing a loopwise expansion of the scattering
cross-section of an e− from a parton of momentum fraction x. Such
corrections are now known completely at the two loop level, and the
agreement between theory and data is very good.

(ii) The partonic treatment is insufficient if we are interested in correc-
tions to the cross-section suppressed by powers of Λ2

QCD/q2 with re-
spect to the leading order value we have just discussed. This is not
just because we have sometimes made approximations valid in the
Λ2

QCD ¿ q2 limit; the parton distribution function approach itself is
insufficient to find such corrections, because it is necessary to take
into account more information about the proton than its partonic
structure. The PDF’s describe a picture of the proton as a set of
quarks and gluons, overlapping in an uncorrelated (incoherent) way.
However, hadrons are bound states, so there must exist some non-
perturbative correlations between the partons, describing the way in
which they are bound in the hadron. The scale separation between
the binding forces, ∼ ΛQCD, and the probed scale, set by q2, is what
ensures that these corrections are small. Such corrections are called
higher twist.

(iii) The description in terms of partons is useful at large q2 and moderate
x, which is more restrictive than large center of mass energy s. The
total inelastic cross-section is dominated by the q2 <∼ Λ2

QCD region,
even at arbitrarily large s.

(iv) It was essential that we summed over all hadronic final states in pass-
ing from Eq. (9.41) to Eq. (9.43), because that sum gives the identity
which then drops out and leaves a hadronic expression depending
only on the initial state. It is possible to go beyond this in a limited
way, by asking either questions involving only the general kinematics
of the final state, or semi-inclusive questions, which we will address
in the next subsection.

9.2.2 Hadron-hadron collisions

Consider next the scattering of two hadrons at high energy. For processes
involving a large invariant energy scale, the right description will again be
in terms of the quark and gluon constituents. In this case, each hadron



9.2 Hard inelastic scattering: partons 339

must be described in terms of PDF’s, so the prediction for the rate for some
process will now involve an integral over the PDF’s of each hadron. Again,
we begin with the simplest process to consider.

9.2.2.1 Drell-Yan and heavy quark production

The Drell-Yan process is the production of a lepton-antilepton pair, or dilep-

ton, together with any hadronic final state X, in hadron-hadron scattering.
The lepton pair ll must be produced by an electromagnetic (or weak) in-
teraction, elγµAµl, but since there is no photon in the initial state, the
S-matrix must be quadratic in electromagnetic interactions,

SDrell−Yan = 〈llX|e2Jµ
leptAµJν hadrA

ν |h1h2〉 . (9.58)

Again, the leptonic and hadronic parts of the Hilbert space factorize and
the A insertions combine into a gauge field propagator. Therefore, the total
cross-section is,

σ =
∫

q,q′

∫
d3kd3k′

(2π)64k0k′0
e4

q2q′2
〈0|Jµ(q)|l(k)l′(k′)〉〈l(k)l′(k′)|Jν(−q′)|0〉

×
∑

X

〈h1h2|Jµ(−q)|X〉〈X|Jν(q′)|h1h2〉 . (9.59)

Evaluating the leptonic parts will give a leptonic tensor which we can find
from Eq. (9.42) using crossing, and momentum conserving delta functions
which force k+k′ = q = q′.

Again, it is possible to define a current-current tensor Wµν for the hadrons,
and explore its possible structure. However, when −q2 À Λ2

QCD (that is,
for large invariant mass dileptons), we can take advantage of the fact that
α3(−q2) ¿ 1 and work in terms of quark and gluon operators. The current
Jµ =

∑
q Qqqγµq probes the partonic (specifically, quark) content of the

hadrons. Unlike leading order deep inelastic scattering, q and q must both
act on partons from the initial hadrons–otherwise the process represents the
creation of the ll pair from one hadron, which is not kinematically allowed.

Diagrammatically, this leading-order contribution to Drell-Yan would be
drawn as in figure 9.2. Here the blobs on the left mean the two initial state
hadrons, with the several lines leaving each representing the constituent
partons. One parton from each hadron–a q and a q–interact electromag-
netically to form the ll pair (with l = e, µ, or τ). This picture generalizes
slightly the meaning of Feynman diagrams we have used so far: when one
line is extracted from a blob, it means the relevant PDF is used to find the
probability of finding that parton in the hadron represented by the blob.
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Fig. 9.2. The Drell-Yan process

The other lines from the blob are not terminated to indicate that the final
hadronic state is summed over.

We can recycle Eq. (6.32) to find the differential rate for a quark of mo-
mentum x1p and an antiquark of momentum x2p

′ to form a dilepton pair:

σ(qq → ll) =
4πα2

9x1x2s
Q2

q . (9.60)

Here Q2
q is the charge squared of the quark. x1x2s is the Mandelstam s for

the quark antiquark pair, as opposed to the hadron-hadron system, which
we still write as s. The extra factor of 1/3 relative to Eq. (6.32) comes about
because we are averaging over the initial quark colors; the annihilation can
only take place if their colors are the same.

The 4-momentum of the dilepton pair system is x1p
µ + x2p

′µ, Therefore,
q2 = −x1x2s. Further, the spatial component of q transverse to p and p′ in
the center of mass frame, q⊥, vanishes. However, the dilepton center of mass
is not generally at rest in the CM frame. Instead, its motion is along the
beam axis in the hadron CM frame. It is conventional to define the rapidity

of a particle or set of particles, y, as the natural log of the boost, along the
beam axis, to go from the center of mass of the hadronic system to the frame
where the center of mass of the particles in question moves (if at all) only
transversely to the beam axis. Thus, y = 1

2 ln[(q0+qz)/(q0−qz)], with q0 and
qz the energy and momentum along the beam axis in the CM frame. For
qµ given above, the rapidity is therefore y = 1

2 ln(x1/x2). Combining terms,
and integrating over the PDF’s of both hadrons, the differential cross-section
in terms of q2 and y becomes,

dσ

dq2dy
=

∫ 1

0
dx1dx2

∑

q=u,d,s,...

(
qh1

(x1)qh2(x2) + qh1(x1)qh2
(x2)

)×

4πα2Q2
q

9|q2| δ
(
|q2| − x1x2s

)
δ

(
y − 1

2
ln

x1

x2

)
. (9.61)
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Fig. 9.3. Heavy quark production

Here qh(x), qh(x) are the quark and anti-quark PDF’s in hadron h. This
expression predicts that

(i) the Drell-Yan cross-section and rapidity distribution can be deter-
mined simply in terms of the same PDF’s measured in deep inelastic
scattering, and

(ii) Drell-Yan ll pairs have center of mass motion along the beam axis of
the colliding hadrons.

At higher order in α3, the relation between Drell-Yan and DIS cross-sections
becomes more complicated but remains computable. Also, with O(α3) prob-
ability the center of mass motion of the ll pair can deviate strongly from the
beam axis. Again, the size of this correction is computable perturbatively.

Next, consider the production of heavy quark pairs, for instance, bb or tt

pairs, in hadron-hadron collisions. We skip straight to the analysis in terms
of partons. There are two production mechanisms, shown in figure 9.2. The
spin and color averaged differential cross-section for each can be evaluated
using the techniques of chapter 6, though the gluon external lines must be
treated with care–one cannot replace the polarization sum with ηµν as can
be done for a photon, it must be evaluated only summing over the physical
transverse polarization states. The parton level differential cross-sections
are,

dσ̂

dt
(qq → q′q′) =

4πα2
3

9ŝ4

[
(m2−t̂)2 + (m2−û)2 + 2m2ŝ

]
, (9.62)

dσ̂

dt
(gg → q′q′) =

πα2
3

8ŝ2

[
6(m2−t̂)(m2−û)

ŝ2
− m2(ŝ−4m2)

3(m2−t̂)(m2−û)
(9.63)

+
4(m2−t̂)(m2−û)− 8m2(m2+t̂)

3(m2−t̂)2
+ (t̂ ↔ û)

−3
(m2−t̂)(m2−û) + m2(û− t̂)

ŝ(m2−t̂)
+ (t̂ ↔ û)

]
,

with ŝ, t̂, and û the Mandelstam variables defined in terms of x1p and
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x2p
′ rather than p and p′, and m2 the mass squared of the heavy quark.

Integrating over t, and defining z ≡ 4m2/ŝ gives,

σ̂(qq → q′q′) =
4πα2

3

27ŝ
(2 + z

√
1− z) , (9.64)

σ̂(gg → q′q′) =
πα2

3

48ŝ

[
−(28+31z)

√
1−z + (16+16z+z2) ln

1 +
√

1−z

1−√1−z

]
,

The full production cross-section is,

σh1h2→q′q′ =
∫ 1

0
dx1dx2

[
gh1(x1)gh2(x2)σ̂gg→q′q′(ŝ = x1x2s) (9.65)

+
(
qh1(x1)qh2

(x2) + qh1
(x1)qh2(x2)

)
σ̂qq→q′q′(ŝ = x1x2s)

]
.

Here we have written explicitly which hadron each PDF refers to, but we
have not written the scale where they should be evaluated. The correct scale
is approximately µ2 = ŝ.

9.2.2.2 Jets and fragmentation

We saw in chapter 4 and chapter 6 that electroweak processes can occur
with qq pairs in the final state. Similarly, hadron-lepton and hadron-hadron
scattering can produce quark or gluon final state particles.

The differential cross-sections needed in light quark and gluon production
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are,

dσ̂

dt̂
=

πα2
3

ŝ2
×





q1q2 → q1q2 :
4
9

ŝ2+û2

t̂2

q1q1 → q1q1 :
4
9

(
ŝ2+û2

t̂2
+

ŝ2+t̂2

û2

)
− 8

27
ŝ2

t̂û

q1q1 → q2q2 :
4
9

t̂2+û2

ŝ2

q1q1 → q1q1 :
4
9

(
ŝ2+û2

t̂2
+

û2+t̂2

ŝ2

)
− 8

27
û2

ŝt̂

qq → gg :
32
27

û2+t̂2

ût̂
− 8

3
û2+t̂2

ŝ2

gg → qq :
1
6

û2+t̂2

ût̂
− 3

8
û2+t̂2

ŝ2

qg → qg : −4
9

û2+ŝ2

ûŝ
+

û2+ŝ2

t̂2

gg → gg :
9
2

(
3− ût̂

ŝ2
− ûŝ

t̂2
− ŝt̂

û2

)

(9.66)

where one must remember to integrate over only half the final state phase
space when the final particles are identical, gg or q1q1. Here the index on q

is used just to distinguish whether the quarks involved in a scattering are of
the same or different species. Each particle emerges with momentum per-
pendicular to the beam axis of k2

⊥ = t̂û/ŝ. Their rapidities are 1
2 ln(x1t/x2u)

and 1
2 ln(x1u/x2t).

Several of the cross-sections possess 1/t̂2 or 1/û2 behavior, which leads to
divergent small k2

⊥ cross-sections. However, it is k2
⊥, not ŝ, which sets the

scale for determining α3 and the PDF’s. (To see this, note that diagrams
with 1/t̂2 behavior behave in this way because of t-channel gluon propaga-
tors. The propagator has virtuality −(p−k)2 = t̂, and this is what controls
the scale for α3, not the ŝ of the collision.) When k2

⊥ is not large compared
to Λ2

QCD, a treatment in terms of PDF’s and perturbation theory is not reli-
able. Note that the total hadron-hadron cross-section is dominated by small
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angle and small x processes, which perturbative techniques cannot reliably
compute.

To compute the k⊥ and rapidity distribution of light, large k⊥ partons,
one must integrate the differential cross-sections given above over x1 and x2

with the relevant PDF’s inserted. But this does not answer the question of
what will be detected in an experiment. How do such final state partons
turn into hadrons? That process begins with final state radiation. We
saw in subsection 6.7.2 that initial state radiation occurs with probability
α log2(q2/m2). The calculation carries through essentially unchanged for
final state radiation. In QCD the coupling α is replaced by α3 and the logs
are cut off by the QCD scale ΛQCD, so the rate of final state radiation is of
order, α3 log2(q2/Λ2

QCD). Here one log arises from the range in collinearity
between the final states,

∫ 1
ΛQCD/q dθ/θ, and the other comes from the energy

fraction of the radiated state,
∫ 1
ΛQCD/q dx/x. Hard, large angle radiations

are rare, O(α3), and can be studied perturbatively. On the other hand, soft
and collinear radiations are common. As remarked before, Eq. (8.7) can be
used to infer that α3(q2) ∼ 1/ log(q2/Λ2

QCD). Therefore there are typically
several final state radiations, which can in turn also radiate. Therefore the
parton becomes several partons, most of them soft, moving in almost the
same direction as the original parton. These bind off into a collection of
hadrons, a process called hadronization. The two processes together–final
state radiation and hadronization–are called fragmentation. The collection
of hadrons, all moving in close to the direction of the original parton, are
called a jet.

Hard (large momentum fraction), large angle final state radiations are
rare, O(α3/π), and computable perturbatively. They have been extensively
studied and there is good agreement between observation and theory. How-
ever, this subject lies beyond the scope of this book. The details of the
soft and collinear radiation and hadronization involve the scale ΛQCD and
cannot be studied perturbatively. However, some observables are universal.
The origin of the hard parton has little bearing on its fragmentation into
a jet, because fragmentation occurs after the parton has moved a distance
≥ Λ−1

QCD from the production site, and can therefore only interact through
soft momentum exchange with energies ∼ ΛQCD. Therefore, questions in-
volving high-energy final state hadrons, while nonperturbative, are indepen-
dent of the originating process which produced the parton, with corrections
which are either perturbative and computable, or suppressed by powers of
k2
⊥/Λ2

QCD.

With this in mind, we can define the fragmentation function Dh/q(z, q2)dz,
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as the probability that among the hadrons produced by a quark, one will
be a hadron of type h with momentum fraction between z and z + dz of
the originating quark’s momentum. Here q2 is the virtuality of the process
which produced the quark (−t̂ in a t-channel process, ŝ in an s-channel
process). That is, roughly,

Dh/q =
∑

X

|〈X,h(zp)|q(p)〉|2 . (9.67)

Dh/q and Dh,g are defined similarly. To the extent that CP is a valid sym-
metry, Dh/q = Dh/q and Dh/g = Dh/g.

Like the PDF’s, the fragmentation functions D cannot be evaluated per-
turbatively, but must be determined from experiment. Once determined in
one experiment (typically e+e− annihilation), however, they can be used to
make predictions about high energy hadron yields in other experiments. Fur-
thermore, like the PDF’s, they have weak and computable q2 dependence.
We turn to this issue next.

9.2.3 Scale dependence of parton distribution functions

The parton distribution functions um, ūm, dm, d̄m, g(x, q2) are a priori un-
known functions of x. However, we can say something about their depen-
dence on q2.

The first point is that the PDF’s should be approximately scale indepen-
dent. This is because, at the relevant scales involved, the strong coupling
is weak, α3 ¿ 1. If a quark were a free particle, like an electron, then
the energy scale dependence of its interactions would be trivial, just as the
energy dependence of the leptonic tensor Lµν of Eq. (9.42) is. Therefore, a
quark with momentum fraction x, analyzed at one momentum q2

1, should,
at leading order, still be a quark of momentum fraction x when analyzed at
a different momentum q2

2. Therefore, at leading order in α3, the PDF’s are
q2 independent;

um(x, q2
1) = um(x, q2

2) at leading order in α3 . (9.68)

This is in good agreement with experimental data. For instance, the struc-
ture functions vary slowly with q2, F1,2(x, 2q2)/F1,2(x, q2) ∼ 1 + O(α3).

The origin of the scale dependence in the structure functions comes about
because of initial state radiation. Suppose that a proton contains a quark
with momentum fraction x. Then, as we saw in subsection 6.7.2, there
is a substantial chance that, when probed with virtuality q2, the quark
will emit collinear radiation, and be observed with a smaller momentum
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fraction. In subsection 6.7.2 we saw that, for an electron, the probability
for a photon emission with energy fraction between x′ and x′ + dx′ was
' α/2π log(q2/m2

e)[(1+(1−x′)2)/x′]dx′. The same calculation can be carried
over to gluon radiation. The difference is that a color factor for the vertex,
and a summation over the final state colors of the quark and gluon, must
be included. If the incoming quark is in color i, the coupling constants and
color factors for the (final color summed) emission process can be taken over
from the QED case with the replacement,

e2 → g2
3

∑

ja

∣∣∣∣∣
λa

ij

2

∣∣∣∣∣
2

=
g2
3

4

∑

ja

λa
ijλ

a
ji ≡ CFg2

3 , CF =
4
3

, (9.69)

where λa
ij is the Gell-Mann matrix introduced in Eq. (1.186). The quantity

CF is called the quadratic Casimir of the fundamental representation, and
is sometimes written C2(F).

The definition of the PDF’s at scale q2 is, that they have already had
initial state radiation, henceforward splitting, up to the scale q2 taken into
account in their definition. However, when we probe with a larger q2, the
probability of splitting is increased. The PDF must be modified to include
this additional chance that the parton has split by collinear radiation. For
instance, in passing from the scale q2 to the scale λq2, the distribution
um(x, q2) would change by

um(x, λq2) = um(x, q2)

(
1− CFα3

2π
log

λq2

q2

∫
dx′

1 + (1−x′)2

x′

)
+ gain term,

(9.70)
where the first term is probability that a quark of momentum fraction x

survives without splitting (which is 1 minus the probability of splitting),
and the second “gain term” is the probability that some larger x parton
undergoes a splitting which produces an up quark of momentum fraction x.
If the only process to consider were q → qg splitting, then the rate at which
quarks of momentum fraction x would be produced would be

gain termq→qg =
CFα3

2π
log

λq2

q2

∫ 1

x

dx′

x′
um(x′, q2)

(
1 + (x/x′)2

1− (x/x′)

)
. (9.71)

Here x′ is the momentum fraction of the quark which will radiate down
to momentum fraction x. For the quark’s momentum fraction to change
from x′ to x, it must lose x′ − x of the proton’s momentum, which is a
fraction 1− (x/x′) of its starting momentum. Also note that the integration
measure is dx′/x′. The 1/x′ is a Jacobian which arises because, when a
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quark of momentum fraction x′ loses a gluon in the range [y, y + dy] of that
quark’s momentum, the gluon energy is in the range [x′y, x′y + x′dy].

Note that both the integral over x′ in the first “loss” expression, in
Eq. (9.70), and over the “gain” expression, in Eq. (9.71), are logarithmi-
cally divergent. The first expression is log divergent as x′ → 0, the second
as x′ − x → 0. The first divergence arises from the large probability for a
quark of momentum fraction x to lose a tiny bit of momentum by a very
soft gluon radiation. The second divergence arises from the large probabil-
ity that a slightly higher momentum fraction quark will lose a tiny bit of
momentum to a gluon radiation, and become a momentum fraction x quark.
These divergences cancel provided that um(x, q2) is a smooth function. They
are handled by defining

1
(1−x)+

=
1

1−x
(x < 1) ;

∫ 1

0
dx

f(x)
(1−x)+

=
∫ 1

0
dx

f(x)− f(1)
1−x

. (9.72)

That is, 1/(1−x)+ is 1/(1−x) everywhere but at zero, where there is a neg-
ative delta function which ensures that the second condition above will be
met. In terms of this, Eq. (9.70) and Eq. (9.71) can be combined, and con-
verted into differential form in the change of momentum scale, as (defining
y = x/x′ of Eq. (9.71))

dum(x, q2)
d log(q2)

=
CFα3

2π

∫ 1

x

dy

y

(
1 + y2

(1− y)+
+

3
2
δ(1− y)

)
um(x/y, q2) . (9.73)

The entire loss term, Eq. (9.70), appears in the (1 − y)+ condition in the
denominator. In fact, this slightly over-subtracts, because the actual loss
term involves

∫
(1+(1−x)2)dx/x, and the subtraction would be appropriate

if this were
∫
(2)dx/x. Therefore we had to put in the factor of 3

2δ(1 − y)
to reproduce the loss term correctly. This factor 3/2 is the same as the 3/2
which appears in Eq. (6.88).

Because it is so likely to emit a soft gluon, the gluon PDF will diverge at
least as g(x, q2) ∼ 1/x. The total number of gluons contained in the proton
is therefore (at least) logarithmically divergent. This is not problematic,
however, because no experiment counts the number of gluons in the proton,
and because the total momentum fraction carried by gluons,

∫
dx xg(x, q2),

is well behaved so long as g(x, q2) < o(1/x2), which is the case.
To compute the scale dependence of the PDF’s, we need to determine not

only how the quark can break up by emitting a gluon, q → qg, but also how
a gluon can break up, g → gg and g → qq̄. The analogous expressions are,

e → eγ or q → qg :
[
CF =

4
3

]
α

2π

1 + (1− x)2

x
; (9.74)
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γ → e+e− or g → qq̄ :
[
CFdF

dA
=

1
2

]
α

2π

(
x2 + (1− x)2

)
;

(QCD only) g → gg : [CA = 3]
α

2π

1 + x4 + (1− x)4

x(1− x)

=
6α

2π

(
x

1− x
+

1− x

x
+ x(1− x)

)
.

The quantity in brackets is the result of summing over final state colors, and
should be dropped for the QED processes. The new group-theoretic factors
are dF = 3, the number of colors of quarks, dA = 8, the number of types
of gluons, and CA = 3, the analog of CF but with adjoint representation
objects like the gluons;

∑
bc fabcfdbc = CAδad.

Each process leads to one loss term and two gain terms; for instance, the
q → qg process, we already saw, leads to a loss and a gain term in the quark
PDF evolution; but it also causes a gain term in the gluon PDF evolution,
to account for the radiated gluon. The complete set of evolution equations
for the PDF’s, called the Altarelli-Parisi or DGLAP (Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi) equations, are (writing q for um, dm)

dq(x, µ2)
d log µ2

=
α3

2π

∫ 1

x

dy

y

{
Pq←q(y) q(x

y , µ2) + Pq←g(y) g(x
y , µ2)

}
, (9.75)

dq̄(x, µ2)
d log µ2

=
α3

2π

∫ 1

x

dy

y

{
Pq←q(y) q̄(x

y , µ2) + Pq←g(y) g(x
y , µ2)

}
, (9.76)

dg(x, µ2)
d log µ2

=
α3

2π

∫ 1

x

dy

y

{
Pg←q(y)

∑
q

[
q(x

y , µ2) + q̄(x
y , µ2)

]

+ Pg←g(y) g(x
y , µ2)

}
, (9.77)

Pq←q(y) =
4
3

[
1+y2

(1−y)+
+

3
2
δ(1−y)

]
, (9.78)

Pg←q(y) =
4
3

[
1 + (1−y)2

y

]
, (9.79)

Pq←g(y) =
1
2

[
y2 + (1−y)2

]
, (9.80)

Pg←g(y) = 6
[
1−y

y
+

y

(1−y)+
+ y(1−y) +

(
11
12
− Nf

18

)
δ(1−y)

]
. (9.81)

The functions Pb←a are called splitting functions; they summarize the rate of
collinear splitting of species type a to produce species type b with momentum
fraction y. Here Nf ≡

∑
q 1 is the number of active quark species. A quark

species is active if µ2 > m2
q , if this condition is not met then that quark’s
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Fig. 9.4. Proton parton distribution functions at two scales

PDF should be taken to be zero. The value of α3 should be evaluated at
the renormalization point µ̄2 = µ2. These equations manifestly preserve the
sum rules, Eq. (9.47) and Eq. (9.48).

The values of the PDF’s, and the effect of their scale dependence, is
illustrated in figure 9.4, which shows the PDF’s at two scales, roughly the
scales relevant for bb and tt production. Here we have plotted xf rather than
f , so that the curves will fit better onto the plot. The area under a curve
then represents the momentum fraction carried by that species. Note the
horizontal axes, which we did not extend to x = 1 because the PDF’s are all
very small at very large x. Accurate compilations of PDF’s for the proton are
publicly available from collaborations (CTEQ, MRST) who perform grand
fits, mostly of deep inelastic scattering data. The data for figure 9.4 come
from an MRST fit. The PDF’s of the neutron are related to proton PDF’s
by isospin symmetry (exchange u ↔ d) to within small errors, smaller than
the errors in the determination of the PDF’s. The PDF’s of other hadrons
are not as well determined.

Final state particles also emit radiation. In fact, the calculation in sub-
section 6.7.2 carries through essentially unchanged for radiation from a final
state. We argued there that such radiation is not important in evaluating
the total cross-section. However, it is important in determining the particles
in the final state. In particular, the fragmentation functions D(z, q2) intro-
duced in subsection 9.2.2 are also q2 dependent. For λ > 1, When a qq pair
is formed from a gluon or photon of virtuality λq2, there is a larger opportu-
nity for each quark to radiate off gluons than when the pair is formed at q2.



350 Hadronic interactions

When such a radiation occurs, the fragmentation into a hadron must occur
from one of the partonic fragments, rather than from the original hadron.
This leads to scale evolution for the fragmentation functions, given by

dDh/q(z, µ2)
d log µ2

=
α3

2π

∫ 1

z

dy

y

{
Pq←q(y)Dh/q( z

y , µ2) + Pq←g(y)Dh/g( z
y , µ2)

}
,

dDh/q(z, µ2)
d log µ2

=
α3

2π

∫ 1

z

dy

y

{
Pq←q(y)Dh/q( z

y , µ2) + Pq←g(y)Dh/g( z
y , µ2)

}
,

dDh/g(z, µ2)
d log µ2

=
α3

2π

∫ 1

z

dy

y

{
Pg←q(y)

∑
q

[
Dh/q( z

y , µ2) + Dh/q( z
y , µ2)

]

+ Pg←g(y)Dh/g( z
y , µ2)

}
. (9.82)

Here Pq←q etc. are the same splitting functions as for parton distributions,
given already in Eq. (9.78) through Eq. (9.81).

By writing these equations in differential form, we can use them to evolve
the PDF’s (and splitting functions) from a scale q2

1 to a very different scale
q2
2, accounting not only for the O(α3 log(q2

2/q2
1)) changes in the PDF’s, but

also for for all (α3 log(q2
2/q2

1))
n changes in the PDF’s. In this they re-

semble the renormalization group equations of subsection 7.4.1. They do
not account for changes subdominant by a power of α3, without a log, i.e.
αn+1

3 logn(q2
2/q2

1). Such corrections can be accounted for by computing the
collinear splitting processes at higher order in α3, though this is only useful
if the hard scattering cross-section is computed to a similar order. The next-
to-leading order (NLO) corrections to the splitting functions are known, as
are the complete NNLO corrections and the hard scattering cross-sections
for a number of processes.

The agreement of measurements at very different values of q2 and x with
the evolution described by these equations is remarkable. A “grand fit” of
QCD cross-sections at many s, q2 and x values can be used to determine
the PDF’s as a function of scale, as well as the strong coupling constant.
Recent fit values (2005) give α3(µ̄2 = M2

Z) = 0.118 ± 0.002, in very good
agreement with other determinations (lattice, Z pole observables, etc.).

9.3 Soft inelastic scattering: low-energy mesons

The previous section shows how the weakness of the strong interactions
over short distances permits a relatively simple description of very inelastic
hadron collisions. The flip side of asymptotic freedom is that the strong
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interactions are strong over longer distances, and this considerably compli-
cates the description of inelastic hadron collisions at lower energies. This
section shows how it is nevertheless possible to make some quantitative pre-
dictions in this regime, by exploiting the chiral symmetries of QCD discussed
in section 8.3.

The starting point for making these predictions is the observation that
the light pseudo-scalar meson octet, ξ = exp[iM/2f ], — consisting of pions,
kaons and η — are pseudo-Goldstone bosons for the breaking of the approx-
imate chiral SUL(3)× SUR(3) symmetry of QCD, involving the rotation of
the lightest three quarks. The predictions follow because Goldstone’s theo-
rem strongly restricts the kinds of interactions which are possible for such
particles at low energy. To see how this works in detail, recall that the most
general low-energy Lagrangian for the pseudo-scalar meson octet which is
consistent with SUL(3) × SUR(3) is given by Eq. (8.58) and Eq. (8.61), to
leading nontrivial order in the symmetry-breaking quark masses, Mq:

Lgb =
f2

4
Tr

[
ξ†∂µξ ξ†∂µξ

]
+

cf2

4
Tr[Mq(ξ + ξ†)] + O(M2

q , Mq∂
2, ∂4) ,

= −1
4

Tr [∂µM∂µM] +
1

24f2
Tr

[
M2∂µM∂µM−M∂µMM∂µM

]

+
cf2

2
TrMq − c

4
Tr[MqM2] +

c

48f2
Tr[MqM4] + O(M6) .

(9.83)

This must describe the dominant low-energy self-interactions of pions,
kaons and the η meson, and its power lies in the few parameters it involves,
i.e., f and the product cMq, compared with the number of observables which
it predicts. In particular, section 8.3 shows that the matrix cMq is propor-
tional to the meson squared-mass matrix, and so it is completely determined
by the pion, kaon and η masses. The only quantity left undetermined by the
meson spectrum is therefore the dimensionful parameter f , which we next
show can be determined from the measured meson decay lifetimes. Once
this is done, the meson scattering cross sections are completely determined,
and so these provide quantitative predictions of the standard model against
which experiments may be compared.
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9.3.1 Meson decays

Meson decays into leptons are described by supplementing the QCD inter-
actions with the charged-current weak-interaction term,

L = LQCD + Lweak , (9.84)

and working perturbatively in Lweak. Because our interest is in energies
comparable to the meson masses, we cannot perturb in the strong interac-
tions, although this does not invalidate the expansion in powers of Lweak.
In this approximation the lowest-order energy eigenstates are the hadrons
themselves, and we do not try to resolve these into strongly-interacting
bound states of quarks or leptons. Since the individual quark flavors are
conserved in the absence of the weak interactions, the pseudo-scalar octet
of light mesons are stable in the limit where Lweak is turned off, and their
decay rate may be computed perturbatively in the weak couplings.

9.3.1.1 Semileptonic decays

The simplest decays to consider are those for which there is at most one
hadron amongst the final decay products. For the pseudo-scalar mesons,
such decays are called semi-leptonic and they include both the dominant
decays, such as π+ → µ+νµ or K+ → µ+νµ, and subdominant decays such
as K+ → π0e+νe etc. For these decays the relevant part of the charged-
current weak interactions, Eq. (7.12), is

Lweak =
GF Vuj√

2

∑

`=e,µ

[uγν(1 + γ5)dj ] [`γν(1 + γ5)ν`] + h.c. , (9.85)

where the implied sum on j is over the two relevant down-type quarks:
d1 = d and d2 = s. Here GF = g2

2/8M2
W is the usual Fermi coupling constant

introduced in chapter 5, and Vud and Vus are the relevant CKM matrix
elements. As discussed in subsection 2.4.3, these are well approximated by
Vud = cos θC and Vus = sin θC, with θC the Cabbibo angle. Numerically,
cos θC = 0.9753(6).

Consider now the decay rate for the reaction π+ → µ+νµ, which is over-
whelmingly the most common π+ decay channel (making up 99.98770(4)%
of all π+ decays). In order to compute this rate we require the matrix
element

〈µ+νµ| Lweak |π+〉 , (9.86)

which is difficult to compute reliably from first principles because it involves
the strong-interaction matrix element 〈Ω| dγµ(1+γ5)u |π+〉, where |Ω〉 is the
QCD ground state.
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For later purposes it is convenient to rewrite the quark combination ap-
pearing in Lweak as a linear combination of the conserved Noether currents
for the symmetry SUL(2)× SUR(2):

iuγµ(1 + γ5)d = iqγµ(1+γ5)
(

τ1 + iτ2

2

)
q

=
[
(jI)

µ
1 + i(jI)

µ
2

]
+

[
(jA)µ

1 + i(jA)µ
2

]
, (9.87)

where

(jI)
µ
k =

i

2
q γµτk q and (jA)µ

k =
i

2
q γµγ5τk q . (9.88)

Here τk are the three Pauli matrices and we re-express the left- and right-
handed currents of SUL(2) × SUR(2) in terms of axial and vector currents
using: jµ

L = 1
2 (jµ

I + jµ
A).

Some progress can be made using symmetries. Since the pion is a pseudo-
scalar particle, the parity invariance of the strong interactions implies

〈Ω| (jI)
µ
k |π+〉 = 0 . (9.89)

Similarly, the most general form for the matrix element of the axial current
which is consistent with Poincaré and isospin invariance is given by:

〈Ω| (jA)µ
k |πl(q)〉 = iFπ qµ eiqx δkl , (9.90)

where πl are the isospin eigenstates for the pi meson, with π± = (π1 ∓
iπ2)/

√
2. Therefore, the matrix element of the pion which we need is,

〈Ω| dγµ(1+γ5)u |π+(q)〉 = i
√

2Fπqµeiqx . (9.91)

This allows us to complete the computation of the rest frame decay rate,

1
τth

=
G2

F cos2 θCF 2
πm2

µmπ

4π

(
1− m2

µ

m2
π

)2

, (9.92)

which may be compared with the observed lifetime, τexp = 2.6030(24)×10−8

s, to determine that Fπ = 92 MeV.
Our goal is to use this to determine the value of the parameter f , which

we do by repeating the decay-rate calculation in the low-energy effective
meson theory, obtained by supplementing the interactions of Eq. (8.58) and
Eq. (8.61) with an expression for the charged-current weak interaction in
terms of the meson field M: L = Lmeson +Lweak(M). We saw, in Eq. (9.85)
through Eq. (9.87), that the weak interaction Lagrangian can be written in
terms of the SUL(2)× SUR(2) Noether currents. Now we need to find those
Noether currents in the effective theory describing the pions.



354 Hadronic interactions

According to Eq. (1.147) in chapter 1, we need two things to determine
these Noether currents; the variation of the fields with respect to the symme-
try transformations, and the canonical momenta of the fields. The symme-
try transformations of the fields are given in Eq. (8.55) and Eq. (8.57). The
canonical momenta can be found from the Lagrangian, Eq. (8.58). Keeping
only the terms of lowest order in pion fields and derivatives gives,

(I)
µ
k = −εklm πl∂

µπm + · · · and (A)µ
k = f ∂µπk + · · · , (9.93)

where the ellipses denote an infinite number of higher order terms in these
currents involving more derivatives (or powers of quark masses) and/or more
powers of πk.

Using Eq. (9.93) to evaluate 〈Ω| (jA)µ
k |πl〉, immediately gives,

〈Ω| (jA)µ
k |πl(q)〉 = if qµ eiqx δkl . (9.94)

Comparing with Eq. (9.90) determines f to be simply,

f = Fπ = 92 MeV . (9.95)

With this constant in hand, the low-energy form of the meson-meson in-
teraction is completely specified, and so may be used to predict the cross
section for low-energy pion scattering.

9.3.1.2 Nonleptonic decays

Before turning to meson scattering we pause briefly to discuss the case of
non-leptonic meson decays, defined as those for which only hadrons appear
in the final state. Important examples of such decays include K± → π±π0

and K0 → π+π− or K0 → π+π−π0. If we focus on those terms which change
the strangeness quantum number by ±1 unit, then the relevant part of the
charged-current weak-interaction Lagrangian is

Lweak =
GF VisV

∗
jd√

2
[uiγ

ν(1 + γ5)s] [dγν(1 + γ5)uj ] + h.c. , (9.96)

where the sum on i and j is over the three species of up-type quarks: ui =
{u, c, t}. (Even though the light hadrons involve only valence u, d and s

quarks, the terms involving c and t quarks can be relevant to precision
calculations due to the virtual effects of these quarks in the hadronic quark
sea.)

It is a more complicated proposition to use this Lagrangian to compute
non-leptonic decay rates, as may be seen in two complementary ways. For
instance, from the microscopic (quark) point of view the decay rate for
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K+ → π+π0 requires the matrix element

〈π+π0|[uγν(1 + γ5)s] [dγν(1 + γ5)u]|K+〉 , (9.97)

and much less than before can be said about this matrix element purely
on symmetry grounds. For instance, the parity invariance of the strong
interactions implies that only the pseudoscalar part of the operator has a
nonzero matrix element involving three pseudoscalar mesons.

The implications of the vector-like SUV (3) invariance similarly follow us-
ing a bit of group theory for SU(3). The starting point is the recogni-
tion that all of the currents and particle states appearing in Eq. (9.97)
transform as octets of SUV (3). This implies that the product of the two
currents in Eq. (9.97) transforms like a symmetric product of two octets:
(8⊗ 8)sym = 1⊕ 8⊕ 27, as does the two-pion state (due to Bose statistics
for the pions). Now, SUV (3) invariance implies that the matrix element of
two octet currents between octet meson states must be built using only the
three invariant SU(3) tensors: δab ∝ Tr(λaλb); the completely antisymmet-
ric structure constants, fabc ∝ Tr([λa, λb]λc); and the completely symmetric
constants dabc ∝ Tr({λa, λb}λc) (where λa here denotes the Gell-Mann ma-
trices introduced in chapter 1). It follows that the most general form possible
for the matrix element of two currents in the SUV (3)-invariant limit is

〈Ma(p)Mb(q)|[Qγν(1 + γ5)λcQ] [Qγν(1 + γ5)λdQ]|Me(r)〉
= f1 δab dcde + f2 (δde dabc + δce dabd)

+f3 (δac fbde + δbc fade + δad fbce + δbd face)

+f4 δcd dabe + f5 (δae dbcd + δbe dacd) , (9.98)

where the indices a, .., e run from 1 to 8, and Lorentz invariance requires
the form factors fk to be functions only of Lorentz-invariant combinations
of the external momenta. Given that 4-momentum conservation implies
pµ + qµ = rµ, this requires the fk to be functions only of the invariants
p2, q2 and r2, and so they must be constants which are functions only of
the meson masses. Furthermore, for the ∆S = ±1 decays involving the
operator [uγµ(1 + γ5)s][dγµ(1 + γ5)u] we have c = 4 and d = 1, and for
K → ππ transitions inspection of Eq. (8.34) shows that a, b = 1, 2, 3 and
e = 4, 5, 6, 7, and so only the three constants f1 through f3 contribute. We
see that in the SUV (3)-invariant limit the ∆S = ±1 transitions from this
operator may be parameterized by three independent constants, f1, f2 and
f3, all of which must themselves be inferred from experiments.

This same counting can also be seen from the point of view of the low-
energy effective theory involving only mesons. In this case the complications



356 Hadronic interactions

arise once we try to express Lweak in terms of the meson field M, since
the weak interactions are no longer simply linear combinations of Noether
currents. Instead we must construct Lweak as a function of the meson field
in such a way that it involves the fewest derivatives (or powers of quark
masses) and transforms under all symmetries in the same way as does Lweak

when expressed in terms of quark fields. For the ∆S = ±1 interaction
relevant to Eq. (9.97) we have seen that the product of currents transforms
under SUL(3)× SUR(3) as the product (8,1)⊕ (27,1). That is, Lweak is a
singlet under SUR(3) because it involves only left-handed quark fields, and
it transforms like the symmetric part of the product of two octets (without
the singlet contribution, since ∆S 6= 0) with respect to SUL(3).

Keeping in mind the transformation rule, Eq. (8.53), for ξ = exp[iM/f ]
and focusing on terms involving only two derivatives leads to the following
three possible effective interactions:

Lweak =
GF VusV

∗
ud√

2

[
g8 Tr

(
λ6∂µξ∂µξ†

)
+ g

(1/2)
27 cab

1/2 Tr
(
λa∂µξ ξ†λb ∂µξ ξ†

)

+g
(3/2)
27 cab

3/2 Tr
(
λa∂µξ ξ†λb ∂µξ ξ†

)]
+ · · · , (9.99)

where the first term represents the left-handed octet while the second two
terms transform as left-handed 27s. These last two terms are distinguished
by how they transform under isospin, with the first transforming as isospin-1

2

and the last as isospin-3
2 , with cab

1/2 and cab
3/2 being the appropriate Clebsch-

Gordan coefficients. In principle there is also an effective operator involving
quark masses which transforms properly to appear in Lweak, consisting of
the operator g̃8 Tr[λ6Mqξ]+h.c.. However, this operator has the same form
as the lowest-order meson mass term, Eq. (8.61), and so cannot generate
transitions between meson flavors once the total meson mass term is diago-
nalized. It therefore does not contribute at all to meson decays, and simply
corrects the formulae for the meson masses in terms of the quark masses.

We see that in the end the number of undetermined constants arising in
K → ππ decays is three, corresponding to the three effective couplings, g8,
g
(1/2)
27 and g

(3/2)
27 , which must be inferred by comparison with experiments.

This agrees precisely with the number of constants obtained by counting the
independent form factors which symmetries allow when Lweak is expressed
in terms of quarks. There is a long-standing puzzle about the size of the
constants that are obtained by fitting to the observed decay rates, because
these fits show that |g8| À |g(1/2)

27 |, |g(3/2)
27 |, a result which is contained in

the phenomenological ‘∆I = 1
2 Rule’. It is not yet understood why QCD

should produce this kind of hierarchy amongst these couplings, although the
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Fig. 9.5. Feynman graphs which dominate ππ scattering.

resolution of this puzzle may have to await the eventual reliable calculation
of these coefficients from first principles within QCD, calculations which
remain at present beyond our reach.

The bottom line is that predictivity is reduced for non-leptonic decays
compared with semi-leptonic decays because the hadronic operator appear-
ing in Lweak is not a conserved current, and so involves effective coupling
constants which are independent of the constants appearing in the rest of
Lmeson. As a result all of these constants must be obtained from experiment
before any testable predictions can be made. Although considerable effort
has been expended along these lines, we here abandon the pursuit on the
grounds that it takes us too far beyond our main line of development.

9.3.2 Meson-meson scattering

We return now to our main line of argument, which is to use the effective
theory given by Eq. (9.83) to obtain predictions for low-energy scattering
amongst the pseudo-scalar octet mesons. To do so we evaluate the Feynman
graphs of figure 9.5, using the Feynman rules obtained from the Lagrangian
of Eq. (9.83). The first graph in the figure involves two derivatives; the
second has no derivatives, but one insertion of the pion mass. For simplicity
we focus on low-energy pion-pion scattering when doing so, and simply quote
the corresponding results for kaons and the η meson.

A straightforward calculation gives the following matrix element for the
scattering πaπb → πcπd (which we temporarily call A rather than M, to
avoid confusion with the pion field M):

Aab,cd =
1

F 2
π

[
δabδcd (s−m2

π) + δacδbd (t−m2
π) + δadδbc (u−m2

π)
]
. (9.100)
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In the CM frame s, t and u have simple expressions in terms of the pion
energy, E, and three-momentum, q: s = 4E2, t = −2q2(1 − cosϑ), and
u = −2q2(1+ cosϑ). Here ϑ denotes the scattering angle, also in the CM
frame.

Comparison with the data is made using channels having definite angular
momentum and isospin. If we decompose Aab,cd into combinations, A(I),
having definite initial isospin,

Aab,cd = A(0) 1
3

δabδcd +A(1) 1
2

(δacδbd − δadδbc)

+A(2)
[
1
2
(δacδbd + δadδbc)− 1

3
δabδcd

]
, (9.101)

then

A(0) =
2s−m2

π

F 2
π

, A(1) =
t− u

F 2
π

, A(2)
cd = − s− 2m2

π

F 2
π

. (9.102)

The next step is to resolve these amplitudes into partial waves,

A(I)
` ≡ 1

64π

∫ 1

−1
d cosϑ P`(cosϑ) ,A(I) (9.103)

where P`(cos ϑ), as usual, denote the Legendre polynomials (so P0(x) = 1
and P1(x) = x). Since all of the dependence on ϑ appears through the
variables t and u, and since Eq. (9.102) gives A(0) and A(2) as functions of s

only, it is clear that only the partial wave ` = 0 is predicted at lowest order
for the even isospin configurations. Also, since A(1) is strictly linear in cosϑ,
it only involves the partial wave ` = 1.

The actual comparison with the data is made by expanding the (real part
of) A(I)

` in powers of the squared pion momentum: q2/m2
π = E2/m2

π − 1 =
(s− 4m2

π)/4m2
π. That is, writing

A(I)
` =

(
q2

m2
π

)` (
aI

` + bI
`

q2

m2
π

+ · · ·
)

, (9.104)

defines the pion scattering lengths, aI
`, and slopes, bI

`. Applying these defi-
nitions to Eq. (9.99) gives the predictions of the second and third columns
of table 9.1. Column three gives the numerical value corresponding to the
analytic expression which is given in column two. The predictions including
the next-order terms in the q2/L2

χ expansion have also been worked out, and
are given in the fourth column of this table.

Comparison of these predictions with experiment is not straightforward,
since it is not feasible to directly perform pion-pion scattering experiments.
Instead, the pion-pion scattering amplitudes at low energies are inferred from
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Parameter Leading Order Next Order Experiment

a0
0 7m2

π/32πF 2
π 0.16 0.20 0.26(5)

b0
0 m2

π/4πF 2
π 0.18 0.26 0.25(3)

a1
1 m2

π/24πF 2
π 0.030 0.036 0.038(2)

a2
0 −m2

π/16πF 2
π -0.044 - 0.041 - 0.028(12)

b2
0 −m2

π/8πF 2
π -0.089 -0.070 -0.082(8)

Table 9.1. Theory vs experiment for low-energy pion scattering

their influence on the final state in other processes, such as K → ππeνe or
πN → ππN . The experimental results, as obtained from kaon decays, for
those quantities which are predicted to be nonzero at lowest order are listed
in the right-hand-most column of table 9.1. Data also exist for other partial
waves which are predicted to vanish at lowest order, such as I = 0, ` = 2,
and these are found to be in good agreement with the nonzero predictions
which arise at next-to-leading order in the low-energy expansion.

This example nicely illustrates the predictive power which is possible with
a low-energy effective Lagrangian, even if it is impossible to predict the
values for the couplings of this Lagrangian in terms of an underlying the-
ory. This predictive power arises because many observables — e.g. the pion
scattering lengths and slopes — are all parameterized in terms of a single
constant — the decay constant, Fπ — which can be extracted directly from
experiment. We emphasize that this predictive power holds regardless of
the renormalizability of the effective theory. Computing to higher orders in-
volves the introduction of more parameters, but predictions remain possible
provided that more observables are computed than there are parameters to
fix from experiment. The information underlying these predictions comes
from the symmetries of the underlying theory, as well as the restrictions
due to the comparatively small number of possible interactions which can
appear at low orders of the low-energy expansion.

9.3.3 Including nucleons

The interpretation of the light pseudoscalar mesons as pseudo-Goldstone
bosons also constrains the kinds of interactions they can have with other
kinds of particles at low energies. We pause briefly to illustrate these con-
straints using the example of pion-nucleon couplings, which for simplicity
we examine in the isospin-invariant limit: mu = md. The logic proceeds
in the same way as in the previous section, wherein we use the measured
neutron decay rate to infer the value of an effective coupling which gov-
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erns the low-energy effective pion-nucleon interactions. Once this has been
done, the result may be used to make predictions for the properties of low-
energy pion-nucleon scattering, which succeed when they are compared with
experiment.

The couplings between nucleons and pions which dominate at lowest order
in the derivative expansion involve only one derivative. It can be shown
that the most general form for these which is consistent with both SUL(2)×
SUR(2) invariance and parity invariance is:

LπNN = −N (/∂ + mN) N − ig

2f

(
Nγµγ5τkN

)
· ∂µπk (9.105)

− i

4f2
εklm

(
NγµτkN

)
· (πl × ∂µπm) + · · · ,

where N =
( p

n

)
is the nucleon isodoublet. The ellipses here represent terms

which involve either three or more powers of the pion field, more than two
powers of the nucleon field, or more than one derivative.

What is important is that all of the interactions involving arbitrary powers
of the pion field but only one derivative are completely dictated by the
symmetries, and have strengths which are completely determined in terms of
the two constants f and g. In particular, those terms involving even powers
of the pion field, πk/f , do not depend on g, while those involving odd powers
of πk/f are strictly proportional to g. The constant f here is also the same
one which governs the meson self-interactions, which we have seen is fixed
by the charged-pion lifetime to be f = Fπ = 92 MeV. Clearly, only the one
additional constant, g, is required to determine the low-energy couplings of
pions to nucleons in the limit of exact SUL(2)× SUR(2) symmetry, and we
infer the value of this constant below using the measured decay lifetime of
free neutrons.

Of course SUL(2) × SUR(2) is not an exact symmetry, so non-derivative
interactions involving the quark masses must also be included. Such terms
generate two effects; a mass splitting between the neutron and proton, and
nucleon-pion interactions. However, the mN − mP splitting has compara-
ble electromagnetic contributions which cannot be easily disentangled, and
the NNπ interactions are suppressed by a power of mu or md, and so are
much smaller than the interactions present in Eq. (9.105). Therefore we will
neglect these terms in what follows.

9.3.3.1 Nucleon decays

In order to proceed we must first determine the value of g, which we do by
computing the lifetime for neutron decay through its dominant channel n →
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p e νe. From the microscopic (quark) point of view this proceeds through
the weak interaction Lagrangian, so we require the matrix element

〈N(p, σ)|(I)
µ
k |N ′(p′, σ′)〉 =

i

2
eiqx u

[
F1(q2)γµ + F2(q2)γµνqν

]
τk u′,

〈N(p, σ)|(A)µ
k |N ′(p′, σ′)〉 =

i

2
eiqx u

[
G1(q2)γµγ5 + G2(q2)γ5q

µ
]
τk u′ .

(9.106)

Here, pµ and p′µ are the four-momenta of the initial and final nucleons —
and qµ = (p− p′)µ is their difference — while σ, σ′ = ±1

2 similarly represent
the polarizations of the initial and final nucleons. u = u(p, σ) and u′ =
u(p′, σ′) are the Dirac spinors for free spin-1

2 particles having the indicated
momentum and polarization σ, with the dispersion relations p2 + m2

N = 0
and (p′)2 + m2

N′ = 0. Finally, γµν stands for the commutator 1
2 [γµ, γν ].

Lorentz-invariance requires the four form factors, F1, F2, G1 and G2, to
be functions of the invariant momentum transfer, q2. Furthermore, these
functions are subject to a constraint which expresses the fact that we are
working in a limit where SUL(2) × SUR(2) is taken to be a symmetry of
the QCD Lagrangian. The implications of this symmetry follow from the
conditions of current conservation, ∂µ(I)

µ
k = ∂µ(A)µ

k = 0. This implies:

(mN −mN′)F1(q2) = 0 and i(mN + mN′) G1(q2) = q2 G2(q2) ,

(9.107)
where mN and mN′ are respectively the masses of the nucleon which appears
on the left- and right-hand side of the matrix element.

To a very good approximation, only the quantities F1(0) and G1(0) are
required when evaluating the neutron decay rate, and this is because the
components of the momentum transfer, qµ, are at most of order 1 MeV in
the rest frame of the decaying neutron. This justifies the neglect of qµ in the
matrix element because it is much smaller than the typical strong-interaction
scale, Λ ∼ mN ∼ 1 GeV, over which the form factors vary appreciably. The
same reasoning also allows the neglect of the neutron-proton mass difference,
mn −mp, in the matrix element since this is also of order an MeV.

Symmetry arguments provide the further information that F (0) = 1 be-
cause of the following argument. Recall that the Noether currents (jI)

µ
k

generate the isospin charges once they are integrated over all space, accord-
ing to

Qk =
∫

d3r (jI)0k . (9.108)

But we also know that the matrix elements of these generators only depend
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on the isospin transformation properties of the states in whose matrix ele-
ments are taken, since they may be computed purely using the commutation
relations of SUI(2). Since integrating over all space corresponds to taking
qµ → 0 in Fourier space, this implies that the form factor F1(0) should
also depend only on the isospin transformation properties of the nucleons.
But since both quarks and nucleons are iso-doublets, and since inspection of
Eq. (9.106) shows that taking the same matrix element between quark states
would give F1(0) = 1, it follows that the same must be true for nucleons.

This is a special case of a general result, which states that the qµ → 0
part of the matrix element of a conserved current is never renormalized. As
applied to the electromagnetic current this theorem is exact, and is what
underlies the statement that the electric charge of the proton and neutron
is simply obtained by summing the charges of their constituent quarks. As
applied to the isospin current it is only approximately valid, since isospin is
only an approximate symmetry of the strong interactions. Once symmetry-
breaking effects are included, the amount by which F1(0) differs from unity
is given by the Ademollo-Gatto theorem, which states that the first contri-
bution arises at second order in the quark masses

F1(0) = 1 + O

(
m2

d −m2
u

Λ2
QCD

)
= 1 + O

(
10−3

)
. (9.109)

One way to prove this theorem is to show that F1(0) = 1 in the most general
low-energy effective theory for the mesons.

The same argument does not hold for the axial current because this is
a current for a symmetry which is spontaneously broken. As problem 2 of
chapter 8 shows, this turns out to imply that the corresponding conserved
charge is not well defined when acting on particle states, and so G1(0) need
not be unity even in the limit of exact symmetry.

Finally, using the matrix element (9.106) with qµ → 0, together with
F1(0) = 0, gives the rate for n → p e ν in terms of the one unknown constant
G1(0), and comparison of the result with the measured neutron lifetime,
τexp = 885.7(8) s, allows the inference G1(0) = 1.269. In order to relate this
to the unknown coupling constant g we next compare this with the same
calculation performed within the low-energy pion-nucleon theory.

In order to make this comparison we compute the low-energy limit of the
matrix elements of the isospin current using the low-energy theory. This is
done by computing the vector and axial vector Noether currents starting
with the pion-nucleon effective Lagrangian given by Eq. (9.105), to obtain

(I)
µ
k = −εklmπl∂

µπm +
i

2
Nγµτk N + · · · ,
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Fig. 9.6. Feynman graphs dominating nucleon Noether currents.

(A)µ
k = f ∂µπk +

ig

2
Nγµγ5τk N + · · · , (9.110)

where the purely pionic terms were obtained earlier using the pion effective
Lagrangian. As usual, the ellipses denote an infinite number of higher-order
terms corresponding to the infinite number of interactions in the effective
pion-nucleon Lagrangian. All of the terms not written explicitly above in-
volve additional factors of the fields πk or N , or involve more derivatives of
these fields, than do the terms displayed.

We next evaluate the matrix elements of these currents within the effective
theory, by evaluating the two Feynman graphs of figure 9.6. The blob in
the figure represents the current, double lines represent nucleons, and single
lines represent pions. The first graph gives the direct matrix element of
Eq. (9.110), and contributes to the form factors F1 and G1. The second
graph uses the NNπ interaction of the effective Lagrangian, Eq. (9.105),
together with the vacuum-pion matrix element of Eq. (9.90). It contributes
only to the form factor G2. Evaluating these graphs, we find:

F1 = 1, G1 = g, and G2 =
2igmN

q2
, (9.111)

from which we see F1(0) = 1 and G1(0) = g. The factor 1/q2 in G2 comes
from the pion propagator in the second diagram of figure 9.6, which is mass-
less in the symmetry limit in which we work. Notice that this result for G2

is precisely what is required to satisfy the current-conservation condition of
Eq. (9.107).

We may finally determine the value of g. The neutron decay rate is
completely determined by the constants F1(0) = 1 and G1(0) = g, and the
measured neutron mean life therefore implies g = 1.269.
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9.3.3.2 Nucleon-pion scattering

Having determined from experiment the values taken by f and g, we are
now in a position to use the effective pion-nucleon Lagrangian to predict
their low-energy properties. Historically the phenomenology of pion-nucleon
scattering has been described in terms of a trilinear N − N − π Yukawa
interaction, with no derivatives:

LNNπ = igNNπ (N γ5τk N) · πk, (9.112)

with the constant gNNπ found from phenomenological studies to be close to
14. But the value of this constant can be predicted in terms of the constant
g, and this prediction serves as a test of the success of the low-energy pion-
nucleon Lagrangian.

The prediction starts with the trilinear NNπ interaction of Eq. (9.105):

LNNπ = − ig

2Fπ

(
Nγµγ5τkN

)
· ∂µπk , (9.113)

and performs an integration by parts to move the derivative to the nucleon
fields. Using the lowest-order nucleon equations of motion — (/∂+mN) N = 0
— then gives a result of the form of Eq. (9.112), but with

gNNπ =
gmN

f
. (9.114)

Using the experimental values, g = 1.269, mN = 940 MeV, and f = Fπ = 92
MeV, gives the prediction gNNπ = 13.0, which agrees well with the phe-
nomenologically inferred value. The successful relation, Eq. (9.114), is
known as the Goldberger-Treiman relation.

9.3.4 Anomalies and π0 decay

Historically, the understanding of pions as Goldstone bosons provided an
important stimulus for the understanding of anomalous symmetries (i.e.
symmetries of the classical action which do not survive quantization). The
criterion for when symmetries are anomalous is described in detail in subsec-
tion 2.5.3, where they provide an important consistency requirement for the
standard model itself. Anomalies are also crucial for being able to describe
the low-energy properties of pions, because they underlie the theoretical
understanding of the π0 meson decay rate.

The dominant decay process for neutral pi mesons is the decay into two
photons, π0 → γγ, which tells us that the dominant π0 decay must be elec-
tromagnetic. Consider, therefore, the limit of the standard model where
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weak interactions are ignored, but both electromagnetic and strong interac-
tions are kept. We have seen that in the absence of electromagnetic interac-
tions the strong dynamics of QCD ensures that low-energy pion interactions
enjoy an SUL(2) × SUR(2) invariance up to small corrections proportional
to md and mu. But only those elements of this symmetry which commute
with the u- and d-quark electric charge matrix

Qem =

(
2
3

−1
3

)
, (9.115)

are also symmetries of the electromagnetic interactions, and so only the
subgroup Uem(1)× U3A(1) generated by Qem and

T3A =

(
1
2

−1
2

)
γ5 , (9.116)

survive as symmetries of the combined strong and electromagnetic theory
(up to small quark-mass corrections).

Since U3A(1) ∈ SUA(2) is an axial symmetry, it is spontaneously broken by
the ground state, with the result that its Goldstone boson — the π0 meson
— must be exactly massless to all orders in the electromagnetic interactions
(in the limit of vanishing quark masses). Since the rest of SUA(2) does
not commute with electromagnetic interactions, the symmetries for which
the π± mesons are the Goldstone bosons are broken by electromagnetism,
thereby allowing electromagnetic interactions to contribute a nonzero shift
to the charged pi meson mass.

There is a potential puzzle buried in the neutral pion decay rate. As is
shown in problem 9 of this section, the decay rate for the process π0 → γγ

is well-described by a pion-photon interaction term of the form

L =
e2

32π2Fπ
π0 FµνF λρεµνλρ . (9.117)

The problem with this Lagrangian is that the π0 field it contains is not
differentiated, and so as a result it is not invariant with respect to the U3A(1)
symmetry for which π0 is the Goldstone boson. Instead, since the U3A(1)
transformation rule is δπ0 = ωFπ, for constant infinitesimal parameter ω,
we see that

δL =
e2

32π2
FµνF λρεµνλρ ω . (9.118)

Invariant terms involving the fewest derivatives, such as

L′ = e2

32π2Fπ

(
π0

Λ2

)
FµνF λρεµνλρ , (9.119)
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with Λ ∼ 4πFπ ∼ 1 GeV (or its equivalent, with π0 → m2
ππ0) give decay

rates which are O(m4
π/Λ4) smaller, which would be too small (for any Λ

large enough to justify the validity of the low-energy field theory description
in terms of pion fields). The puzzle is how to reconcile the observed neutral-
pion decay rate with the U3A(1) symmetry of the pion Lagrangian.

As the section title suggests, anomalies are crucial to the resolution of this
puzzle. In particular, there is an anomaly for the axial U3A(1) generator,
T3A, taken together with two electromagnetic generators, Qem, since the
trace over left-handed quarks of the quantity A = Tr(T3AQ2

em) is nonzero.
Its nonzero value is

A =
1
2

Nc

[(
2
3

)2

−
(
−1

3

)2
]

=
Nc

6
, (9.120)

where the only contributions come from the u and d quarks, and the overall
prefactor of 1

2 arises because we take the eigenvalues of the U3A(1) generator
to be ±1

2 .
This anomaly is important for the pion Lagrangian because it says that

the theory is not really U3A(1) invariant, even though it appears to be classi-
cally. Furthermore, it is possible to compute how the standard model action
transforms under the anomalous U3A(1) symmetry, leading to the result

δLSM =
e2

16π2
AFµνF λρεµνλρ ω . (9.121)

Using Eq. (9.120) forA we see from this that Eq. (9.118) precisely reproduces
the transformation property which the anomaly requires, but only if there
are precisely three colors: Nc = 3. The agreement between the pion decay
rate computed with Eq. (9.117) and observations therefore provides direct
evidence for the relevance of anomalies, and that there are precisely 3 colors.

This success is a special case of a more general principle, called anomaly

matching, which simply states that the transformation properties of the
action (invariance or anomalous transformation) should be the same, re-
gardless of the scale at which it is examined. The consequences of this for
the low-energy pion (or pseudo-scalar meson) Lagrangian can be extended
beyond the relatively simple implications of the U3A(1) symmetry to the
complete case of SUL(3) × SUR(3). In this more general case the known
standard model anomalies for the axial symmetries imply the existence of a
more complicated symmetry-breaking term, called the Wess-Zumino term,
for the low-energy meson effective action. These terms encode for the mesons
the anomalous transformation properties of the standard model action.

It goes beyond the scope of our presentation to record here the explicit
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form for the entire anomalous action, for the details of which we instead
refer the reader to the literature. We do give the leading term it generates
once it is expanded in powers of the meson field M, which has the form

LWZW =
Nc

240π2F 5
π

εµνλρ Tr
[
M∂µM∂νM∂λM∂ρM

]
+ · · · , (9.122)

where the ellipses represent terms involving more powers of M. As above,
the coefficient is fixed by demanding that its transformation under SUL(3)×
SUR(3) reproduces the anomalies of the underlying quarks, and the resulting
value is already used in Eq. (9.122). As usual Nc = 3 here denotes the
number of quark colors. Although this interaction turns out to vanish if
it is restricted to the SUL(2) × SUR(2) subgroup, it does have physical
implications such as through its contribution to reactions like K+K− →
π+π−π0.

9.4 Neutral meson mixing

Neutral pseudo-scalar mesons like K0 = ds and K
0 = sd (or D

0 = cu,
D0 = uc, B

0
d = b d, B0

d = db and B
0
s = bs, B0

s = sb)† deserve special study
because they turn out to provide particularly precise laboratories for testing
the standard model. They do so because they (possibly together with the
neutrinos) are particles which are not distinguished from their anti-particles
by any exactly conserved charge, and so in principle the mass eigenstates
can be linear combinations of the flavor eigenstates. This possibility gives
rise to a variety of mixing phenomena whose properties turn out to depend
sensitively on fairly detailed properties of the standard model.

9.4.1 Kinematics of meson mixing

Before describing the K and B systems in detail, we start with a general
discussion of the special features of neutral-meson kinematics. To this end
we first consider the effective Lagrangian which can be expected to govern
the free propagation of a neutral spinless meson which differs from its an-
tiparticle but which is not distinguished from it by a conserved charge. Such
a meson can be described by a complex scalar field, ϕ, but one for which
the transformation ϕ → eiαϕ is not a symmetry.

Our interest in what follows is in effects which change flavor by two units,
which first arise at order G2

F in the weak interactions. At this order it is

† Notice that for historical reasons for down-type quarks it is the meson containing the anti-
quark which is called meson rather than the anti-meson. This convention is not also continued
mesons involving up-type quarks, such as the D system.
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inconsistent to neglect the loss of probability associated with meson decays,
whose rate is also Γ ∝ G2

F . As in earlier sections we do so by including a
small imaginary part in the meson mass, µ = m− iΓ/2, leading to a meson
energy of the form

Ek =
√

k2 + µ2 ≈
√

k2 + m2 − iΓ(k)
2

, (9.123)

where Γ(k) = mΓ/
√

k2 + m2 is the decay rate for a moving particle, includ-
ing relativistic time-dilation.

Because this energy is complex, it is necessary to distinguish the charge-
conjugate field,

ϕ(x) =
∫

d3k

(2π)32k0

[
ak eikx + a∗k e−ikx

]
, (9.124)

from the complex conjugate of the field

ϕ(x) =
∫

d3k

(2π)32k0

[
ak eikx + a∗k e−ikx

]
, (9.125)

since ϕ 6= ϕ∗ due to the energy which appears in the inner product kx =
−Ekt + k · x. Here ak and ak are the destruction operators for the corre-
sponding particle and antiparticle.

With this distinction in mind, and using the freedom to redefine fields to
put the kinetic energy terms into canonical form, the most general quadratic
(free) Lagrangian density for a complex scalar field is

L = −∂µϕ∂µϕ−Aϕϕ− 1
2

(
Bϕ2 + Cϕ2

)

= −∂µϕ∂µϕ− 1
2

(
ϕ

ϕ

)T (
B A

A C

) (
ϕ

ϕ

)
, (9.126)

where we take A, B and C to be complex constants. There are three im-
portant special cases of this Lagrangian density which are of interest for the
present purposes:

Flavor Conservation: The free propagation of ϕ particles preserves the
U(1) symmetry ϕ → eiαϕ and ϕ → e−iαϕ if and only if B = C = 0.

CP Conservation: If we choose our phase conventions so that CP takes
ϕ → ±ϕ then the fields ϕ+ = (ϕ + ϕ)/

√
2 and ϕ− = i(ϕ − ϕ)/

√
2 are CP

eigenstates and CP invariance for ϕ propagation requires B = C.

Unitary Evolution: The propagation of ϕ is unitary if ϕ∗ = ϕ and L = L∗,
and this is so if and only if A = A∗ and B = C∗.
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Although the first condition (flavor conservation) becomes exact in the
limit that the weak interactions are turned off, none of the above three
strictly holds when the weak interactions are turned on. They fail because
the weak interactions break both the quark flavor symmetries and CP , and
cause non-unitary evolution because the mesons also can decay into other
particles through the weak interactions.

The mass term in Eq. (9.126) is diagonalized by the field redefinition

ϕ = z ψ , ϕ = z−1ψ with z =
(

C

B

)1/4

. (9.127)

Note that z is a pure phase in the unitary case. With these choices the
propagation eigenstates are

ψ+ =
1√
2

(
ψ + ψ

)
=

1√
2

(
z ϕ + z−1ϕ

)

and ψ− =
i√
2

(
ψ − ψ

)
=

i√
2

(
z ϕ− z−1ϕ

)
, (9.128)

and the corresponding masses and decay rates are given by

µ2
± ≈ m2

± − im±Γ± = A±
√

BC , (9.129)

and so if we write A = |A|e−iα, B = |B|e−iβ and C = |C|e−iγ , then

m2
± = |A| cosα±

√
|BC| cos

[
1
2

(
β + γ

)]

and m±Γ± = |A| sinα±
√
|BC| sin

[
1
2

(
β + γ

)]
. (9.130)

Notice that Γ± = 0 when ϕ = ϕ∗ and L = L∗ since in this case α = β+γ = 0.
Defining the states, |ϕ〉 and |ϕ〉, destroyed by the fields ϕ(x) and ϕ(x),

together with |ψ±〉 destroyed by the fields ψ±(x), we see these are related
by

|ψ+〉 =
1√|p|2 + |q|2

[
p|ϕ〉+ q|ϕ〉

]

|ψ−〉 =
i√|p|2 + |q|2

[
p|ϕ〉 − q|ϕ〉

]
, (9.131)

where

p

q
= z2 =

(
C

B

)1/2

. (9.132)

It is useful to relate these states to those which would be obtained if CP



370 Hadronic interactions

were a symmetry. In this case B = C and so z = 1, and so the propagation
eigenstates would instead be

ϕ+ =
ϕ + ϕ√

2
and ϕ− =

i(ϕ− ϕ)√
2

(CP -preserving) , (9.133)

with mass eigenvalues µ2± ' m2± − imΓ± = A ± B. The eigenstates in the
general case are related to these states, |ϕ±〉, by

|ψ+〉 =
1√

1 + |ε̂|2
[
|ϕ+〉 − iε̂|ϕ−〉

]

|ψ−〉 =
1√

1 + |ε̂|2
[
|ϕ−〉+ iε̂|ϕ+〉

]
, (9.134)

where

ε̂ =
(z2 − 1)
1 + z2

=
p− q

p + q
. (9.135)

The parameters z, m± and Γ± are measured in oscillation phenomena,
such as when a state is initially prepared as |ϕ〉 and then remeasured to be
|ϕ〉 or |ϕ〉 at a later time t. The probability amplitude for such a transition
is given by expanding these states into propagation eigenstates and evolving
these forward in time, to get

〈ϕ|ϕ〉t =
1
2

[
e−iE+t + e−iE−t

]
〈ϕ|ϕ〉t =

q

2p

[
e−iE−t − e−iE+t

]
, (9.136)

giving probabilities

Pt[ϕ(k) → ϕ(k)] =
1
4

[
e−Γ+(k) t + e−Γ−(k) t + 2e−

[Γ+(k)+Γ−(k)]t

2 cosΩkt

]

Pt[ϕ(k) → ϕ(k)] =
1
4

∣∣∣∣
q

p

∣∣∣∣
2 [

e−Γ+(k) t + e−Γ−(k) t − 2e−
[Γ+(k)+Γ−(k)]t

2 cos Ωkt

]
,

(9.137)

where

Ωk =
√

k2 + m2
+ −

√
k2 + m2− ≈ (m+ −m−) (if k ¿ m±)

≈ m2
+ −m2−

2k
(if k À m±) .

(9.138)

9.4.2 Phenomenology of K −K mixing

Our first application of this formalism will be to the strange K0(= ds) and
K

0(= ds) mesons. In the absence of the weak interactions both strangeness
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number (for which S|K〉 = +|K〉 and S|K〉 = −|K〉) and CP are conserved,
ensuring that both K0 and K

0 are stable in this limit, and the effective
description of the propagation of neutral K mesons would be described by
Eq. (9.126), with B = C = 0 and A = A∗ = m2

K.
The possibility for oscillations arises once the weak interactions are turned

on, since these generate both the ∆S = ±2 terms in Eq. (9.126) parameter-
ized by B and C, and an imaginary part for A describing the probability loss
due to weak decays. Strange particles are typically produced through strong
interactions between a beam and a target, and so are produced in pairs be-
cause of the strangeness conservation of the strong interactions. Neutral
kaons are often produced amongst the decay products of the strange par-
ticles which arise in this way, and they start off in strangeness eigenstates
because of their origin in the decay of hadrons having definite strangeness.

Once produced, the propagation eigenstates having definite mass and life-
time are denoted by |KS〉 = |ψ+〉 and |KL〉 = |ψ−〉, where the subscripts ‘S’
and ‘L’ denote ‘short’ and ‘long’ since |KL〉 is very long-lived compared with
the short-lived |KS〉. These two states have very different lifetimes due to a
combination of two effects: approximate CP conservation and the accident
that mK is not much bigger than 3mπ.

As we show in more detail below, it turns out that for K mesons the
weak interactions conserve CP to within a good approximation, and so in
particular |ε̂| ¿ 1 in Eq. (9.134). Consequently, we can take to a good
approximation |KL〉 ≈ |K−〉 = |ϕ−〉 and |KS〉 ≈ |K+〉 = |ϕ+〉, where
CP |K±〉 = ±|K±〉.† This is significant because the main decay channel for
neutral kaons is into pions, and the number of pions into which a kaon can
decay depends upon its CP quantum numbers in a CP -conserving world.
Since pions are CP odd, a two-pion state having angular momentum ` sat-
isfies CP |ππ〉 = (−)2(−)`|ππ〉. Since the K is spinless, the final state has
no angular momentum; since the pion is also spinless, we must have ` = 0.
Therefore, only the CP -even state |K+〉 can decay into two pions if CP is
conserved. It is indeed true that by far the most common decay mode for
KS is into two pions, with KS → π+π− (68.95±0.14)% of the time and with
KS → π0π0 (31.05± 0.14)% of the time.

Conversely, a purely pionic decay of the CP -odd state |K−〉 must involve
at least three pions, and so approximate CP -conservation would explain
the observation that the purely pionic decay of the KL is dominantly into
three pions, with KL → π+π−π0 in (12.59 ± 0.19)% of decays and KL →
π0π0π0 (21.05± 0.23)% of the time. [The remaining KL decays are mostly

† Do not confuse K± with the charged kaons, K±.
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semi-leptonic, into π±e∓ν in (38.81 ± 0.27)% of decays and into π±µ∓ν

(27.19 ± 0.25)% of the time.] Furthermore, because mK = 498 MeV is
just a little bigger than 3mπ = 3 × 140 = 420 MeV there is much less
phase space available for the decay KL → 3π than there is for the decay
KS → 2π, with the result that the decay rates for these processes should
differ considerably even if their underlying decay amplitudes are similar in
size. Indeed, their observed mean lifetimes – τS = Γ−1

S = 8.96× 10−11 s and
τL = Γ−1

L = 5.2× 10−8 s – imply that ΓS ≈ 580ΓL.
Using Γ+ À Γ− and assuming slowly-moving kaons leads to the following

approximate form for the oscillation probabilities,

Pt[K(k) → K(k)] ≈ 1
4

e−ΓL(k) t
[
1 + 2e−[ΓS(k)−ΓL(k)] t/2 cos ∆mt

]

Pt[K(k) → K(k)] ≈ 1
4

∣∣∣∣
q

p

∣∣∣∣
2

e−ΓL(k) t
[
1− 2e−[ΓS(k)−ΓL(k)] t/2 cos ∆mt

]
,

(9.139)

where ∆m = mKL −mKS . These oscillations may be observed, such as by
tagging the decaying K0 or K

0 through the charge of the lepton which is
produced in the semileptonic decay, KL → π±`∓ν (with ` = e, µ). Since this
decay proceeds at the quark level either from s → u`−ν or s → u`+ν, we
see that the charge of the final lepton reveals what component of the kaon
state is K0 or K

0 at the instant of decay.
Measurements of the number of positively and negatively charged leptons

produced by a neutral kaon beam as a function of distance travelled by the
kaons reveals these oscillations, with a frequency which is found to be com-
parable to the KS lifetime. This frequency corresponds to the remarkably
small mass difference mKL − mKS = (3.483 ± 0.006) × 10−12 MeV. Such
a small mass difference is only measurable at all because of the striking
oscillation phenomenon to which it gives rise.

The sign of the mass difference is measurable because of the phenomenon
of kaon regeneration in matter. When a beam of neutral kaons passes
through matter, it interacts with atomic nuclei through the strong interac-
tions. But because the basic reactions involved amount to quark rearrange-
ments, K0 mesons interact very differently than do K

0’s. For example, the
reaction K

0
p → Σ0π+ can happen through the interchange of an s and u

quark between the incident meson and the target baryon, but similar pro-
cesses involving K0 are impossible, since there is no light baryon containing
an s̄ antiquark† and matter contains no antibaryons.

† The closest would be the Θ+ pentaquark of subsection 8.3.4; but even assuming it exists, it is
heavier than mK + mp.
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As a result of this difference, the K
0 component of a neutral kaon beam

can be rapidly absorbed by nuclear reactions as the beam passes through
matter. Suppose the initial kaon beam had been in flight long enough before
encountering the matter for its KS component to completely decay (as can
be observed by the disappearance of the tell-tale decays of the beam into
two-pion final states). Because passage through matter removes the K

0

component of the beam it has the effect of regenerating the beam’s KS

component, leading to the reappearance of the two-pion decays immediately
after the beam’s passage through matter.

9.4.2.1 CP violation

We have seen that if CP were conserved then it would forbid the long-
lived neutral kaon from decaying into two pions. And since KL → π+π− is
observed in (2.090 ± 0.025) × 10−3 of its decays (and into π0π0 in (9.32 ±
0.12) × 10−4 of decays), CP cannot be exactly conserved. Historically, it
was the observation of these rare KL decays which led to the discovery of
CP -violation in Nature.

Suppose we denote by Lw the effective term in the ∆S = ±1 weak inter-
action Lagrangian density at low energies which is responsible for this decay.
Then we know that the matrix element 〈ππ|Lw|KL〉 is nonzero. In principle
there are two ways in which CP -violation can lead to the decay KL → ππ:

(i) Lw can be CP -invariant but KL contains a small admixture of K+

(i.e. ε̂ 6= 0 in Eq. (9.134)), allowing the decay to proceed through the
CP -preserving matrix element 〈ππ|Lw|K+〉; or

(ii) Lw itself breaks CP , allowing the decay to proceed due to the matrix
element 〈ππ|Lw|K−〉

These options respectively correspond to the cases where the dominant
source of CP -violation has the selection rule ∆S = ±2 or ±1. Naturally,
they may both be present.

Which of these options actually arises in nature can be quantified by
comparing the sizes of several different CP -violating observables in neutral
kaon decays. Three such observables which can be compared in this way are

η00 =
〈π0π0|Lw|KL〉
〈π0π0|Lw|KS〉 , η+− =

〈π+π−|Lw|KL〉
〈π+π−|Lw|KS〉 , (9.140)

and

δL =
Γ(KL → π+`−ν)− Γ(KL → π−`+ν)
Γ(KL → π+`−ν) + Γ(KL → π−`+ν)

. (9.141)

These would all be given in terms of the single parameter ε̂ if mixing were the
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sole source of CP -violation: η00 = η+− = −ε̂ and δL = (|q|2 − |p|2)/(|q|2 +
|p|2) = −(ε̂ + ε̂∗)/(1 + |ε̂|2).

More generally these quantities depend on more parameters. For instance
suppose that both ε̂ 6= 0 and 〈ππ|Lw|K−〉 6= 0. In order to express how
η00 and η+− can differ from one another in this case it is useful first to
decompose the K → ππ amplitude into its isospin components. Recall to
this end that neutral kaons are isodoublets and pions are isotriplets, and so
a spinless state involving two pions must have isospin 0 or 2. We define the
isospin 0 and 2 amplitudes by

〈π+π−|Lw|K0〉 = A0 eiξ0 +
A2 eiξ2
√

2

and 〈π+π−|Lw|K0〉 = A0 e−iξ0 +
A2 e−iξ2
√

2
, (9.142)

where A0 and A2 are the relevant (complex) CP conserving strong interac-
tion matrix elements for each pionic isospin channel, while ξ0 and ξ2 are the
CP -violating phases which arise due to CP -violation within Lw.

Notice that since the CP -violating phases only enter into physical decay
rates through the interference term in |A0 eiξ0 + A2 eiξ2 |2, in the absence of
any other sources of CP -violation it is only the relative CP -violating phase,
ξ2 − ξ0, which can have physical consequences for neutral K decays. With
these definitions we therefore have

η+− = ε + ε′ η00 = ε− 2ε′ and δL =
2Re ε

1 + |ε|2 , (9.143)

where, assuming ε̂, ξ0, ξ2 ¿ 1, we define

ε = −ε̂ + ξ0 (9.144)

and ε′ =
(

A2

A0 + A2

)
(ξ2 − ξ0) .

The definitions of ε and ε′ here are made in such a way that they are
invariant under any rephasing of the states K0 and K

0. In particular, ε′

gives the measure of ‘direct’ CP -violation by Lw, depending as it does only
on the phase difference, ξ2 − ξ0. At the time of this writing the survey of
current measurements given by the Particle Data Group gives evidence that
both ε and ε′ are nonzero,

Re ε = (1.657± 0.021)× 10−3

Im ε = (1.572± 0.022)× 10−3 (9.145)

Re
(

ε′

ε

)
= (1.67± 0.26)× 10−3 ,
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Fig. 9.7. Box diagrams for ∆S = ±2 interactions

although the evidence for ε′ 6= 0 has involved some controversy due to there
being conflicting results from competing experiments. This reveals a pattern
wherein (i) CP -violation exists but is a small effect, and (ii) direct CP -
violation also exists but for neutral kaons is suppressed relative to the CP -
violating contribution from K0-K0 oscillations.

9.4.2.2 Standard model predictions

We next turn to what the standard model predicts for these neutral-kaon
parameters, and the extent to which accurate predictions can be made. As
we shall see, the extreme precision of the measured value for mKL − mKS

imposes strong constraints on the model.
Our interest is in the low-energy effective theory defined at energies below

the W mass but above the QCD scale. In this theory the W and Z bosons do
not appear since they are ‘integrated out’, and strongly-interacting particles
are still described by quarks rather than the hadronic bound states. We
discussed this effective theory extensively in chapter 7. As we saw there,
at the renormalizable level each quark number is separately conserved; so
both mixing and decay of the K mesons is forbidden. Therefore we must
investigate high dimension operators, specifically dimension 6, four-fermion
operators. The tree level operators encountered in chapter 7 all change
strangeness by at most 1 unit, and so cannot contribute to KK mixing.
They also conserve CP , and so cannot contribute to direct CP violation.
Therefore we must consider dimension 6 operators which arise from loops.

The leading ∆S = ±2 contribution to the low-energy Lagrangian arises
from the diagram of figure 9.7. Its contribution to the Lagrangian takes the
form

L(|∆S|=2)
w = C [dγµPL s] [dγµPL s] + c.c. . (9.146)
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Naively, since the diagrams in figure 9.7 are one loop and since the result is
a dimension 6 operator, we would expect the coefficient to be of order,

C ∼ g4
2

4π2M2
W

. (9.147)

This estimate would lead to a mass splitting of order m3
Kg4

2/4π2M2
W ∼ 10−4

MeV, which is drastically larger than the observed value.
In fact, details of the structure of the diagrams make the contribution

much smaller, as we now explore. Each diagram contains two virtual quark
lines, which can be any of the up-type quarks, u, c, t. We must sum over
each possibility; each gives the same answer, except that the CKM angles
appearing in the vertices differ, and the masses appearing on the propagators
also differ. Therefore, a parametrization of the coefficient C is,

C =
G2

F

16π2

∑

i,j=u,c,t

V ∗
idVisV

∗
jdVjs f(m2

i ,m
2
j ,m

2
s,m

2
d,M

2
W , α3) . (9.148)

The function f has dimension (mass)2 and is obtained by evaluating the
lowest-order graphs contributing to ∆S = ±2 transitions, given by the ‘box’
diagrams of figure 9.7. At the level discussed so far, f is α3 independent;
but because α3 is not very small, especially at low momentum scales, one
should include corrections arising from dressing these graphs in all possible
ways with gluon lines.

The key observation is that, if all of the quarks in the loop had the same
mass, the function f would be the same for each i and j. Therefore, the
coefficient C would be proportional to

∑
i V

∗
idVis. However, this combination

of CKM elements actually vanishes:
∑

i V
∗
idVis = (V †V )ds = δds = 0. This

implies that the result for this graph must be further suppressed by fac-
tors of small quark masses. In particular, because of the massive W boson
propagators in the diagram, the typical momentum “flowing” in the loop
is ∼ MW ; therefore, the masses on the fermion lines represent O(m2/M2

W )
corrections to these propagators, and so the function f above must de-
pend weakly on small quark masses, f(m) = f(0) up to m2

i /M
2
W correc-

tions. Therefore, the cancellation we have just found should be valid up
to m2

i /M
2
W corrections. This argument obviously does not apply to the

top quark, but in fact the top quark contribution is suppressed by small
mixing angles, |VtdVts|2 ∼ (0.2)10 ≈ 6 · 10−8. Cancellations such as these,
in which loop-generated flavor-changing neutral currents are suppressed by
small mass ratios due to the unitarity of the KM matrix, are known as the
GIM mechanism, after its discoverers Glashow, Iliopoulos and Maiani.

These general observations are borne out by the explicit evaluation of the
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diagrams of figure 9.7. Neglecting m2
u/M2

W in these diagrams gives

C =
G2

F

16π2

[
(V ∗

tdVts)2 m2
t ηt h1 (xt) + (V ∗

cdVcs)2 m2
c ηc h1 (xc)

−2V ∗
tdVtsV

∗
cdVcs

(
m2

cm
2
t

M2
W

)
ηtc h2 (xc, xt)

]
, (9.149)

where xi = m2
i /M

2
W and

h1(x) =
1
4

+
9

4(1− x)
− 3

2(1− x)2
− 3x2

2(1− x)3
lnx

h2(x, y) =
{[

1
4

+
3

2(1− x)
− 3

4(1− x)2

]
ln x

y − x
+ (x ↔ y)

}

+
3

4(1− x)(1− y)
. (9.150)

The QCD correction factors, ηt, ηc and ηtc, are all unity if only the box
graphs are evaluated, but become nontrivial once gluon lines are included.
For a QCD scale of 200 MeV, these QCD correction factors become ηt ≈ 0.62,
ηc ≈ 0.85 and ηtc ≈ 0.36.

We may simplify the expression for C using xc ¿ 1 and xt À 1, which
implies h1(xt) ≈ 1

4 + O[(lnxt)/xt], h1(xc) ≈ 1 + O(xc) and

h2(xc, xt) ≈ 1
xt

(
−3

4
+ lnxc − ln xt

4

)
. (9.151)

In order to see the relative size of the three terms in Eq. (9.149) it is useful
to adopt the Wolfenstein parameterization, Eq. (2.92), of the CKM matrix,
for which Vcs ≈ 1, Vcd ≈ −λ, Vts ≈ −Aλ2 and Vtd ≈ Aλ3(1 − ρ − iη),
where A, ρ and η are at most O(1) and the small quantity λ ≈ 0.2 expresses
the amount of suppression of flavor-changing in the charged-current weak
interactions. Ignoring the O(1) factors, the relative size of the three terms
contributing to C are of order

λ10m2
t : λ2m2

c : λ6m2
c ≈ 0.04 : 1 : 0.002 , (9.152)

which shows that the small off-diagonal entries of the CKM matrix over-
whelm the large t-quark mass to leave the c-quark graph as dominant.

It is the matrix elements of this ∆S = ±2 effective interaction which
govern the size of the K0-K0 mixing matrix elements, B and C. If we
estimate the size of the matrix element 〈K0|[dγµPL s][dγµPL s]|K0〉 by the
appropriate power of the strong-interaction scale, mK, then we obtain the
following size for the ∆S = ±2 terms in the effective neutral kaon mass
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Fig. 9.8. Potentially large higher-order diagrams for ∆S = ±2 interactions.

matrix,

|B|, |C| ∼ Cm4
K ∼ G2

F λ2m2
cm

4
K

16π2
∼ 4× 10−15 GeV2 . (9.153)

This leads to the following remarkably accurate estimate for the KL-KS

mass difference: ∆m ∼ 10−12 MeV.

‘Long-Distance’ Corrections

We see from this that the standard model can account for the size of K0-
K

0 mixing, but only because large cancellations amongst the contributions
of heavy up-type quarks imply a result which is strongly suppressed by small
quark masses and/or small CKM mixing angles. Since this makes the result
smaller than a generic one-loop result, it is necessary to check that the result
is not smaller than contributions which are nominally higher-order in the
gauge interactions but less suppressed by masses and mixings. One might
worry in particular that QCD corrections could be large, since for these α3

need not be very small (as we have seen in the numerical values quoted
above for the QCD correction factors, ηt, ηc and ηtc).

Two examples of such graphs are given in figure 9.8. Of these, the left-
hand graph involves an additional two gauge coupling constants while the
right-hand graph is an iteration of the loop-corrected effective ∆S = ±1
interaction (more about which below). Both involve an additional loop,
but when the virtual quarks and gluons have low energies the additional
coupling factor, α3/4π, need not be small. These kinds of contribution turn
out to generate an effective ∆S = ±2 coupling whose coefficient differs from
that computed above in that it need not be proportional to a squared quark
mass. This is possible because for these graphs the GIM cancellation is
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logarithmic, involving virtual-quark sums of the form

∑

i=u,c,t

V ∗
idVis ln

(
m2

i

M2
W

)
. (9.154)

As a result, such higher-order contributions are typically suppressed in neu-
tral kaon mixing, relative to that computed above, by powers of a strong-
interaction scale over the relevant heavy quark mass, such as by mK/mc.
Although these do not ruin the order-of-magnitude agreement between the
standard model and experiment, they do seriously complicate making a more
precise comparison between theory and experiment for neutral kaon mixing.
As we shall see, these same complications are less important for mixing
amongst mesons involving heavier quarks, such as for neutral B mesons.

CP -Violation

The standard model provides a similar qualitative (but not yet quantita-
tively precise) understanding of the size of direct and indirect CP -violation,
as is measured by ε ∼ 10−3 and ε′ ∼ 10−6 for neutral kaons. For instance,
ε measures the strength of CP -violation in kaon mixing relative to the CP -
preserving terms, and since the effects of CP -violation can be banished (such
as in the Wolfenstein parameterization) to those terms of the CKM matrix
which involve third-generation quarks, a phase can only enter into the ef-
fective ∆S = ±2 interactions through the graphs involving virtual t quarks.
However, we have seen that, for neutral kaons, the virtual t-quark contribu-
tion is suppressed by small mixing angles relative to the dominant c-quark
term, leading to the reasonably successful estimate ε ∼ λ8(mt/mc)2 ∼ 10−2.

Attempts to similarly estimate the parameter ε′ are more difficult due to
bigger uncertainties to do with the strong interactions. In particular, as
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the definition, Eq. (9.144), shows, ε′ is only sensitive to the relative phase
between the parts of the interaction which change isospin by 3

2 and by 1
2 .

An important complication on the theoretical side is the fact that the am-
plitude of ∆I = 1

2 transitions are observed experimentally to be about 22
times stronger in K decays than are the ∆I = 3

2 ones, as discussed in sub-
section 9.3.1.

Since the tree-level contribution to kaon decays do not involve the third
generation, they cannot violate CP . However, direct CP -violation can en-
ter at one loop in the effective ∆S = ±1 four-quark interactions through
the graphs of figure 9.9 — known for historical reasons as ‘penguin’ dia-
grams. Although the gluon-exchange diagrams would naively be expected
to dominate those involving the Z or photon, this need not be true for their
contributions to ε′ because gluon exchange contributes only the the ∆I = 1

2

transition.
The upshot is that ε′ is expected to be nonzero and small within the stan-

dard model, but a precise comparison with experiments remains difficult due
to the uncertainties associated with the strong-interaction matrix elements.

9.4.3 Phenomenology of B −B mixing

Oscillations and CP -violation have also been observed for neutral mesons
involving b quarks. In the standard model, these phenomena arise for the
same reasons as in the K meson system; the standard model therefore makes
unambiguous predictions for what should be seen for B mesons, and because
the b quark is much heavier than the s quark, these predictions are often
less clouded by matrix-element uncertainties than for K mesons. This po-
tential for meaningful comparison between theory and experiment has stim-
ulated considerable experimental effort towards measuring the properties of
B mesons, including the construction of ‘B factories,’ where the copious
production of B mesons allows unprecedented precision.

The relatively large b quark mass compared with the QCD scale provides
the main difference between the analysis of B and K mixing. This mass has
several effects.

• First, the much larger phase space available in B decays allows many
more decay channels and removes the coincidence in masses which made
the lifetime of the KL so different from that of the KS. Consequently
the oscillation kinematics can be simplified by neglecting the difference
between the decay rates of the two propagation eigenstates relative to the
decay rates themselves: ∆Γ ¿ Γ.
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• Second, the B meson decyas are more heavily CKM suppressed than K

meson decays (by λ4 rather than λ2). This makes the B meson decay
lifetimes comparatively longer than would otherwise be true for such a
heavy meson. For instance the B± and neutral Bd lifetimes are of order
10−12 s, which is just long enough for the mesons to travel observable
distances (up to a millimeter) within detectors before they decay. Since
both ∆m and Γ are O(G2

F ), we generically expect Γ ∼ ∆m ¿ m for B

mesons.

• Finally, the large matrix element Vtb ≈ 1 implies there is no suppression
of the virtual t quark in loops, and so no trade-off between small mixing
angles and enhancement by powers of mt in mixing- and CP -violating
parameters. This allows the t-quark contribution to dominate, and makes
the mixing parameters depend strongly on mt.

The propagation eigenstates for B mesons are denoted BH and BL, with
the ‘heavy’ meson (BH) defined to be the more massive of the two. For
most purposes the transition probability for oscillating from B0 to B

0 is
given by specializing Eq. (9.137) to the case ΓH ≈ ΓL = Γ, and taking
∆m = mBH −mBL comparable in size to Γ. Assuming non-relativistic B’s
leads to:

Pt[B0 → B0] = e−Γ t cos2
(

∆mt

2

)

Pt[B0 → B
0] =

∣∣∣∣
q

p

∣∣∣∣
2

e−Γ t sin2
(

∆mt

2

)
, (9.155)

which shows that the time-dependence of BB oscillations is controlled by
the dimensionless ratio ξ = ∆m/Γ. The nonrelativistic approximation is
appropriate for B factories, where they are produced by pair-production in
the reaction e+e− → BB with the beam energy adjusted to run at or near
to a resonance corresponding to a bound state in the b b system – the Υ(4S)
state. Because the mass of this state is just above the threshold for BB

production, the final-state B and B are produced almost at rest.
In practice the comparatively short distance traveled by the B meson

before it decays makes it more difficult to measure the time, t, elapsed since
the state was a pure B0 eigenstate (compared with what is possible for
kaons). Since the B’s are made through electron-positron annihilations via
a virtual photon: e+e− → γ∗ → BB, the produced B mesons start off in a
state with relative angular momentum ` = 1 (p-wave) and with CP |BB〉 =
−|BB〉. This implies the initial state necessarily has entanglement between
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the B-meson momentum and flavor:

|BB〉t=0 =
1√
2

[
|B(k)B(−k)〉 − |B(−k)B(k)〉

]
. (9.156)

Starting with this state, oscillations can be observed by tagging the decays
of the B and B mesons, such as by observing the lepton charge in their
semileptonic decays: B

0 → X`−ν and B0 → X ′`+ν, where X denotes
an arbitrary hadronic state. These decays represent about 10% of the B

meson decay width per lepton flavor (e and µ). If the tracks of the daughter
particles are precisely measured, the point where these decays take place
can be precisely determined. Then the above formulae give the probability
of seeing semileptonic decays into same-sign or opposite-sign leptons as a
function of the distance (and so also time elapsed) between the decays.

Observations of Bd-Bd oscillations show that the mixing parameter, ξd,
for these decays is given by

ξd =
(

∆m

Γ

)

Bd

= 0.771± 0.012

or ∆mBd
= (3.304± 0.046)× 10−10 MeV . (9.157)

At this writing there are only limits on the existence of Bs-Bs oscillations:

ξs =
(

∆m

Γ

)

Bs

> 20.6 90% CL

∆mBs > 94.8× 10−10 MeV 90% CL . (9.158)

Standard Model Predictions

The standard model predictions for B-B mixing are given by the same box
graphs, figure 9.7, as for kaon mixing, whose evaluation gives the following
∆B = ±2 contributions to the low-energy Lagrangian,

L(|∆B|=2)
w = Cd [dγµPL b] [dγµPL b] + Cs [sγµPL b] [sγµPL b] + c.c. , (9.159)

where the coefficients Cd and Cs are given by

Cq =
G2

F

16π2

[
(V ∗

tqVtb)2 m2
t ηt h1 (xt) + (V ∗

cqVcb)2 m2
c ηc h1 (xc)

−2V ∗
tqVtbV

∗
cqVcb

(
m2

cm
2
t

M2
W

)
ηtc h2 (xc, xt)

]
. (9.160)

Here q = b, s and we define as before xi = m2
i /M

2
W , with the functions h1

and h2 as given in Eq. (9.150). The above expression also uses xu ≈ 0.
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In this case the relative size of the charm and top-quark terms in Cq are
of order

λ6m2
t : λ6m2

c : λ6m2
c (Cd)

λ4m2
t : λ4m2

c : λ4m2
c (Cs) , (9.161)

which shows that the t-quark contribution dominates in both cases. This
dominance also guarantees that the contributions of graphs like those of
figure 9.8, involving higher-order QCD corrections, are less important than
for kaon mixing, being suppressed by powers of m2

B/m2
t ¿ 1.

Neglecting all but the t-quark contribution, the prediction for the relative
size of ∆m for the Bd and Bs systems becomes

(∆m)Bd

(∆m)Bs

=
Ad|Vtd|2
As|Vts|2 =

[Ad

As

]
λ2|1− ρ− iη|2 , (9.162)

where Aq = 〈B0
q |[qγµPL b][qγµPL b]|B0

q〉 is the required strong-interaction ma-
trix element. Assuming the matrix elements involved to be of the same order
of magnitude, we see that mixing effects for the Bs system should be en-
hanced relative to the Bd system because of the factor λ−2 ∼ 25.

The mixing parameter p/q may be similarly obtained. To the extent that
we may neglect ∆Γ, the parameters B and C of the effective neutral meson
Lagrangian, Eq. (9.126), are simply given by B = C A and C = C∗A, where
A and A denote the matrix elements

A = 〈B0|[qγµPL b][qγµPL b]|B0〉 and A = 〈B0|[bγµPL q][bγµPL q]|B0〉 .
(9.163)

The CP -invariance of the strong interactions implies A = A, and so using
this in Eq. (9.132) we obtain (when ∆Γ ≈ 0) the following result for the
mixing parameter: p/q = (C/B)1/2 ≈ (C∗/C)1/2.

This shows that for B mesons we expect |p/q| = 1 to good accuracy. This
agrees well with the measured value |q/p| = 0.998±0.007. The phase of p/q

depends only on the phase of the relevant CKM matrix elements (up to an
accuracy of m2

c/m2
t , using only the t-quark graph):

(
p

q

)

Bd

=
VtdV

∗
tb

V ∗
tdVtb

≈ 1− ρ− iη

1− ρ + iη
(

p

q

)

Bs

=
VtsV

∗
tb

V ∗
tsVtb

≈ 1 + O(λ2) . (9.164)

CP Violation
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VudV
∗
ub

VcdV
∗
cbγ = ϕ3

β = ϕ1

VtdV
∗
tb

α = ϕ2

Fig. 9.10. The ‘unitarity triangle’.

The standard model’s central prediction is that all flavor-changing and
CP -violating physics is due to the four parameters of the unitary CKM ma-
trix, and the B meson system provides a multitude of observables against
which this may be tested. One approach is to infer the values of the ap-
propriate CKM matrix elements from various observables and then to check
whether the results agree with the unitarity conditions

∑
i VinV ∗

im = δmn.
As of this writing all such tests support these standard model predictions.

Many B-physics experiments probe in particular the special case m = b

and n = d, for which unitarity implies

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (9.165)

This condition is often called the ‘unitarity triangle’ because it is the state-
ment that the sum of three complex numbers vanish, and so can be visualized
as saying that three vectors in the complex plane sum to zero (and so form
a triangle, see figure 9.10).

One can define a similar triangle for any pair of distinct rows or columns
of the CKM matrix, and it turns out that all of these triangles have the same
area, conventionally denoted J/2. Within the Wolfenstein parameterization
J ≈ A2λ6η, and so J → 0 in the limit where CP is preserved (η → 0). Since
the triangle therefore degenerates into a line when CP is unbroken, the
angles of the unitarity triangle are good measures of CP violation. These
angles are conventionally denoted α, β and γ (or alternatively ϕ1 = β,
ϕ2 = α and ϕ3 = γ), and are defined in terms of the CKM matrix elements
by

α = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
and γ = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
.

(9.166)
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A particularly clean measure of CP violation in the Bd system compares
the rates with which B0

d and B
0
d decay into a CP eigenstate, like ψKS, ψKL,

π+π−, and so on. (Here ψ represents the long-lived cc bound state.) For
example, suppose at t = t1 one member of the BB pair is tagged as a B0

by observing the charge of the lepton emitted in its semileptonic decay, and
at a later time t = t2 the other meson decays into ψKS. We now calculate
how the difference between these rates depends on the above angles, and so
compute

D(t1, t2) = Γ[(`+Xν)t1 ; (ψKS)t2 ]− Γ[(`−Xν)t1 ; (ψKS)t2 ] . (9.167)

Since we have seen that |p/q| ≈ 1 for B mixing, we may write p/q = eiω,
where ω = arg[(VtdV

∗
tb)/(V ∗

tdVtb)]. The direct CP violation from the ∆B =
±1 terms, Lw, in the low-energy weak interactions are similarly parameter-
ized by writing

〈ψKS|Lw|B0〉 = Aeiξ/2 and 〈ψKS|Lw|B0〉 = Ae−iξ/2 . (9.168)

Here A can be complex but is CP -preserving, and ξ represents the direct
CP -violating phase due to the CKM matrix elements in this transition.
For the decays B0 → ψKS and B

0 → ψKS, the dominant decay process
is believed to be the direct quark decays b → c cs and b → c cs, and so
ξ = arg[(V ∗

csVcb)/(VcsV
∗
cb)] ≈ arg[(V ∗

cdVcb)/(VcdV
∗
cb)]. The last equality uses

that Vcs and Vcd are both real to within the accuracy required.
Using these expressions gives

D(t1, t2) = 2|A|2e−Γ(t1+t2) sin(ω + ξ) sin[∆m (t2 − t1)]

= −2|A|2e−Γ(t1+t2) sin(2β) sin[∆m (t2 − t1)] , (9.169)

where we use

ei(ω+ξ) ≈
[
V ∗

cdVcb

VcdV
∗
cb

] [
VtdV

∗
tb

V ∗
tdVtb

]
≈

[
V ∗

cdVcb

V ∗
tdVtb

] [
VtdV

∗
tb

VcdV
∗
cb

]
= e−2iβ . (9.170)

Notice that D(t1, t2) is odd under t1 ↔ t2, and so vanishes once it is
integrated over all times. This is a general consequence of the entanglement
in the initial meson state, and makes the measurement of this asymmetry
more complicated. It is in order to circumvent this kind of vanishing that B

factories are often built asymmetrically, so that the initial e+e− pair collide
with a net overall momentum. This ensures that the center of mass of the
BB pair moves, thereby separating the decay products and so allowing the
measurement of the times t1 and t2.

An enormous theoretical and experimental effort has been devoted to
understanding in detail the decays and asymmetries in a great variety of rare
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and common B decays, and how best to make contact with the standard
model predictions. We do not try to describe this literature since it would
force us to stray too far from our main line of development. Suffice it to say
that at present all measurements are consistent with the standard model
predictions.

9.4.4 D −D mixing

Electrically neutral charmed mesons, D0 = (uc) and D
0 = (cu), are also

expected to oscillate. Within the standard model, we expect these oscilla-
tions to be unobservably small. The reason is that the decay process is not
suppressed by small CKM angles, but the mass splitting is CKM suppressed,
and GIM suppression makes it proportional only to m2

b or m2
s, rather than

the much larger m2
t . Therefore, a rough estimate of the ratio of mass split-

ting to decay rate would be,

∆m2
D

ΓD

∼ λ10m2
b

m2
c

,
λ2m2

s

m2
c

, (9.171)

with the former contribution from the b quark and the latter from the s

quark in the loop. Each term results in an estimate much less than 10−3,
and indeed, D oscillation phenomena have not been observed, and are ex-
perimentally constrained down to the 10−3 level.

It is nonetheless of experimental interest to look for D − D mixing, be-
cause it is possible in some extensions of the standard model. It therefore
represents a sensitive probe of physics beyond the standard model, and any
detection at the present level of sensitivity would signal the standard model’s
failure.

9.5 Problems

[9.1] Low energy photon-proton scattering
Consider the scattering of a photon from a proton.

[9.1.1] Including only the leading interaction, −ieAµp̄γµp, find the spin
and polarization averaged differential scattering cross-section, in the
proton rest frame and in the small photon energy limit, as a function of
angle θ. Compare with the classical electromagnetism result (essentially
the same as Thompson scattering),

dσ

d cos θ
=

πα2

m2
p

(
1 + cos2 θ

)
.
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[9.1.2] Now consider corrections arising from the magnetic dipole inter-
action. Show that the linear in µp correction to the integrated cross-
section (arising from interference between a scattering with one appear-
ance of µp and with no appearances), vanishes. Is the same true for the
angular distribution? At what order in µp do corrections to the inte-
grated and differential scattering cross-sections first appear? (If you
are wise, you will attempt this problem using classical electromagnetic
theory, rather than Feynman graphs.)

[9.2] Color factors
Verify the color factors,

∑

j,a

λa
ijλ

a
jk = 4δijCF ,

∑

i,j

λa
ijλ

b
ji = 4δab 1

2
,

∑

b,c

fabcfdbc = CAδad ,

with CF = 4/3 and CA = 3 for QCD.

[9.3] DGLAP kernel functions
Derive Eq. (9.74) by considering the collinear splitting of a gluon into

quarks and the radiation of a gluon from a gluon. Work in a frame where
the gluon momentum p = (p, 0, 0, p) is large, and treat the components
of the outgoing gluon momenta, transverse to the z direction, as small
compared to the longitudinal momentum. To avoid problems with gauge
invariance, it is essential to sum over the two transverse polarization states
of all external gluons at all times, rather than using ηµν to compute the
spin summed external states. (You can verify this by doing it the wrong
way.)

[9.4] Pascos-Wolfenstein ratio
Consider the scattering of a muon neutrino from a proton. Four pro-

cesses are possible, νµp → νµX, νµp → µX, ν̄µp → ν̄µX, and ν̄µp → µ̄X.

[9.4.1] Write down the leptonic tensors Lµν which replace Eq. (9.42), for
each case. Work out the cross-section in terms of the structure functions
F±

1,cc, F±
2,cc, F±

3,cc and F1,nc, F2,nc, F3,nc (the charged current and neutral
current structure functions are in general independent functions, and
we must distinguish the charged current structure function in which
the proton gains charge, from the one where it loses charge). These are
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defined similarly to the electromagnetic current, except using Jcc, J∗cc,
and Jnc rather than Jem in Eq. (9.43).

[9.4.2] Express the charged current and neutral current structure func-
tions, F±

cc(x, q2),Fnc(x, q2), in terms of the quark and anti-quark PDF’s,
um(x, q2), ūm(x, q2), dm(x, q2), and d̄m(x, q2), in analogy with the elec-
tromagnetic case, Eq. (9.57). To do this, consider a quark of momentum
fraction x, and study what tensor arises from its squared matrix element
to interact with a W or Z boson.
What specific PDF’s does each scattering process probe? Is there any
relation between the F1, F2, and F3 structure functions, akin to the
Callan-Gross relation?

[9.4.3] Consider muons and anti-muons impinging on a target of equal
quantities of neutrons and protons–for instance, Deuterium, D–so that
the target-averaged u(x, q2) = d(x, q2) and ū(x, q2) = d̄(x, q2) (up to
small isospin breaking effects, which we will ignore). Also assume that,
for all other quark types (s, c, etc.) the quark and anti-quark distribu-
tions are the same, s(x, q2) = s̄(x, q2).
Show that the Pascos-Wolfenstein ratio,

RPW
σ(νµD → νµX)− σ(ν̄µD → ν̄µX)
σ(νµD → µX)− σ(ν̄µD → µ̄X)

,

satisfies

RPW =
1
2
− sin2 θW .

In particular, each component cross-section has complicated depen-
dence on the structure functions, but the ν, ν̄ differences only depend on
the differences u− ū, d− d̄, and the neutral to charged current ratio has
a common x dependence, so the neutral to charged interaction coeffi-
cient can be factored out, and the detailed dependence on the structure
functions cancels in the ratio. This presents a very convenient tool for
determining sin2 θW .

[9.5] Light scalar quark
Suppose that there existed a scalar quark, q̃, meaning a scalar field

in the fundamental representation of SUc(3). Write its electromagnetic
charge as Q. Also imagine that the mass of this quark were small, m ∼ 100
MeV, so that it could appear in long lived bound states.

Completing this problem will require a few Feynman rules for such a
scalar quark. The propagator for the scalar quark, at momentum k, is
−i/k2, and the vertex rules are the same as Eq. (5.65) and Eq. (5.75), but
with γµ replaced with i(k − p)µ.
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[9.5.1] Write down the lightest new meson-like states which could result
as bound states of u and d quarks with the hypothetical scalar quark.
What are the expected quantum numbers of these states–particularly
under spin, parity, and charge conjugation? Give a vague estimate of
the mass of such a state.

[9.5.2] The scalar quark must be included as a partonic species in the
analysis of deep inelastic scattering. What are the new contributions
to the structure functions F1(x, q2), F2(x, q2) due to the scalar quark
parton distribution function q̃(x, q2), ¯̃q(x, q2)? Is the Callan-Gross sum
rule, F2(x, q2) = 2xF1(x, q2), satisfied by the scalar quark contribution?
(The spin dependence of the Callan-Gross sum rule was one of the early
pieces of evidence for the spin 1/2 nature of quarks.)

[9.5.3] Revisit the calculation of collinear gluon radiation, but now con-
sidering radiation from the scalar quark q̃.
Find the appropriate replacements for Eq. (6.88) and Eq. (9.75), for
the scalar quark. Does the quark or the scalar quark lose its large x

contribution faster, as q2 is increased?

[9.6] Top quark production
Consider tt̄ (top–antitop) production at a hadron collider. Observing

this process was one of the principal motivations of the Tevatron collider
at Fermilab.

[9.6.1] Find the squared matrix elements for the two production processes,
qq̄ → tt̄ and gg → tt̄, at leading order in α3, namely, O(α2

3). Average
over initial state spins and colors, sum over final state spins and colors.
Note that the calculation of the gg process is quite tricky; there are
contributions from multiple diagrams, and their relative sizes are de-
pendent on how the polarization sums are done. The safest method is
to sum over the two transverse gluon polarizations in the center of mass
frame of the system. Systematically neglect all masses other than the
top quark mass (which cannot be neglected), and work only to leading
order in the strong coupling α3, neglecting α2 and α1.

[9.6.2] Evaluate the tt̄ production cross section, integrated over angles, as
a function of the center of mass energy squared s of the initial particles.
If possible find a closed form expression in terms of s, mt, and α3.

[9.6.3] Express the total production rate for tt̄ pairs as an integral over
x1 and x2, in terms of q(x), q̄(x), and g(x) the parton distribution
functions of the proton, for pp collisions.
Now, compute for pp̄ collisions, using qp(x) = q̄p̄(x), q̄p(x) = qp̄(x).
What part of the answer is different vis a vis the pp case?
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Looking at the plot of parton distribution functions, do you see why the
Tevatron (running at 1800 GeV center of mass energy) was designed as a
pp̄ machine, rather than a pp machine (despite the added complications
of creating an antiproton beam)?

[9.7] Isospin transitions
Consider the matrix element

〈A|Jµ
had(x = 0)|B〉 ≈

√
(i− i3)(i + i3 + 1) (pµ

A + pµ
B) Vud

for two spin-zero states, |A〉 and |B〉, with isospin i and i3 = i3(B) =
i3(A) − 1. This type of matrix element arises, for example, in the decay
π− → π◦+ leptons or in nuclear decays such as 6C

14 → 7N
14. In both of

these examples we would have i = 1, i3(B) = −1 and i3(A) = 0.

[9.7.1] For the particular process: π− → π◦+ e−+ ν̄e, compute the decay
rate, dΓ

dE (E), as a function of the energy of the emitted electron as seen
in the rest frame of the π−. Sum over all spins and integrate over the
neutrino momentum and electron direction. Feel free to also neglect
the electron mass.

[9.7.2] What is the π− decay lifetime in its rest frame, via the process
π− → πoe−ν̄e?

[9.8] π+ decays
Given the hadronic matrix element

〈vacuum|Jµ
had|π+〉 =

√
2Fπ pµ Vud ,

[9.8.1] Compute the total decay rate for the purely leptonic decay π+ →
`+ν`.

[9.8.2] Using Fπ = 93 MeV and the results of the previous problem cal-
culate the ratio of the decay rates for the two processes: Γ(π+ →
π◦e+νe) = Γ(π− → π◦e−ν̄e) and Γ(π+ → e+νe). Compare your rates
to those found in the particle data book.

[9.9] Neutral pion decay
Suppose the interaction Hamiltonian involves a term:

Hint =
e2

32π2Fπ

(
Nc

3

)
π◦(x)Fµν(x)F λρ(x)εµvλρ

that mediates the decay of a π◦ into two photons. e in this expression
is the proton charge, Fπ is the pion decay constant, Fπ = 93 MeV and
Nc = 3 is the number of colors. Fµν = ∂µAν − ∂νAµ denotes, as usual,
the electromagnetic field strength.



9.5 Problems 391

[9.9.1] Show that the field decompositions:

Aµ =
∑

λ=±1

∫
d3p

2p0(2π)3
[
εµ(p, λ)eip·xapλ + c.c.

]

and π◦ =
∫

d3k
2k0(2π)3

[
eikxbk + c.c.

]

imply the following matrix elements:

〈γ(p, σ)γ(q, λ)|Hint|π◦(k)〉
=

e2

32π2Fπ

(
Nc

3

)
εµνλρ 4(−ipµ)εν(p, σ)(−iqλ)ερ(q, λ)

[9.9.2] Use the following polarization vectors:

εµ(p, σ = ±1) =
1√
2
(0, 1,±i, 0) = εµ(−p, σ = ∓1)

= ε∗µ(p, σ = ∓1)

in the frame for which the photon momentum has the form:

pµ = (ω, 0, 0, ω)

to show that the total rate for π◦ → 2γ decay in the π◦ rest frame is:

Γ(π◦ → 2γ) =
α2m3

π

(4π)3F 2
π

(
Nc

3

)2

.

α ≡ e2

4π is the usual fine-structure constant. Compare the value you
find with that in the particle data book. Notice that this result gives
an experimental check on the number of colors: Nc = 3.
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Beyond the standard model





10

Neutrino masses

The previous chapters have revealed the standard model as a remarkable
theory which successfully describes the vast majority of all of modern parti-
cle physics. Better yet, its implications are very robust since it is the most
general theory which is consistent with general principles (like Lorentz in-
variance and unitarity) plus the two assumptions: (i) renormalizability and
(ii) the given particle content — all of which are seen in experiments (modulo
confinement for the case of quarks and gluons) save the as-yet-undiscovered
Higgs scalar.

In this chapter we encounter the first (and, as of this writing, only) known
case where there is good evidence that the standard model does not provide a
good description: the phenomenon of neutrino oscillations. After describing
the conceptual issues and the evidence for the standard model’s failure, we
briefly describe what can be said at present about which of the two core
assumptions must be relinquished.

The standard model prediction which has gone sour – encountered in
subsection 2.5.2 – asserts the separate conservations (up to negligible cor-
rections involving the electroweak anomaly) of the three lepton numbers,
Le, Lµ, and Lτ . Even considering the electroweak anomaly, the quantities
Le − Lµ and Lµ − Lτ are anomaly free and so should be exactly conserved.
As a consequence the theory predicts exactly massless and stable neutrinos,
νe, νµ, ντ , with ν` only participating in charged-current weak interactions
together with its corresponding charged lepton, `−.

There are now several kinds of experiments involving neutrinos of rela-
tively low energy, propagating over long distances, which indicate that the
last of these properties is not true. In particular, the nuclear reactions which
power the sun are known to produce neutrinos through charged-current re-
actions involving only electrons. These ‘solar’ neutrinos escape the sun and
some make their way to the earth where they can be detected, and some are

395
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observed no longer to interact through reactions involving electrons (they
instead are detected through their neutral-current interactions). Evidence
for a similar effect is also seen when electron neutrinos are both prepared
and detected on earth.

Similarly, the earth is under constant bombardment from space by very
energetic cosmic rays (mostly protons), which strongly interact with nitrogen
and oxygen nuclei when they hit the upper atmosphere. π± particles are
copiously produced in these reactions and the neutrinos produces when these
decay in flight are seen in detectors on and under the earth’s surface. Since,
for example, a π+ decays almost 100% of the time into µ+νµ and the muon
decays in turn into e+νeνµ, a νµ : νe ratio of close to 2 : 1 was expected
for the ‘atmospheric’ neutrinos detected in this way (even after more careful
simulations of the decay process in the atmosphere). A ratio closer to 1 : 1
is instead found by several experiments, wherein it appears that about half
of the expected νµ neutrinos are missing. Again, evidence for the same
effect is also seen for muon neutrinos that are both produced and detected
on earth.

Neither of these effects is consistent with the separate conservation of Le,
Lµ and Lτ , and this provides the first real evidence that the standard model
as described in previous chapters is an incomplete theory. One of the two key
assumptions – particle content and/or renormalizability – is breaking down,
but which one? And if it is not new particles that are at root, what would
a failure of renormalizability mean? We take up these questions in more
detail after first digressing to describe the kinematics of massive neutrinos.

In essence, the message of this chapter is that it is possible to amend the
standard model in several ways to permit neutrino masses that can describe
the observed neutrino oscillations. However, we do not yet know which
amendment is correct.

10.1 The kinematics of massive neutrinos

Neutrinos resemble the neutral mesons encountered in chapter 9, in that they
both can participate in oscillations. However, the situation for neutrinos
differs from that described earlier for neutral mesons in two important ways:
the nonzero neutrino spin, and the possible participation of at least three
species of neutrinos in the oscillations.
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10.1.1 Dirac vs Majorana

Within the standard model the three massless neutrinos are labelled by
their flavor, momentum and helicity, |νi(p, h)〉, with helicity defined as the
projection of the neutrino spin along its direction of motion: h = s · p̂,
where p̂ = p/|p|. Helicity is a sensible label for massless particles because
all observers can agree on its value, regardless of their Lorentz frame. Since
only left-handed neutrinos appear in the standard model, h = −1

2 for all
three neutrino states.

In general, however, Lorentz invariance and locality imply that CPT is a
symmetry, and so we immediately infer the existence of three more states:

|νi(p, h)〉 = CPT |νi(p, h)〉 , (10.1)

where p = p and h = −h. The interesting feature here is that CPT changes
the sign of helicity, and so the states obtained in this way must differ from
those with which we started. Within the standard model these new states
are the right-handed antineutrinos, and they are distinguished from the
neutrinos both by their helicity and their eigenvalues of the lepton numbers,
Le, Lµ and Lτ .

Things are different if neutrinos are massive, however, because in this
case helicity is no longer a good quantum number. It fails as a quantum
number because different Lorentz observers can disagree on its value if they
are moving relative to one another. For instance, massive neutrinos possess
a rest frame for which the direction, p̂, of neutrino momentum is undefined.
Similarly, two observers which move in the same direction as the neutrino –
with one moving more slowly than the neutrino and the other moving more
quickly – will disagree on the direction of p̂, with one finding it points along
the direction of their mutual motion and the other finding it pointing in the
opposite direction. For this reason we instead label massive spin-half states
by their spin direction in the particle rest frame, |νi(p, σ)〉, and any massive
spin-half particle must have both eigenvalues σ = ±1

2 .
Applying CPT to such a state again changes the sign of σ, but because

the original particle has both signs in any case it is no longer automatic
that |νi〉 ≡ CPT |νi〉 6= |νi〉. In this case it is only the existence of another
conserved charge, such as lepton number, which can decisively distinguish
particle from antiparticle by assigning them opposite charge. If such a charge
exists, then the neutrino is said to be a ‘Dirac’ neutrino, and the six states
(two spin times three flavor), |νi〉, are physically distinct from their CPT

conjugates, |νi〉 = CPT |νi〉. If such a charge does not exist, the neutrino is
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said to be a ‘Majorana’ neutrino, for which the action of CPT returns the
same states we started with: |νi〉.

The names Dirac and Majorana are taken from the fields which are used
to describe such particles. The minimal two states, |ν(p, σ)〉 and its CPT

conjugate |ν(p,−σ)〉, of a spin-half particle can always be described by Ma-
jorana spinor fields, and a collection of N such particles can be represented
without loss of generality by N Majorana fields. However, when there is
a U(1) symmetry (corresponding to an additive conserved charge) acting
on the spin-half states it is very convenient to group the pair of Majorana
spinors, ψ1 and ψ2, which describe the distinct particle and antiparticle –
|ν(p, σ)〉 and |ν(p, σ)〉 plus their respective CPT conjugates – together into
a Dirac spinor: ψD = PL ψ1 + PR ψ2, with the U(1) acting as ψD → eiαψD.

This grouping into Dirac spinors was done in previous chapters for all
of the fermions of the standard model besides neutrinos because for these
particles electric charge distinguishes them from their antiparticles. Since
neutrinos are not electrically charged (and don’t carry baryon number) the
question of whether they are distinct from their antiparticle (i.e. Majorana
vs Dirac) is equivalent to the question whether there is an conserved lepton
number whose charge they do carry. The observed neutrino oscillations do
not settle this issue because although they show that Le, Lµ and Lτ are
not all separately conserved, they do not rule out the conservation of total
lepton number, L = Le + Lµ + Lτ , or B − L.

10.2 Neutrino oscillations

Before trying to describe neutrino masses and oscillations in terms of all
of the standard model fields, we first put aside issues of SUL(2) × UY (1)
gauge invariance and summarize them in the simpler context of three neu-
trinos with a phenomenological mass matrix, interacting with other particles
through their couplings with the W and Z bosons. This simplified descrip-
tion is all that is needed to describe the observations, and we return to the
issue of gauge invariance in later sections.

The basic choice to be made in describing neutrino oscillations is whether
or not to add any new neutrino states above and beyond the three states
which we already know exist. (Once we reintroduce gauge invariance in later
sections, we shall see that this choice is equivalent to the choice of modifying
the standard model by adding new particles or by adding nonrenormalizable
interactions.) In the case where new neutrinos are added there is a subsidiary
question as to whether or not the couplings of these new particles conserve
any form of overall lepton number, L.
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We consider each case in turn, starting first with the minimal assumption
that no new neutrino states exist.

10.2.1 Three neutrinos only

Suppose first that there are no more neutrino states beyond those which
are already present in the standard model. In this case, by assumption,
we know that CPT takes the existing neutrinos into themselves and so
neutrinos must be their own antiparticles. This precludes in turn lepton
number from being an approximate symmetry, and we indeed find in this
case that neutrino masses in this scenario necessarily break L conservation
in addition to breaking separately Le, Lµ and Lτ .

To describe this situation phenomenologically, imagine supplementing the
standard model Lagrangian by an explicit neutrino mass term:

L = LSM − 1
2

[
mij (νiPL νj) + c.c.

]
, (10.2)

where mij is an arbitrary complex symmetric 3 × 3 matrix. We work in a
basis for which the charged-lepton mass matrix has already been diagonal-
ized. Since the standard model contains a grand total of six neutrino and
antineutrino states (including spin labels) we may take the three neutrino
fields to be Majorana without loss of generality.

This mass term, which couples the fields, νa, to themselves, differs in
several ways from the quark and charged-lepton mass terms, which couple
two different fields (e.g. L and E or Q and U or D) to one another. In
terms of the two component left-handed component χν of the Majorana
spinor ν = [χ εχ∗]T , the mass term reads

Lν mass =
1
2

((mij)∗χT
mεχn + h.c.) . (10.3)

Such a mass term, where a particle is coupled to its own transpose rather
than a distinct right handed state, is called a Majorana mass. Unlike the
mass matrix of earlier chapters, the Majorana mass matrix, mij , must be
symmetric and so has fewer independent entries than does the corresponding
charged-lepton matrix.

As advertised, this neutrino mass term breaks all of the lepton-number
symmetries of the standard model, for which the left-handed fields rotate
by PL νj → eiωj PL νj , with a separate parameter ωj for each neutrino flavor
‘j’. But the Majorana condition for νi then implies the right-handed fields
rotate oppositely, PR νj → e−iωj PR νj (as must any antiparticle), and so
νjPL → eiωj νjPL . Since the mass matrix transforms as mjk → mjke

i(ωj+ωk),
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it is invariant under all three transformations only if mjk = 0. The same
is also true for the overall lepton symmetry, for which ω1 = ω2 = ω3. The
only type of lepton number which Eq. (10.2) can preserve is the difference
between two lepton numbers: e.g. L12 = L1 − L2 would be a symmetry
if the only nonzero mass matrix elements were m33 and m12 = m21. In
such a case the neutrinos ν1 and ν2 would group into a Dirac neutrino (with
antiparticle distinguished by the eigenvalue of L12), with the third neutrino
being necessarily Majorana if m33 6= 0.

10.2.1.1 The PMNS mixing matrix

In general the neutrino mass matrix may be diagonalized by redefining the
neutrino fields, PL νi = Vij PL νj , with unitary Vij , following the arguments
of Chapters 1 and 2 with only minor modifications. The main difference
is that the mass matrix, mjk, has fewer independent entries than did the
quark mass matrix, gmn, because the matrix mjk must be symmetric. On
the other hand, since the neutrino matrix does not relate different left- and
right-handed fields, there are fewer fields which can be independently rotated
to accomplish the diagonalization. This changes the counting of the number
of independent physical parameters which these rotations can introduce into
the charged-current weak interactions, leading to more CP -violating phases
for leptons than for quarks (as we now describe).

After transforming to the neutrino mass basis in this way, the neutrino
part of the Lagrangian becomes

L = −1
2

νi(/∂ + mi)νi + Lnc + Lcc , (10.4)

where the mi are real and non-negative. The unitarity of V ensures the
neutral-current interaction Lnc is unchanged from the standard model result
(the leptonic GIM mechanism), and the charged-current interaction picks up
a CKM-like mixing matrix,

Lcc =
ig Vai√

2
Wµ (`aγ

µ γL νi) + h.c. . (10.5)

Here we use i = 1, 2, 3 to label the 3 neutrino types and a = 1, 2, 3 to label
the charged leptons: {`1, `2, `3} = {e, µ, τ}. We use different letters to do
so in anticipation of the next section where we have more neutrinos than
charged leptons. Notice that the convention for leptons is to use the charged
leptons to label the rows and the neutrinos to label the columns, which is
opposite to the convention used for quarks.

The mixing matrix, Vai, may be parameterized in terms of mixing angles
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and phases as V = U K, with K = diag(eiα1/2, eiα2/2, eiα3/2) and

U =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδ

−c23s12 − s23c12s13e
iδ c23c12 − s23s12s13e

iδ s23c13

s23s12 − c23c12s13e
iδ −s23c12 − c23s12s13e

iδ c23c13


 ,

(10.6)

where cij = cos θij and sij = sin θij . The CKM-like matrix, Uai, is called
the PMNS matrix – for Pontecorvo, Maki, Nakagawa and Sakata – and
describes the amplitude with which the neutrino type ‘i’ participates in
charged-current reactions with the charged lepton ‘a’.

The matrices U and V differ because of the appearance of the extra phases,
αi, in the matrix K. Such phases are conventionally removed from the CKM
matrix by performing phase rotations of the first- and second-generation
quarks, and this is possible within the standard model because the rest of
the Lagrangian conserves flavor and so is unchanged by this re-phasing. The
same rotations also would have removed the phases eiαj if neutrinos had been
Dirac particles. However, we have seen that the neutrino mass term is not
invariant under lepton-number transformations and so is not preserved by
re-phasings of the left-handed neutrino states.

The phases δ and αi can have physical implications because they introduce
CP violation into neutrino physics. Since the phase δ is the direct analogue
of the CP -violating phase in the CKM matrix, its effects disappear in the
limit θ13 → 0. One of the phases αi can be rotated away by making a com-
mon phase rotation of the charged leptons (conventionally α3 is removed),
and the other two are not observable in processes which conserve total lepton
number L.

10.2.1.2 Neutrino oscillations

Since neutrinos are created by charged-current weak interactions, they are
always produced in association with a charged lepton, and so start off in
a flavor eigenstate, νa. For instance, µ− decay produces a νµ and a ν̄e,
while the reaction e−X → X ′νe produces an electron neutrino. But the
subsequent time evolution of the produced neutrino simply involves time-
dependent phases for the neutrino mass eigenstates, νi. If neutrinos are
detected by observing the charged lepton in another charged-current reaction
then the detector again probes the final flavor state, which need not be the
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same as the initial flavor if the mass and flavor eigenstates differ from one
another. This difference between flavor and mass bases therefore allows
the possibility of complicated time-dependent oscillation phenomena, along
the lines we have already encountered for neutral mesons. Most of our
information about neutrino masses and mixings arises from such neutrino
oscillations, as we now explore.

To this end suppose a neutrino is produced as a flavor eigenstate, νa. It
then propagates to a detector at a distance x, where it is measured to have
flavor νb. The amplitude for this process is

〈νb(x, t)|νa(0, 0)〉 = 〈νb| exp(−iĤt + iP̂ · x)|νa〉 . (10.7)

Here Ĥ and P̂ are the time-evolution and translation operators, and t is the
time of propagation. Since neutrinos are almost massless, t ' |x| to high
precision.

The t- and x-dependence of this amplitude is most conveniently evaluated
by inserting a complete basis of mass eigenstates, giving

〈νb(x, t)|νa(0, 0)〉 =
∑

i

∑
σ

∫
d3k e−iEi(k)t+ik·x〈νb|νi(k, σ)〉〈νi(k, σ)|νa〉 .

(10.8)
Were |x| = t and E = |p| for the neutrino, then the phase from the temporal
and spatial propagation would exactly cancel. A small failure in |x| = t leads
to a species-independent phase, which is not important for the observables
of interest. The species-dependent part of the phase arises because different
kinds of neutrinos have slightly different dispersion relations: Ei(k) = [k2 +
m2

i ]
1/2.

Because the source and detector are by assumption of finite size, a range
of momenta can contribute to the process even if the energy were perfectly
well measured. In typical applications, the neutrino energy is measured
accurately enough that for our purposes we can take E to be known in
computing the difference E − |k|. Given the neutrino energy, E, and using
the (very good) approximation that neutrinos are ultra-relativistic, implies
|k| ≈ E−m2

i /E, and so E−|k| ≈ m2
i /E. This allows the species-dependent

part of the phase to be written e−im2
i |x|/2E , and so the desired amplitude

becomes:

〈νb(x, t)|νa(0, 0)〉 = eiξ
∑

i

e−im2
i L/(2E)〈νb|νi〉〈νi|νa〉

= eiξ
∑

i

e−im2
i L/(2E)VbiV

∗
ai , (10.9)

where ξ is an uninteresting overall phase. We see that each neutrino energy
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eigenstate picks up a relative phase of e−im2
i L/(2E). By making E modest

and L very large, the different terms in the amplitude can acquire large
phase differences even if their squared-mass differences, ∆m2 = m2

i − m2
j ,

are very small.
The probability of the neutrino being produced as flavor eigenstate νa and

being detected in flavor eigenstate νb is therefore

Pνa→νb
(E,L) =

∣∣∣〈νb(L, t)|νa(0, 0)〉
∣∣∣
2

=
∑

ij

e−i(m2
i−m2

j )L/(2E) Ubi U
∗
bj Uaj U∗

ai . (10.10)

Notice that the Majorana phases, eiαj , cancel in this expression, since the
same phase appears in both Vai and Vbi, and this is what justifies replacing
Vai with Uai in the above. This means that one cannot distinguish between
the possibilities of Dirac and Majorana neutrinos purely on the basis of
neutrino oscillation experiments.

On the other hand, the rotation angles θ12, θ13 and θ23 do not cancel, and
so their values can be inferred from oscillation experiments. Notice also that
the oscillation probability involves only the difference of squares of masses,
and not the masses directly. Furthermore, in the limit L ¿ λ(E), with the
‘oscillation length’ defined by λ(E) = 2E/∆m2, the unitarity of the PMNS
matrix ensures that the probability becomes diagonal,

Pνa→νb
(E, 0) = δab . (10.11)

Since

λ(E) = 500 m
(

E

1 GeV

) (
1 eV2

∆m2

)
, (10.12)

and because the observed neutrino mass splittings turn out to be very small
– ∆m2 ≤ 5× 10−3 eV2 – in practice most neutrino experiments only probe
the small-L limit. This is part of the reason why evidence for oscillations
has been so long in coming. The sensitivity to mass splitting improves as
the length between source and detection point increases and as the energy
of the neutrinos decreases. These observations have driven the construction
of long-baseline experiments, having a very large separation between source
and detector, several of which have been running as of this writing.

It is often the case that only two species of neutrino have mass differences
which permit them to appreciably oscillate in a given experiment. In this
case it suffices to consider the two-neutrino special case, for which the 2× 2
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unitary matrix Uai may be chosen to be

U =

(
cos θ sin θ

− sin θ cos θ

)
. (10.13)

In such a case the probability, Eq. (10.10), is particularly simple:

Pνa→νa(E,L) ' 1− sin2(2θ) sin2

(
∆m2 L

4E

)
,

Pνa→νb 6=νa(E,L) ' sin2(2θ) sin2

(
∆m2 L

4E

)
, (10.14)

and for this reason experimental results are often quoted in terms of sin2(2θ)
for an effective mixing angle for the oscillation relevant to the experiment.

10.2.1.3 Experimental values

At the time of writing two distinct types of neutrino oscillations have been
unambigously detected. The first of these – solar neutrino oscillations –
correspond to observations of the disappearance of νe neutrinos coming from
the sun, as well as the disappearance of ν̄e neutrinos coming from reactors.
If interpreted in terms of two-flavor oscillations (as we shall see, a good
approximation even in the three-flavor case), these measurements point to

0.67 ≤ sin2 2θ¯ ≤ 0.93

∆m2
¯ = |m2

2 −m2
1| = (5.4− 9.4)× 10−5 eV2 . (10.15)

This range for solar neutrinos is called the Large-Mixing-Angle (LMA) solu-
tion, and is the only one which accounts for both the experiments involving
neutrinos produced on the sun and on earth.

The second type of observed oscillations involve either the disappearance
of νµ and νµ neutrinos generated by cosmic ray showers in the upper atmo-
sphere, or of νµ’s from long baseline beam experiments on earth. Interpreted
in terms of two-neutrino oscillations (again a good approximation), these ob-
servations point to the parameters

0.85 ≤ sin2 2θatm ≤ 1

∆m2
atm = |m2

3 −m2
2| = (1.1− 3.4)× 10−3 eV2 . (10.16)

Notice that these oscillations are close to maximal, with sin2(2θatm) consis-
tent with unity.

We see that within a three-neutrino picture the splitting between the two
neutrinos responsible for solar-neutrino oscillations must be much smaller
than their common splitting from the third neutrino, and in the above we



10.2 Neutrino oscillations 405

follow common practice by choosing our labelling for the neutrino mass
eigenstates so that the small splitting is between ν1 and ν2. Since the small
mass difference governs solar-neutrino oscillations, and these involve the
disappearance of νe neutrinos, either ν1 or ν2 must have a significant overlap
with νe, and we conventionally choose ν1 to be the state which has this large
overlap.

In themselves neutrino oscillations do not fix the absolute values of each of
the masses separately, leaving open two possibilities. If the nearly degenerate
pair, ν1 and ν2, are less massive than ν3, then the mass pattern is known as
a ‘normal’ hierarchy, while if m1,m2 > m3 the hierarchy is ‘inverted’.

In addition to these two kinds of observed oscillations, there are also a
large number of searches for neutrino oscillations involving shorter baselines,
sensitive to larger ∆m2 than those where effects have been observed. In
our conventions for which it is ν1 − ν2 oscillations which are seen in solar
neutrino experiments, and for which it is ν1 which strongly overlaps νe, these
these null reactor-neutrino searches constrain the strength of any ν1 − ν3

oscillations which are possible. They imply the 3σ limit

|Ue3|2 = s2
13 < 0.067 . (10.17)

Because this implies c13 > 0.966, we have 1 > |Ue1|2 + |Ue2|2 = c2
13 >

0.933 and so it is convenient to write |Ue1| = c12c13 ' cos θ¯ and |Ue2| =
s12c13 ' sin θ¯ when inferring the constraints on Uai from solar-oscillation
measurements, and so θ12 ' θ¯. From the third column of the PMNS matrix
it is similarly useful to write |Uµ3| = s23c13 ' sin θatm and |Uτ3| = c23c13 '
cos θatm, in which case θatm ' θ23.

The qualitative features of the PMNS matrix which are emerging from
experiment can be summarized by the following approximate form, which
is obtained by setting θ13 = 0 and taking maximal mixing for atmospheric
neutrinos, θ23 = π/4 (i.e. s13 = 0, c13 = 1 and s23 = c23 = 1/

√
2):

U ≈




c12 s12 0
−s12/

√
2 c12/

√
2 1/

√
2

s12/
√

2 −c12/
√

2 1/
√

2


 . (10.18)

It is clear that this mixing matrix does not resemble at all the CKM matrix
in the quark sector.

Since the experimental accuracy with which the neutrino mass splittings
and phases have been measured is evolving rapidly, the reader should consult
recent literature for more up to date numbers and errors.
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10.2.1.4 Direct mass searches

Neutrino oscillation experiments do not tell us the values of the neutrino
masses, only mass squared differences. However, for three neutrinos taking
the lightest neutrino to be massless gives a lower bound on the mass of the
heaviest neutrino of 0.05 eV. How does this compare with direct searches
for neutrino masses?

The best kinematic laboratory limit on neutrino masses puts an upper
limit on any neutrino having significant overlap with νe, and so which can
be produced in the beta decay n → pe−ν in tritium. Although some experi-
ments give slightly better results, the Particle Data Group quotes an upper
limit of mνe

<∼ 3 eV due to difficulties in understanding the precise shape
of the electron spectrum at its endpoint. Weaker limits apply for neutrinos
which are dominantly νµ, with the best coming from measurements of the
muon spectrum in charged pion decay, which gives mνµ < 0.19 MeV (90%
C.L.).

The strongest upper bound comes from cosmology in a three-neutrino
world, for which (as of August 2005) the sum of neutrino masses must satisfy∑

i mi < 0.7 eV. This result assumes the simplest viable cosmological model.
Such cosmological bounds are also evolving rather rapidly and the reader is
advised to consult the recent literature for up-to-date results.

10.2.1.5 The MSW effect

The treatment presented above assumes that the neutrino propagates in vac-
uum between the source and the detector. Since neutrino interactions are
very weak, this is often a valid approximation; but not always. Just as light
traveling through a transparent medium has its speed of propagation altered
by the index of refraction, so also a neutrino travelling through matter ex-
periences medium effects. These effects can change the way that neutrinos
oscillate – an effect called the MSW (Mikheyev-Smirnov-Wolfenstein) effect
– in a way which appears to be important in practice for neutrinos coming to
us from the sun. Although a complete treatment of this effect goes beyond
the scope of this book, we include here a brief discussion due to its practical
importance for neutrino experiments.

Consider therefore neutrinos propagating in an environment like the in-
terior of the sun. If fluctuations in this environment are sufficiently small
then the propagation through it of neutrinos is well described by the effec-
tive Lagrangian obtained by averaging the standard model Lagrangian over
the environment,

Lenv ≈ 〈LSM〉env = Tr [ρenvLSM] , (10.19)
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where ρenv here denotes the density matrix which describes the state through
which the neutrinos move. Within a solar environment this trace is over the
nuclei and electrons present within the plasma inside the Sun, and the result-
ing Lagrangian describes the average effects on neutrino propagation caused
by the charged- and neutral-current interactions, Eq. (7.12) and Eq. (7.15),
between the neutrinos and these particles. Detailed studies show that this
mean-field description appears to provide a good description of the solar
environment, at least deep within the solar radiative zone where neutrino
oscillations take place.

For example, consider the part of the charged-current interaction which
governs the interactions between electrons and neutrinos, which, when writ-
ten in the flavor basis, is

Lcc = −GF√
2

[ieγµ(1+γ5)νe] [iνeγµ(1+γ5)e] . (10.20)

In order to perform the average of this term over the environment it is useful
to use the Fiertz re-arrangement theorem (see chapter 1 problem 9), which
allows the above term to be rewritten as

Lcc = −GF√
2

[iνeγ
µ(1+γ5)νe] [ieγµ(1+γ5)e] + · · · . (10.21)

What makes this rearrangement useful is the observation that ieγµe is noth-
ing but the electron current operator, Jµ

e , and so in a medium full of elec-
trons its mean value is simply the 4-current of electrons in that medium,
which in the medium’s rest frame is 〈Jµ

e 〉env = ne δµ
0 with ne denoting the

local electron number density. The ieγµγ5e term similarly gives the axial
electron current, which vanishes when averaged over any parity-invariant
environment, which we assume the solar environment to be.

Using this to perform the average of Lcc in the environment corresponds to
replacing the electron current in Eq. (10.21) with this average, in which case
the charged-current interactions with the medium introduce the following
neutrino-propagation term into the effective Lagrangian:

δLenv = −GF ne√
2

[iνeγ
0(1+γ5)νe] . (10.22)

The appearance of this term in the Lagrangian shifts neutrino energies by
GF ne

√
2, and shifts anti-particle energies by the opposite amount.

None of the other terms in the charged-current neutrino interactions give
a nonzero result (to leading order in the weak interactions) when averaged
over the solar environment, given that this environment contains no muons
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or taus. The same is not true for averages over the neutral-current in-
teractions, which do produce similar neutrino energy shifts due to their
interactions with the electrons, protons and neutrons in the solar environ-
ment. However, an important feature in all of these other nonzero medium-
dependent interactions is that they are diagonal in neutrino flavor space, and
so shift all neutrino types up (and antineutrino types down) by precisely the
same amount. As such they do not contribute at all to the oscillation effects
of interest in what follows.

Let us now follow how these medium-dependent terms affect the propaga-
tion of an individual neutrino. For simplicity we take θ13 ≈ 0 when doing so,
so that neutrino oscillations can be treated in the two-flavor limit. Since the
new term has the effect of shifting only the electron-type neutrino energy
its contribution to the single-particle neutrino Hamiltonian is

δĤMSW =
√

2GF ne

(
1 0
0 0

)
+ (diagonal) (flavor basis) . (10.23)

To this must be added the single-particle Hamiltonian which describes
neutrino propagation in vacuo, which is diagonal in the mass basis but when
rotated to the flavor basis becomes

Ĥvac = E +
m2

av

2E
+

∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
(flavor basis) . (10.24)

Here we write the squared mass eigenvalues as m2± = m2
av ±∆m2/2.

Adding Eq. (10.23) and Eq. (10.24) and dropping all diagonal terms yields
the following effective mass matrix for neutrinos within the solar environ-
ment:

δĤSun =
GF ne√

2

(
1 0
0 −1

)
+

∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
. (10.25)

This can be suggestively re-expressed in terms of an effective medium-
dependent mass splitting and mixing angle as follows:

δHSun = ∆′
(
− cos 2θ′ sin 2θ′

sin 2θ′ cos 2θ′

)
, (10.26)

where

∆′ ≡



(
GF ne√

2

)2

−
(

GF ne√
2

)
∆m2 cos 2θ

2E
+

(
∆m2

4E

)2



1/2

sin 2θ′ ≡
(

∆m2

4E

)
sin 2θ

∆′ . (10.27)
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Notice in particular that the medium-dependent mixing becomes maximal,
sin 2θ′ = 1, if

GF ne√
2

=

(
∆m2

4E

)
cos(2θ) , (10.28)

a condition which defines what are called ‘resonant’ oscillations.
We see from this that the problem of finding the neutrino propagation

eigenstates in the Sun is an exercise in degenerate perturbation theory. In
the absence of masses and medium-dependent interactions the two states,
|νe〉 and |νµ〉, are precisely degenerate in energy, but this degeneracy is bro-
ken by the sum of two small effects: the neutrino mass matrix and the small
medium-dependent term. As a result, large mixings can be generated even
by small mixing angles and medium-dependent effects, provided only that
these two small effects are comparable in size. In particular, the resonance
condition, Eq. (10.28), is the case where the diagonal entries of the effective
medium-dependent Hamiltonian, Eq. (10.25), vanish in the flavor basis.

Now imagine following a neutrino as it travels out from the central re-
gions of the sun towards its surface. Such a neutrino sees a time-dependent
Hamiltonian, because the electron density, ne, through which it passes falls
monotonically with increasing distance from the solar center. As a result,
the overlap with flavor eigenstates with which such a neutrino emerges from
the sun depends on the integrated history of how it responds to this chang-
ing density profile, and in particular whether it ever passes through a region
within the sun for which the resonance condition, Eq. (10.28), is satisfied.

In practice only the most energetic neutrinos which leave the sun pass
through such a resonance, but since it happens that these are the ones to
which terrestrial detectors are most sensitive, this resonance has dramatic
implications for the observed signal. How much conversion happens at the
resonant point depends crucially on whether the transition through the reso-
nant regime is abrupt or adiabatic – that is, on whether the electron density
experienced by the neutrino in the resonant region changes significantly over
the typical oscillation time at resonance.

Consider the case of adiabatic evolution, which is not too bad an approx-
imation for neutrinos in the sun. The electron is created as purely electron
type by a nuclear reaction deep in the solar core, and so must be expressed
in terms of the mass eigenstates using the medium-dependent mixing angle,
θ′p, which is relevant at its production point. The amplitude for this neu-
trino to be produced in the heavier mass eigenstate is then sin θ′p, and the
amplitude to be in the lighter state is cos θ′p.

Depending on its production site and energy, the neutrino may pass



410 Neutrino masses

through the resonance region on its way out. (More energetic neutrinos
have a larger MSW effect, see Eq. (10.25), and also happen to be produced
deeper in the core, where ne is larger.) During adiabatic evolution through
the resonance region, the amplitude for the electron to be in each mass state
stays the same, while such a large phase develops between them that the
interference between mass states can be ignored.

Once they arrive at the earth, the appropriate mixing angle is the vacuum
one, and so the amplitude for the mass eigenstates to be measured as electron
type is controlled by sin θ and cos θ. The total probability for the neutrino
to be produced and detected as νe is then well approximated by the sum of
probabilities for each mass state, weighted by the probability for the electron
to be in that mass state. That is:

P (νe¯ → νe⊕) = sin2 θ′p sin2 θ + cos2 θ′p cos2 θ . (10.29)

For instance, for the lowest energy neutrinos we have ∆m2/(4E) À
GF ne/

√
2 at the solar center, and so can take θ′p = θ. In this case the

survival probability becomes sin4 θ +cos4 θ = 1− 1
2 sin2 2θ, corresponding to

the length average of Eq. (10.14). Numerically it is about 5/9. By contrast,
for the highest energy neutrinos GF ne/

√
2 À ∆m2/(4E) at the center of

the Sun; so at the point of production we have θ′ ' π/2. The probability of
observing an electron neutrino at the Earth is then approximately sin2 θ, or
about 1/3.

These numbers provide a reasonable description of the experimental data.
There are three kinds of experiments, each of which is sensitive to a different
energy range. The Gallium experiments (SAGE, GALLEX, and GNO),
which can detect only the νe component and are sensitive primarily to the
more numerous low-energy neutrinos, see about (50− 60)% of the expected
νe flux. By contrast, water Cherenkov detectors are only sensitive to the
most energetic neutrinos (E > 5 MeV), and of these the SNO detector can
detect both charged-current and neutral-current reactions and so is capable
of measuring the flux of all three neutrinos. Indeed, these detectors see about
1/3 as many electron neutrinos as expected, and the SNO detector sees a
compensating increase in the number of non-νe events. The whole picture
is well described by resonant neutrino oscillations amongst three neutrino
species.

10.2.2 Sterile neutrinos

Next consider the possibility that the three standard model neutrino states
are supplemented by additional new neutrinos. In general we might imag-
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ine adding N Majorana neutrino fields, sx, x = 1..N , in addition to the
three standard model fields, νa. We again start by writing down masses for
these neutrinos without worrying about consistency with the standard model
gauge interactions, and return in later sections to show how the choices made
here can be reconciled with gauge invariance.

There is considerably more freedom in the kinds of interactions which can
be entertained when there are additional neutrino fields. We restrict these
options by assuming these new fermions couple only to standard model fields
through their mixing in the fermion mass matrix with the three standard
model neutrinos, and so they typically interact much more weakly with
matter than do ordinary neutrinos. Any fermion which mixes with ordinary
neutrinos, but otherwise does not couple to standard model matter, is known
for this reason as a ‘sterile’ neutrino.

These assumptions lead to the following Lagrangian,

L = LSM− 1
2

sx/∂sx− 1
2

[
Mxy (sxPL sy)+mab (νaPL νb)+2µax(νaPL sx)+c.c.

]
,

(10.30)
where the total left-handed neutrino mass matrix,

(
m µ

µT M

)
(10.31)

is an arbitrary complex and symmetric (3+N)× (3+N) matrix. As before
we work in a basis for which the charged-lepton mass matrix has already
been diagonalized.

The freedom to choose the neutrino mass matrices m, µ and M introduces
considerable latitude for generating different kinds of neutrino physics, which
we cannot hope to explore systematically here. We instead describe only a
few important subclasses of models which illustrate important alternatives,
one being the case where neutrino masses preserve overall lepton number. In
the next sections we consider this case separately before summarizing some
of the other possibilities and constraints on the existence of sterile neutrinos.

10.2.2.1 Dirac neutrinos

In this section we examine an illustrative example where lepton number is
unbroken, corresponding to the case with N = 3 new neutrino states which
transform in the following way under the lepton symmetry: PL νa → eiωPL νa

and PL sa → e−iωPL sa. In this case the mass term is invariant for any µ,
provided the diagonal blocks vanish: m = M = 0. The existence of this
symmetry makes it convenient to group the six Majorana fields, νa, sa, into
three Dirac fields, ψa = PL νa + PR sa, for which ψa → eiωψa.
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The diagonalization of the neutrino mass matrix proceeds along the same
lines as did the diagonalization of the quark mass matrix in the standard
model. The neutrino spectrum consists of three massive states which in this
scenario are distinguished from their antiparticles by their eigenvalues of
the conserved lepton charge. The three distinct masses are are given by the
positive square roots of the eigenvalues of the matrix µµ†.

The mismatch between the unitary rotation required to diagonalize the
neutrino and charged-lepton masses generates in the usual way a 3 × 3
charged-current PMNS mixing matrix:

Lcc =
ig Uai√

2
Wµ (`aγ

µ γL ψi) + h.c. , (10.32)

where Uai is as given in Eq. (10.6). The lepton symmetry precludes the
appearance of left-handed anti-particles, PL sa, in the charged current inter-
action. Consequently, the only difference from the case of three Majorana
neutrinos discussed above is the omission of the three CP -violating phases,
eiαj , since these can be rotated away by re-phasing the various lepton fields.
No off-diagonal neutrino couplings appear in the neutral-current interac-
tions due to the leptonic version of the GIM mechanism. In particular this
implies that the sterile neutrinos do not couple to the Z boson, and so do
not contribute to the well-measured invisible Z width.

Because neutrino oscillations do not see the CP -violating phases, oscilla-
tion phenomenology in this model is precisely the same as it was for three
Majorana neutrinos: the PMNS matrix describes 3-flavor oscillations be-
cause lepton number conservation ensures that there are only three distinct
mass eigenvalues amongst which oscillations can take place. In particular
there are no new observable oscillation effects between the neutrinos and
their antiparticles, since these are guaranteed to have exactly equal masses
by the lepton symmetry. (Dirac and Majorana neutrinos do differ in their
implications for double-beta decay experiments, however, as we describe in
more detail below.) At the time of writing this remains a phenomenologi-
cally viable picture of neutrino oscillations.

It is counter-intuitive that it should be possible to duplicate the low-energy
neutrino spectrum by replacing Majorana neutrinos with Dirac neutrinos,
and yet still not be able to detect these new light neutrino states in scattering
experiments. We now elaborate in more detail why this is so, by directly
computing the production amplitude for the sterile, right-handed component
of the Dirac neutrino, without making use of the oscillation formalism. Our
purpose in so doing is to show that this production amplitude is helicity
suppressed, and so is proportional to powers of the small neutrino mass.



10.2 Neutrino oscillations 413

�
�
�

s¥
¥¥¥

§§§
s�
�
�

§§§§

¥¥¥
ν producing
event

ν observing
event

−i/k+m

k2+m2
' −i/k

k2+m2

Fig. 10.1. Helicity suppression in neutrino physics

To see this, consider a neutrino which propagates from source to detector
as in figure 10.1. In this Feynman graph the exchanged neutrino is a (very
slightly) virtual particle, whose evolution is described by its propagator.
Evaluating the graph gives the following matrix element for the production
and subsequent scattering of such a neutrino,

M =
G2

F

2
Jµ

prodJ
ν
det

{
(. . .)γµ(1 + γ5)

[−i/k + m

k2+m2

]
γν(1± γ5)(. . .)

}
, (10.33)

where k is the neutrino momentum and (. . .) refers to initial- and final-
state factors whose form is not important for the argument we are about
to make. Since neutrinos are produced through their charged-current weak
interactions, the factor of γµ(1 + γ5)J

µ
prod describes the interaction at the

production point which brings the neutrino into being. The corresponding
current at the detection point is γν(1± γ5)Jν

det, and the sign which appears
depends on whether or not it is the charged-current or some other interaction
which appears here.

For experiments which detect the sterile component, sa, of the Dirac neu-
trino, ψa = PL νa + PR sa, we must choose the sign (1 − γ5) in Eq. (10.33),
while detection of the active component, νa, requires using the factor (1+γ5).
Consequently only the m term in the numerator of the neutrino propagator
can contribute to sa-detection amplitudes while only the /k part contributes
to the detection of the νa component. The ratio of these two amplitudes is
therefore typically of order k0/m, evaluated in a frame determined by the
production and detection currents. Since most experiments involve neutri-
nos with lab-frame energies >∼ 1 MeV, the amplitude for νa detection is at
least 6 orders of magnitude larger than that for sa scattering, and this must
then be squared to find the probability.

The conclusion is that almost none of the interaction rate of the final
neutrino is ‘lost’ due to the small likelihood of the neutrino arriving in a
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right-handed, sterile helicity state. This is responsible for the paradoxical
result that even though half of available neutrino states have essentially
no electroweak interactions, this has virtually no bearing on neutrino phe-
nomenology.

10.2.2.2 Generic sterile neutrinos

In the generic case the diagonalization of the neutrino and charged-lepton
mass matrices leads to a complicated pattern of neutrino masses, which
may or may not preserve any of the flavor symmetries carried by the (3+N)
neutrinos. We restrict ourselves here to listing three of the main possibilities,
which are distinguished by the relative size of the three kinds of matrix
elements, mab, µax and Mxy. When comparing these matrices we assume
for simplicity that the square matrices, m and M , have eigenvalues which
are all nonzero and roughly the same size.

The diagonalization of the mass matrix has two main effects for the weak
interactions, once these are expressed in terms of mass eigenstates. First,
it generates a PMNS matrix, Uai, for the charged-current interactions, but
this matrix need no longer be square since it has 3 rows (a = 1, 2, 3, for each
charged lepton) but 3+N columns (i = 1, ..., 3+N if the 3 active neutrinos
are supplemented by N sterile counterparts). The existence of these new
mixing elements implies that the new neutrinos participate in the charged-
current weak interactions, and so can contribute to oscillation phenomena.
No such effect has been observed to date, and this constrains the size of
the PMNS matrix elements which involve sterile neutrinos. Some of these
observational bounds are summarized in the next section.

A second implication of the diagonalization process is the generation of an
off-diagonal mixing matrix for the neutral-current weak interactions, once
these are expressed in terms of mass eigenstates, Nu, i = 1..(3 + N). These
have the generic form

Lnc =
ie

swcw
Zµ [iN uγµ(HuvPL + H ′

uvPR )Nv] , (10.34)

where cw = cos θW and sw = sin θW denote the weak mixing angle as usual
and Huv and H ′

uv denote the new neutral-current mixing matrices.
We distinguish the following four illustrative regimes;

µ ¿ m,M : In this case, the sterile neutrinos do not significantly mix with
the standard model neutrinos, and so for practical purposes they do not
couple at all to observable particles. In this scenario the observed neutrino
oscillations are completely described by the Majorana mass matrix, m, and
the potential existence of the sterile fields are irrelevant for experiments.
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They may have implications for cosmology depending on the details of the
thermal history of the universe.

Pseudo-Dirac Neutrinos: µ À m,M . If m = M = 0 this reduces to the case
of Dirac neutrinos described above in the case where there are N = 3 sterile
neutrinos. If N > 3 then this scenario leads to 3 Dirac neutrinos whose
squared masses are the eigenvalues of µµ†, plus (N − 3) massless sterile
neutrinos which do not participate in the weak interactions.

If M and m are not exactly zero then the neutrino spectrum is a small
perturbation of the Dirac case just described. In this case there are 6 mas-
sive neutrino states which participate in the weak interactions and come in
almost-degenerate pairs whose squared masses are close to the 3 eigenvalues
of the matrix µµ†, plus (N−3) massless sterile states. The almost-degenerate
pairs of neutrinos are close in mass because they must become the particle
and antiparticle parts of the Dirac neutrinos in the limit m, M → 0. For
the same reason the mixing angle between these nearly-degenerate states is
approximately maximal, θ ≈ π/4, since it must become precisely maximal in
the limit m,M → 0. This kind of maximally-mixed and almost-degenerate
neutrino is referred to as pseudo-Dirac.

Because the two components of a pseudo-Dirac neutrino are close to maxi-
mally mixed, strong oscillations can develop between these states if distances
L ≈ 2E/∆m2 can be probed. As we see in more detail below, for those neu-
trinos participating in solar-neutrino oscillations the lack of evidence for
such oscillations rules out their being Pseudo-Dirac neutrinos with m,M

greater than ∼ 10−9 eV.

Light Sterile Neutrinos: m ∼ µ ∼ M . In such a scenario all of the mass
matrices are comparable in size, generically leading to (3 + N) Majorana
neutrino states which all have masses comparable in size. Successful de-
scription of the observed neutrino oscillations requires these masses to be of
order 10−2 eV. In this case the mass eigenstates are generically complicated
mixtures of the standard model νa and the singlets sx, typically leading to
large oscillation effects amongst all of the neutrino eigenstates. This light

sterile neutrino scenario is therefore generically disfavored by the absence
of evidence (described below) for oscillations into sterile states, although
models which avoid these bounds are also possible.

Seesaw Neutrinos: m ¿ µ ¿ M . In this case there are N heavy mass
eigenstates whose masses are given by the square roots of the eigenvalues of
the N ×N matrix M †M , plus 3 mass eigenstates whose squared masses are
given by the eigenvalues of the 3 × 3 matrix M†M with M = µM−1µT +
m. The heavy eigenstates are almost purely sterile, with mixing angles
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with standard model neutrinos which are of order µ/M , where this means
the ratio of combinations of matrix elements of these matrices. The light
eigenstates are similarly almost pure νa, and although their mixing with the
sterile neutrinos is also O(µ/M), their mixings amongst themselves need not
be small.

This way of obtaining neutrino masses is called the seesaw mechanism,
because of the way that M gets lighter (goes up) as M gets heavier (goes
down). It clearly provides a very attractive picture of neutrino masses par-
ticularly if the matrix M is extremely large. Large M is attractive because
it would both explain why the sterile neutrinos have not yet been discov-
ered (they are too heavy), and why the observed neutrino masses are so
light (they are O(µ2/M)). We shall see in later sections that this hierar-
chy of masses is also natural to expect once we embed this picture into an
SUL(2)× UY (1) framework.

10.2.2.3 Constraints on sterile neutrinos

Many of the phenomenological constraints on sterile neutrinos are based
on the absence of oscillations between these neutrinos and the usual active
ones. Since sterile neutrinos are impossible to detect experimentally such
oscillations act to drain probability away from the known three neutrinos,
and bounds can be obtained only if the total population of the known three
neutrino species can be determined. This can either be done by testing the
unitarity of the PMNS matrix, assuming it is only 3×3 in size, or by looking
for the physical consequences of draining significant amounts of energy into
an invisible channel.

Since the oscillation probability is a strong function of the mass difference,
∆m2

jk = m2
j −m2

k, between the relevant sterile and active neutrino states,
as well as of the active-sterile mixing parameter, |Uax|, the strength of the
bound obtained also depends sensitively on these parameters. For this rea-
son it is unwieldy to try to bound a general sterile-neutrino model, and so
most of the known bounds are made under the assumption that there is only
a single sterile neutrino, s, corresponding to a fourth mass eigenstate ν4.

We now list some of the strongest such bounds.

Solar Neutrinos: The SNO experiment can detect neutrinos using both the
charged-current and neutral current reactions, and so can measure the flux
from the sun of all three active neutrino species. The sum of these agrees
with the known rates for nuclear reactions in the sun and this agreement
constrains the amount of flux which could have been lost into sterile states.
For generic neutrino mass differences larger than 10−12 eV2 these bounds
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constrain the sterile-active neutrino mixing to be smaller than |Uex| <∼ 0.1,
where the precise bound depends on the mass difference. This bound im-
proves to |Uex| <∼ 0.001 for mass splittings in a narrow range around ∆m2

14 =
10−4 eV2, and to |Uex| <∼ 0.01 for 10−8eV2 <∼ ∆m2

14
<∼ 10−6 eV2, due to the

presence in these cases of resonant active-sterile MSW oscillations within
the Sun.

Reactor Neutrinos: The absence of neutrino flux disappearance from reactor-
generated neutrinos constrains |Uex| <∼ 0.1 for ∆m2

14
>∼ 10−3 eV2.

Atmospheric Neutrinos: Active-sterile neutrino oscillations can be excluded
for |Uex| <∼ 0.2 for the range 10−4 <∼ ∆m2

14
<∼ 10−2 eV2.

Supernova Neutrinos: Supernovae are exploding stars, and they start off so
hot and dense that ordinary neutrinos scatter so frequently that they can be
trapped inside and come to equilibrium with other types of particles. Nev-
ertheless the emission of neutrinos is a supernova’s most efficient channel
for cooling, and the predicted neutrino fluxes agree with those that were
detected on earth coming from supernova SN1987a. Sterile neutrinos can
ruin this agreement because they can escape more easily than ordinary neu-
trinos from a supernova environment, and so excessively large active-sterile
anti-neutrino conversions within supernovae can be ruled out if it drains too
much flux from the supernova neutrino signal.

For resonant νe − νs oscillations within the supernova interior, this can
constrain mixings down to |Uax| <∼ 0.01 for mass splittings, ∆m2

14, which are
larger than around 10 eV2. However, these bounds carry some uncertainty
since they rely on our present imperfect theoretical understanding of super-
novae, and because they are computed neglecting the feedback of significant
changes to the neutrino densities on the dynamics of the supernova and the
strength of the resonant oscillations.

Nucleosynthesis: The dominant cosmological constraint for sterile neutri-
nos whose masses are smaller than 1 eV comes from the requirement that
there not be too many light degrees of freedom contributing to the universal
expansion during Big-Bang Nucleosynthesis (BBN). Even if the primordial
abundance of sterile neutrinos is small, this constrains the strength of active-
sterile oscillations because these can cause too efficient production of sterile
neutrinos from the equilibrated active neutrinos. This latter condition can
constrain neutrino abundances down to mass differences of order 10−8 eV2,
with the strongest constraints (coming for the largest mass differences) being
of order |Uax| <∼ 0.1.

Cosmic Microwave Background: Measurements of CMB temperature fluc-
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tuations constrain the energy density which can be present in neutrinos at
the epoch of recombination, leading to the constraint Ωνh

2 < 10−2, where
Ων = ρν/ρc is the present day mass-energy density of neutrinos in units of
the critical density, ρc ∼ 10−29 g/cm3. Since this constrains the energy den-
sity present in neutrinos, the mixing angles to which this allows constraints
are larger for heavier neutrinos, being sensitive to mixing angles as small as
|Uax| ∼ 0.001 for sterile neutrino masses of order 10 eV.

In summary, there is at present no experimental evidence for the existence
of any neutrinos beyond the three which come as standard equipment with
the standard model, although neither can we rule out all of the models of
this type which are of theoretical interest.

10.3 Neutrinoless double beta decay

We have seen that a central property which distinguishes different categories
of neutrino-oscillation models is the question of whether sterile neutrino
states exist, with the related issue of whether or not neutrino masses preserve
an unbroken lepton number invariance (i.e. whether neutrinos are Majorana
or Dirac in character). We have seen in particular that although neutrino
oscillations provide considerable information about neutrino masses, they
can be equally well described by the mixing of three Majorana or three Dirac
neutrinos. Is there a way to determine experimentally whether neutrinos
are Dirac or Majorana? The answer is ‘yes’, in principle, and this section
describes the experiments which are potentially the most decisive.

Neutrinos are Dirac (Majorana) if they are distinct from (identical to)
their antiparticles, and so the central issue is whether or not there exists a
conserved lepton number whose eigenvalues can distinguish a neutrino from
an antineutrino. At present neutrinoless double-beta decay experiments
provide the most sensitive tests of overall lepton-number conservation, and
so it is the features of these experiments which we must describe.

Certain nuclei, such as 76Ge, 100Mo, 130Te, and 136Xe, cannot undergo
ordinary (single) beta decay, such as

76Ge /→ 76As + e− + ν̄e , (10.35)

because the 76As nucleus is heavier than is the 76Ge nucleus. They are
nonetheless radioactively unstable, because the 76Se nucleus is lighter, and
so allows the (very rare) process

76Ge → 76Se + 2e− + 2ν̄e . (10.36)

This process is very rare because it arises only at second order in the
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Fig. 10.2. Two neutrino and neutrinoless double beta decay

weak interactions, corresponding to the basic decay, n → p e−νe, happening
simultaneously for two neutrons at once. The left-hand panel of figure 10.2
gives a Feynman diagram for this decay, wherein a complex nucleus (the lines
at the bottom) radiates two virtual W bosons, which both subsequently
dissociate into e−ν̄e pairs. The requirement for two W -boson exchanges
implies an enormous penalty: a suppression in the rate of order (Q/MW )8 ∼
10−40, where Q ∼ MeV is a typical energy available in the decay. The rate
is further suppressed because the 4 particle final state phase space is very
small. The lifetime should therefore be extremely long, τ ∼ 1021 years; and
yet this process is nevertheless observed (so far for a total of 7 different
nuclides). In 76Ge the half-life for this process is measured to be 1.5× 1021

years.
A related reaction which is forbidden in the standard model is the process

illustrated in the right-hand panel of figure 10.2: neutrinoless double-beta
decay. This decay is very much like the observed double-beta decay reac-
tion, with the difference that the final state neutrinos mutually annihilate
and so do not appear amongst the final daughter particles. This process is
forbidden in the standard model for two separate reasons: (i) lepton number
conservation, which forbids the creation of two electrons without the con-
comitant creation of two antineutrinos, and (ii) helicity conservation, which
forbids the right-handed antineutrino produced in the first vertex from be-
ing absorbed as a left-handed neutrino at the second vertex. Although the
helicity-conservation obstacle evaporates if neutrinos have a mass, the real
significance of this decay is that its observation would establish the failure
of lepton number conservation.

To see this in more detail consider the matrix element for the decay, which
from figure 10.2 is

M∝ G2
F

2
Wµν

{
uγµ(1 + γ5)

[−i/p + m

p2 + m2

]
(1 + γ5)γT

ν uT

}
, (10.37)
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where u and uT are the external-state electron spinors, and Wµν denotes the
relevant nuclear matrix element of the two weak currents, which depends on
details of the structure of the nucleus. The last factors arise as [uγν(1+γ5)]T

because this part of the diagram is describing an antiparticle. Because
(1 + γ5)γµ(1 + γ5) = 0, the −i/p part of the propagator does not contribute;
only the (helicity flipping, lepton-number violating) mass term contributes.

For small neutrino masses (compared with the MeV energies of the decay)
the decay rate is therefore suppressed by a factor of |U2

ejmj |2 = |mee|2. Even
for mj ∼ 1 eV and Q ∼ 1 MeV, (mj/Q)2 represents 12 orders of magnitude
in suppression. This is partially compensated by the much larger phase
space available for the neutrinoless decay, as well as by differences in the
nuclear-physics part of the matrix element, but the rate is still expected to
be suppressed by orders of magnitude with respect to the observed 2νββ

rate.
The neutrinoless mode can be distinguished experimentally from the two-

neutrino mode by using the energy spectrum of the daughter electrons. Since
four light leptons emerge in 2νββ decays, the sum of the electron energies
is continuously distributed because some energy is lost to the neutrinos:
E1 + E2 ≤ Q. For the neutrinoless decay, all of the available decay energy
goes into the two electrons, leading to the unique result E1 +E2 = Q for the
sum of the two electron energies. Distinguishing these alternatives requires a
detector capable of examining the electron spectrum near its endpoint with
high energy resolution.

Since neutrinoless double-beta decay probes the combination

|mee|2 =
∣∣∣
∑

j

U2
ej mj

∣∣∣
2
, (10.38)

it is also sensitive to differences in the phases, eiαj , which appear in the
lepton charged current for Majorana neutrinos. At the time of this writing,
no compelling evidence for neutrinoless double beta decay exists, and the
best limit on the decay lifetime for 76Ge →0νββ

76Se — 1.9 × 1025 years —
leads to the constraint |∑j U2

ejmj | < 0.35 eV. The precise limit on mν can
be weaker if differences αj−αk are close to π, due to potential cancellations
in the sum appearing in Eq. (10.38).

10.4 Gauge invariant formulations

We now return to the issue of how to embed the neutrino models described
above in a way which respects the SUL(2) × UY (1) gauge symmetry of the
standard model. As the introductory paragraphs in this chapter make clear,
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there are two broad ways to proceed: either introduce additional light de-
grees of freedom (and so modify the assumed particle content of the model),
or relax the assumption of renormalizability. Each of these alternatives has
its merits, and we examine both in turn in the next two sections.

10.4.1 Sterile neutrinos

We start by entertaining the possibility that the set of fermionic fields chosen
for the standard model in Eq. (2.7) is incomplete, and in particular that what
is missing there is a right-handed lepton field, Nm, for each generation in
direct analogy with what was done for the quark sector. We choose the
quantum numbers of this field to be what is required in order to allow a
Yukawa interaction with the lepton doublet, L, required to generate a new
mass term. Repeating the arguments of chapter 2 in this case shows that
the new field must be an SUL(2) singlet and to have hypercharge Y = 0 in
order to allow the gauge-invariant interaction of the schematic form (LN)φ̃.

Since the field N must be a singlet under all SUc(3) × SUL(2) × UY (1)
interactions, it couples to ordinary matter only through the Yukawa coupling
which gives it a mass. Such a standard model singlet is referred to as a sterile

neutrino. The new renormalizable terms which can be introduced into the
standard model Lagrangian given this new field are

LN = −1
2
N̄m/∂Nm − 1

2
MmN̄mNm − (kmnL̄mPR Nnφ̃ + h.c.) . (10.39)

The Yukawa couplings between the lepton doublet, L, and N preserve total
lepton number, provided we assign lepton number L = +1 to the right-
handed field, PR N . The same Yukawa interactions violate the separate
lepton numbers, Le, Lµ, and Lτ , so long as kmn is not diagonal.

The Majorana mass term MmN̄mNm has not been encountered before for
the standard model fields, since for these a direct mass term of this type
cannot be gauge invariant. This term breaks each of the lepton numbers, Lm,
so long as the corresponding mass term, Mm, is nonzero. In particular, any
nonzero Mn beaks the total lepton number by two units, L = Le +Lµ + Lτ ,
as may be seen because PR N and N̄PR carry lepton number +1 and PL N

and N̄PL carry lepton number −1.
The implications for neutrino masses in this scenario are found by replac-

ing the Higgs doublet by its vacuum expectation value. Once this is done
we recognize that this model is equivalent to the sterile-neutrino model of
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Eq. (10.30), with N = 3 sterile neutrinos: Nn → sa; and mass matrices

mab = 0 , µab =
kabv√

2
and Mab = Ma δab . (10.40)

We find in this way the gauge-invariant extension of the sterile-neutrino
models of earlier sections. Having a gauge-invariant formulation allows some
further insights into the possible neutrino-mass scenarios which were dis-
cussed earlier, some of which we now record.

• In principle, gauge invariance implies relationships amongst different cou-
plings, and as usual we find that these relationships relate mass terms
to Higgs couplings. Unfortunately these cannot be tested until the Higgs
boson is found.

• The embedding into a gauge-invariant formulation provides a simple ex-
planation for why the new sterile neutrino states, sx, introduced in sub-
section 10.2.2 do not couple to other standard model particles apart from
through their mixings with neutrinos. They do not do so because no
such renormalizable couplings are possible given that participation in the
neutrino mass term requires the new particles to be singlets under the
standard model gauge group.

• The gauge-invariant formulation also provides a useful insight into how
large the various mass terms might reasonably be expected to be. It im-
plies in particular that it is natural to choose mab = 0, because no renor-
malizable interaction can give this term given the assumed sterile-neutrino
field content. The Dirac mass term, µxa, is seen to be proportional to the
Higgs v.e.v., and so is naturally at most a few hundred GeV and possibly
much less than this if the dimensionless Yukawa couplings, kmn, should be
very small. By contrast, the Majorana mass terms, Mm, need not vanish
in the limit where the electroweak symmetry is unbroken, and so (as is
argued in more detail in the next chapter) would naturally be expected
to be the weak scale or larger. This naturally points us towards the See-
saw scenario of neutrino masses discussed in subsection 10.2.2, for which
m ¿ µ ¿ M .

• A problem with any scenario for which µax dominates or is comparable
with the observed neutrino masses (like Dirac or pseudo-Dirac neutri-
nos or the light-sterile-neutrino scenario) is that extremely small Yukawa
couplings are required. This is because direct laboratory searches for
neutrino masses require that all neutrinos which mix appreciably with
νe have masses satisfying m < 2 eV. Cosmological considerations also
suggest mν < 0.2 eV for all of the neutrinos which are abundant during
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the cosmologically observable universe, and in particular for those which
overlap significantly with the three active neutrinos.

Requiring kmnv to be this small requires the eigenvalues of the ma-
trix kmn must be < 10−11. Indeed, the cosmological bound constrains
the sum of eigenvalues, and so requires Tr kmn < 4 × 10−12. This is
to be contrasted with the other Yukawa coupling matrices, for which
Tr fmn ' 10−2, Trhmn ' 2.5 × 10−2, and Tr gmn ' 1. Of course, we
do not understand why any of the fermion masses are what they are, but
one must always pause when arbitrarily setting dimensionless couplings
to be zero to more than 10 decimal places.

• These same models similarly require extremely small choices to be made
for the dimensionful Majorana mass parameters, Mn. For instance, for
the Dirac-neutrino scenario to be correct the mass, Mm, must satisfy
the extraordinary bound Mm < 10−20µ, where µ is the mass parameter
appearing in the Higgs potential, see Eq. (2.26), and indeed is the only
other mass parameter at all in the standard model. By contrast, the
normal situation in the standard model is that all couplings which can
be present on the grounds of symmetry and renormalizability are actually
measured to be nonzero. The sole exception is the Θ3 term in Eq. (2.13),
which satisfies |Θ3| < 10−9. (The puzzle as to why this is so is discussed
in section 11.4.) A Dirac neutrino scenario must explain why the same
should be true (with extraordinary accuracy) for the Majorana neutrino
masses.

There is a symmetry principle which could enforce the vanishing of Mn;
if we demand, besides the gauge symmetries, that the standard model sat-
isfy an exact B − L symmetry, then the vanishing of Mm is automatic.
As noted in subsection 2.5.3, such a symmetry has vanishing gauge and
gravitational anomalies; so this possibility is at least consistent. At our
present level of understanding such a proposal has two drawbacks, how-
ever. The first drawback of exact B−L conservation is that it is difficult
to reconcile such a symmetry with the observed matter-antimatter asym-
metry in the universe today. Since a proper discussion of this is beyond
the scope of this book, we do not discuss it further.

The second drawback is that such a theory requires stepping back from
the successful standard model understanding of the charge assignments
of the various matter fields (and so for understanding the exact charge
neutrality of the neutron, for example). In the standard model without
right handed neutrinos, the hypercharges of all particles are determined
uniquely (up to overall normalization) by gauge anomaly cancellation,
as we saw in subsection 2.5.3. This guarantees that the quark hyper-
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charge assignments ensure that the neutron electric charge is precisely
zero. Adding an N field to each generation adds a new contribution to
Eq. (2.131), which turns out to make it hold automatically. In the theory
with an N particle added, the anomaly-cancellation conditions remain
satisfied even if we shift each particle’s hypercharge y by δ times its B−L

charge, for any δ. Such a shift would change the electric charge of the neu-
tron by δ. Since the neutron’s electric charge is measured to differ from
zero by no more than 10−21, a theory with an N field and exact B − L

conservation requires an extraordinary tuning of particle hypercharges.
(On the other hand, when a Majorana mass term like MN̄N is present,
gauge invariance of that term demands δ = 0, and so again ensures the
exact neutrality of the neutron.)

10.4.2 Dimension-5 interactions

Suppose next that we do not enlarge the field content of the standard model,
as would be appropriate if there are no new particles at the energies ac-
cessible in current experiments. It is still possible to account for neutrino
oscillations in this case, provided that we allow the introduction of nonrenor-
malizable interactions. Before exploring the implications of this approach
for neutrino physics, we first address what is implied physically when we
relinquish the condition of renormalizability.

10.4.2.1 The significance of nonrenormalizable physics

Up to this point, we have considered the standard model to be a renormal-
izable theory. That is, we have considered the most general theory which
consists of the particle content presented in chapter 2, together with all
terms in the Lagrangian consistent with the gauge symmetries which only
having couplings with dimension (mass)p, with p ≥ 0. This led to an exper-
imentally tremendously successful model of modern particle physics, which
passes with flying colors an enormous number of high-precision experimental
tests. Its one failure is its inconsistency with the observed neutrino oscilla-
tion phenomena discussed above. Yet a single failure is sufficient to be fatal
and so we now entertain the possibility of extending the standard model by
nonrenormalizable interactions.

To see what this choice means physically we revisit the discussion of chap-
ter 7, where we encountered nonrenormalizable interactions in the context
of the Fermi theory of the low-energy weak interactions. There we saw that
nonrenormalizable four-fermion interactions were required to describe the
effects of virtual W and Z exchange within the effective theory describing
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physics at energies well below the W mass. These effective interactions had
couplings proportional to GF ∝ M−2

W , and this is why they were nonrenor-
malizable. But such couplings were also physically reasonable because they
expressed the large penalty which must be paid (because of the uncertainty
principle) at low energy in order to produce a high-energy state like a vir-
tual W or Z. If we never try to probe energy scales as large as the W mass,
the Fermi theory provides a completely adequate description of the weak
interactions at low energies.

Nonrenormalizable interactions were also encountered in the effective La-
grangians discussed in chapter 9, which were claimed to describe the dy-
namics of strongly-interacting mesons and baryons at energies well below
typical strong-interaction scales. In this case the nonrenormalizable inter-
actions were either proportional to powers of (4πFπ)−1 or the inverse of a
similar strong-interaction scale. Again this expressed the fact that the effec-
tive theory was meant only to capture the physics of the strong interactions
at energies small compared with 4πFπ ∼ 1 GeV.

The potential problem with nonrenormalizable interactions is that there
are in principle an infinite number of them, corresponding to arbitrary pow-
ers of the fields and their derivatives, and so the admission of so many
interactions into the theory threatens to destroy its predictivity. It is the
low-energy approximation which saves the day in this case, since there are
only a limited number of effective interactions possible whose coefficients
have a given power of an inverse heavy mass. For instance, if our interest
is only in contributions to observables which are proportional to one power
of M−1

W , we need consider only interactions whose dimension (counting only
derivatives and fields) is (mass)5 or lower. Similarly, allowing contributions
up to M−2

W requires keeping interactions whose operator dimension is (mass)6

or lower. Effective interactions having operator dimension (mass)p are called
‘dimension-p’ interactions. We may restrict our attention to low-dimension
interactions because it is the lowest-dimension interactions which should be
the most important at low energies.

Since renormalizable interactions are defined to be those having dimension
4 or less, they are the only ones which do not involve any inverse powers of
a heavy mass like MW . From this point of view keeping only renormalizable
interactions is the appropriate treatment if we wish to neglect all of the vir-
tual effects of higher-energy particles. This is what would be appropriate if
we believe that these particles are very much more massive than the energies
for which we wish to make predictions. Applied to the standard model, we
see that renormalizability is appropriate if we believe the standard model
contains all of the particles which are relevant up to energies much higher
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than those of present experimental interest. Indeed, because the standard
model is such a successful theory we expect that the mass scale associated
with any high-dimension operators is likely to be much larger than MW .

What would it mean to use nonrenormalizable interactions to describe
neutrino masses? It would mean that there is some new physics at energies
much higher than the weak scale which violates the conservation of the three
lepton numbers, and it is the virtual effects of these particles which underlies
the physics of neutrino mass. If such an approach is successful, the mass
scale in the denominator of the relevant effective coupling gives an indication
of just how massive the lepton-violating physics is likely to be.

10.4.2.2 Lowest-dimension nonrenormalizable operators

Setting aside for the moment the desire to understand neutrino oscillations,
we instead first adopt the most conservative and constructive approach and
ask: What are the lowest-dimension nonrenormalizable interactions which
are possible? Since the lowest-dimension interactions should have the largest
effects at low energies, the catalogue of lowest-dimension interactions should
point to the kinds of observables in which new physics should first appear.

In this section we perform this exercise for the standard model and find
that there is a unique dimension-5 interaction which is allowed by the stan-
dard model particle content and gauge symmetries, and so if any new physics
is very heavy this should be the interaction which first shows deviations from
standard model predictions. What is most remarkable is that this unique
term is precisely what gives Majorana masses to the three standard model
neutrinos!

We now construct this term. Effective interactions must be Lorentz scalars
and gauge invariant. The fields available with which to build them are
scalars, φ, fermions, ψ, and gauge bosons (or, equivalently, covariant deriva-
tives, D = ∂ − ieA). Notice that gauge field strengths need not be counted
separately because they can be constructed as the commutator of two covari-
ant derivatives, [Dµ, Dν ] = −ieFµν . Since interactions having dimension 4
or less are renormalizable, the leading nonrenormalizable interactions have
dimension-5. Such an operator can be made up of the given fields and
derivatives in the following possible schematic forms,

φ5 , D1φ4 , D2φ3 , D3φ2 , ψ̄D2ψ , φDψ̄ψ , φ2ψ̄ψ . (10.41)

Starting with these, and requiring Lorentz and gauge invariance, it is
straightforward to show that the standard model field content allows only
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one dimension-5 interaction, namely (see problem 1),

Leff = −k̃mnφ̃α(L̄α
mPR Lβ

n)φ̃β + h.c. , (10.42)

where we write out the SUL(2) indices explicitly. Notice that this inter-
action violates total lepton number, L, by two units. The matrix of co-
efficients k̃mn must be complex and symmetric. Since this interaction has
dimension-5, these couplings have mass dimension −1, and so can be writ-
ten k̃mn = cmn/Λ, with the dimensionless coefficients cmn <∼ 1, and where
Λ is an energy scale which must satisfy Λ À MW . (If it did not then the
virtual heavy particles whose physics this interaction describes would not
be heavy, and it would not be a good approximation to neglect dimension-
6, dimension-7 and higher effective interactions.) Otherwise, we impose no
a-priori constraints on the k̃mn, and try to determine them from experiment.

The physical implications of this interaction are most easily seen by going
to unitary gauge, for which it becomes

Leff = −1
2

k̃mn (νmPR νn)(v + H)2 + h.c. , (10.43)

where as before v = 246 GeV and H is the physical Higgs boson. We see
that it describes a left-handed Majorana neutrino mass of size

mab = k̃∗abv
2 = c∗ab

v2

Λ
, (10.44)

plus ννH and ννHH neutrino-Higgs interactions. Because the observation
of the implications of the νH interactions must await the discovery of the
Higgs, the only observable implications of this unique dimension-5 interac-
tion is an arbitrary Majorana neutrino mass, of order v2/Λ. The larger the
scale Λ the smaller the neutrino masses which result. Neutrino masses of or-
der m ∼ 50 meV (the order of magnitude of the observed neutrino masses),
require a mass scale Λ ∼ 1014 GeV. The enormity of this scale gives us
good faith that it is legitimate to neglect still higher-dimension interactions.
It also means that if there are only three light neutrinos it is not hard to
understand theoretically why their masses should be so small, since this is a
natural consequence of the scale of the new lepton-number-violating physics
being very large.

10.4.2.3 Possible origins of the dimension 5 operator

The previous sections argue that if the standard model is an incomplete
description of physics at very high energies, then the low energy consequence
is that it must be augmented by high dimension operators, the first of which
is a unique dimension 5 operator. This operator induces neutrino masses,
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which are in fact observed. If this is correct then we know very little about
the nature of the physics at the scale Λ whose virtual effects are the physical
origin of the dimension 5 operator of Eq. (10.42).

The purpose of this section is to furnish a few speculations as to what
this physics might be. We show, first, that rather simple extensions of the
standard model, incorporating new heavy degrees of freedom, can generate
the dimension 5 operator. However, by providing several possibilities we
show that even if low energy experiments completely determine the coeffi-
cients k̃mn of the dimension 5 operator, this is still insufficient information
to reconstruct completely the high-energy physics which is responsible for
it.

We emphasize that this section is by no means a complete discussion of
the scenarios put forward to explain neutrino masses. On the contrary, the
models described here are the tip of the proverbial iceberg made up of the
innumerable models presented in the literature over the years.

The Seesaw Mechanism

The first model we examine is one we have already encountered, wherein
the new heavy physics consists of a collection of heavy sterile neutrinos,
Nm, which have vanishing hypercharge and are singlets under SUL(2) and
SUc(3). The new terms which can be added to the Lagrangian once such
fields are included are:

LN = −1
2
N̄m/∂Nm − 1

2
MmnN̄mNn − (kmnL̄mPR Nnφ̃ + h.c.) . (10.45)

The mass matrix Mmn can be taken diagonal and real as discussed in sub-
section 1.3.1.

There is no principle which forbids the eigenvalues of M †M from being
much larger than the other mass scales of the standard model, like M2

W or the
Higgs-boson potential parameter µ2. In fact, as we saw in subsection 10.2.2,
taking M to be large leads to the very attractive seesaw picture of neutrino
masses, wherein the sterile neutrinos have masses of order M while the three
standard model neutrinos acquire a small mass matrix of order (kM−1kT )v2.

We therefore consider the possibility that the Majorana masses, Mm, are
much larger than all of the electroweak scales, Mm À |µ| ∼ 100 GeV. In
this case the sterile neutrinos we have included are actually so heavy that
they can never be produced at the energies available in experiments, and so
they can only influence observables through their virtual effects. We should
therefore be able to capture their effects to leading order in M−1

n using a
nonrenormalizable effective interaction.
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Fig. 10.3. Integrating out the right handed neutrino

In order to demonstrate that this is true we can follow the steps taken
in chapter 7 for the W boson. To this end consider the Feynman graph
of figure 10.3, through which virtual sterile-neutrino exchange generates an
interaction between two standard model lepton and Higgs doublets. The
matrix element for the diagram on the left in figure 10.3 is (writing out the
SUL(2) indices explicitly),

kmok
T
pnφ̃α

{
L̄α

mPR

[
M − i/p
M2+p2

]

op

PR Lβ
n

}
φ̃β + h.c. . (10.46)

With the idea that M is large, we now take the large-mass limit, M À p,
and expand this amplitude in powers of M−1. To leading order the result-
ing amplitude is reproduced by taking the matrix element of the following
effective interaction

Leff = −
(
−kM−1kT

)
mn

φ̃αL̄α
mPR Lβ

nφ̃β + h.c. . (10.47)

There are other interactions generated by integrating out the N field; but
the one we have written is the only interaction suppressed by only a single
power of the mass M . We recognize this interaction as exactly the one
written down in Eq. (10.42), with the identification

k̃mn ≡ −
(
kM−1kT

)
mn

. (10.48)

We see in this way that very heavy sterile neutrinos can induce in a simple
way the dimension-5 operator responsible for Majorana neutrino masses.
Conversely, since the dependence of light neutrino masses obtained from the
dimension-5 interaction is generically m ∼ v2/M , this interaction expresses
the seesaw relation between neutrino masses and heavy scales in its most
general context.

It is clear from this example that not all of the information about the
heavy right-handed neutrino and its interactions survives in the effective
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couplings, k̃mn. In particular, the original Yukawa coupling matrix, kmn,
has 18 independent real parameters, and the heavy Majorana mass matrix
M has 3 more. Unless the mass matrix has degenerate eigenvalues, the only
reparameterization freedom we are allowed to redefine couplings are the 3
phase rotations of the 3 components of Nm; so altogether there are 18 param-
eters needed to describe the sterile neutrino interactions in the full theory.
On the other hand, the effective coupling matrix, k̃mn ≡ kmoM

−1
op kT

pn, is
symmetric, and so has only 12 real parameters. At least 6 of the sterile-
neutrino parameters therefore cannot be encoded in the effective couplings
of the dimension-5 operator in the low-energy theory.

Triplet Scalar Fields

Another way to generate the same dimension-5 interaction at low ener-
gies is by modifying the Higgs sector. To this end suppose that the standard
model were supplemented by a new complex Higgs scalar, Φ, which trans-
forms under the gauge group in precisely the same was as does the pair of
Higgs doublets appearing in Eq. (10.42). That is, suppose Φ carries hyper-
charge −1, is a color singlet and is a triplet of SUL(2):

Φ transforms as
(
1,3,−1

)
. (10.49)

Such a field could also generate a neutrino mass through a new kind of
Yukawa coupling.

The new terms which appear in a renormalizable extension of the standard
model to include such a field are,

LΦ = −(DµΦ)†DµΦ−M2
ΦΦ†Φ− λΦ(Φ†Φ)2 − λ′Φ†Φ φ†φ

−
[
ymnL̄m(Φaτ

aε)PR Ln + c φ†Φ∗aτ
aφ̃ + h.c.

]
. (10.50)

Here τa are the Pauli matrices acting in the space of SUL(2) indices, and
ε = iτ2 also acts on SUL(2) indices. The last terms, in brackets, are the
most important for our purposes. Because of these terms, it is impossible to
assign lepton numbers so that L is a good symmetry. Either Φ must carry
lepton number 2, in which case the c term is lepton number violating, or
Φ carries no lepton number, in which case the ymn term is lepton number
violating.

We take the Φ mass parameter, M2
Φ, to be large and positive. There are

two sound reasons for doing so. One of these is a direct bound, since the Φ
particle cannot be lighter than ∼ 100 GeV without having been observed in
Higgsstrahlung events at LEP II. Furthermore, the experimentally successful
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Fig. 10.4. Integrating out the Φ Field

mass relation MZ cos θW = MW is ruined if the Φ-field v.e.v. is too large
compared with that of the Higgs doublet, and large MΦ suppresses the size
of 〈Φ〉. To see why large M2

Φ keeps the Φ v.e.v. small but nonzero consider
the expansion of the scalar potential near Φ = 0:

V (Φ) =

(
M2

Φ +
λ′v2

2

)
Φ†Φ

+

{
c

(
0 v/

√
2
)(

Φ∗3 Φ∗1−iΦ∗2
Φ∗1+iΦ∗2 Φ∗3

) (
v/
√

2
0

)
+ h.c.

}

+O(Φ4) . (10.51)

Once the Higgs doublet acquires its expectation value, we see that it gen-
erates a linear term in the Φ potential due to the c interaction, leading
to

〈Φ1〉 = −i〈Φ2〉 = − cv2

2M2
Φ + λ′v2

. (10.52)

Given the choice M2
Φ À v2, from here on we drop the λ′v2 term in this last

expression.
Substituting this result into the y term in the Lagrangian leads to the

following neutrino mass

ymnL̄m(Φaτ
aε)PR Ln + h.c. →

(
ymncv2

M2
Φ

)
ν̄mPR νn + h.c. , (10.53)

a result which depends on the dimensionless coupling, ymn, the dimensionful
coupling c, the φ expectation value and the Φ mass. Most importantly, it
varies inversely with MΦ, and so the heavier MΦ is, the smaller the neutrino
masses become.

This is another example where the particle which is responsible for gener-
ating neutrino masses is very heavy, and so can only contribute to low-energy
physics through its virtual effects. Consequently its implications at low en-



432 Neutrino masses

ergy – and for neutrino masses in particular – should be captured through
an effective nonrenormalizable interaction, as we now compute.

To this end we evaluate the Feynman diagram of figure 10.4, through
which virtual Φ-exchange generates a coupling between the standard model
lepton and Higgs doublets. Using the relationship

τa
ijτ

a
kl = 2δilδjk − δijδkl , (10.54)

and the fact that φ†φ̃ = φ+∗φ0∗ − φ0∗φ+∗ = 0, we can evaluate the diagram
to obtain

Leff = −
(

2kmnc

M2
Φ

)
φ̃α[L̄α

mPR Lβ
n]φ̃β + h.c. , (10.55)

which is again our dimension-5 operator, with the effective coupling com-
puted to be k̃mn = 2kmnc/M2

Φ. Using this value of k̃mn to compute the
neutrino masses gives the same neutrino mass as Eq. (10.53). To identify
how large MΦ must be we choose the coefficients kmn to be O(1), and choose
c ∼ v ∼ 100 GeV. In this case the resulting neutrino mass is in the range
50 meV range when MΦ ∼ 108 GeV. Alternatively, if c ∼ MΦ, then for
kmn ∼ 1, we need MΦ ∼ 1014 GeV, the same scale we found in the seesaw
mechanism.

Again it is clear that knowledge of the effective coupling k̃mn does not
suffice to determine the higher-energy physics. In particular, the values of c

and M2
Φ appear only in a particular combination which cannot be separated

purely from k̃mn. Furthermore, the coefficients λΦ and λ′ of the scalar-triplet
model do not appear at all in the dimension-5 interaction, and so have no
consequence (to leading order) for low energy physics.

The final message is this: the observation of neutrino oscillations forces a
change to be made to the standard model, and this implies either that we
are seeing the influence of new particle states at low energies, or the virtual
effects of heavy particles whose implications are captured by nonrenormal-
izable interactions. Phenomenologically successful models of both types can
be built, and there is at present insufficient information to distinguish which
option is right.

The absence of any evidence for sterile-neutrino oscillations provides some
evidence in favor of the heavy-physics option, and in this case the unique
effective interaction which would be expected to dominate at low energies
is precisely the kind of operator which would generate a Majorana neutrino
mass of the kind required to describe neutrino oscillations. If this is the cor-
rect picture then the small size of the observed neutrino masses is explained
by the very high mass of the lepton-violating physics which is responsible
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for these masses. Unfortunately, in this scenario we are also unlikely to
learn more from experiments at accessible energies about the details of this
physics.

10.5 Problems

[10.1] Dimension-5 Interactions
Starting with the schematic expressions, Eq. (10.41), prove that the

dimension-5 neutrino-mass term, Eq. (10.42), is the unique dimension-5
interaction consistent with Lorentz invariance, the standard model field
content and gauge invariance.

[10.2] Neutrino Decay
Suppose that the neutrino were massive and, for some reason, it could

decay, with a lifetime of τ in its rest frame and invisible decay products.
Compute the survival probability for solar neutrinos as a function of the

neutrino energy. Show that the energy dependence of this rate is opposite
to what is seen in solar neutrino data; it is the low-energy neutrinos which
are the most depleted and the high energy neutrinos which are most likely
to survive.

[10.3] MSW effect and sterile neutrinos
In discussing the MSW effect, we discarded corrections which arise due

to neutral current interactions, since they are generation blind. However,
if neutrino oscillations involve a sterile neutrino, then this contribution is
relevant, since the sterile neutrino does not participate in neutral current
interactions.

Find the medium induced correction to the neutrino effective Lagran-
gian due to neutral current weak interactions, analogous to that found
in Eq. (10.22). In doing so, treat the neutron and proton currents as
ipγµ(T3PL − Q sin2 θW )p and similarly with n, where p, n are taken to
be an isospin doublet, T3(p) = 1/2 and T3(n) = −1/2. How much of
the neutral current contribution arises from electrons and how much from
nuclei?

[10.4] Dimension-5 Operators with Squarks
Repeat the analysis deriving the most general renormalizable and dimension-

5 operators for a theory for which the standard model is supplemented by
the color triplet scalar introduced in chapter 2, problem 7.
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Open questions, proposed solutions

The standard model — augmented (say) with dimension-5 operators to ac-
count for neutrino oscillations — explains all particle physics experiments
performed to date (2005). Yet there are a number of reasons to believe that
it is incomplete, and should be regarded at best as being the effective the-
ory describing particle physics at the energy scales which have been probed
experimentally (roughly several hundred GeV).

This chapter aims to summarize these reasons, with an eye to identifying
the main themes which govern the searches for the standard model’s replace-
ment. These themes typically revolve about ‘puzzles’, which either center
around attempts to explain the values of some of the standard model’s cou-
plings, or around speculations about what kinds of new particles might exist
at very large masses, and what their implications might be for experiments
at accessible energies. Our goal in this summary is not to be exhaustive, but
rather to provide a conceptual framework for further reading of the many re-
search directions within the literature on the broad topic of physics ‘beyond
the standard model’.

The organizing theme for our discussion is the assumption that any par-
ticles which have not yet been discovered must be heavy compared with the
energies to which we presently have experimental access. This assumption
has three motivations, not least of which is the outstanding success of the
standard model itself. After all, given that it is itself the most general the-
ory consistent with general principles and the assumed particle content, its
success would automatically follow if any new particles (beyond the Higgs
scalar) were quite heavy. A second motivation is the great success of this
approach (see subsection 10.4.2) when it is brought to bear on the problem
of neutrino oscillations. Finally, the approach is motivated by the fact that
it is effective: this assumption allows us to organize more systematically the

434
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discussion of the puzzles and open questions of the standard model in terms
of the kinds of low-dimension effective interactions which are possible.

Besides assuming that new physics is heavy, the main leap of faith taken
when regarding the standard model as a low-energy effective theory is that
the missing Higgs boson will be found with a comparatively small mass,
with all of the properties with which it has been assigned. This assumption
enters when we require the effective theory to linearly realize SUL(2) ×
UY (1) invariance, and so must choose how to fill out the multiplet which
contains the longitudinal modes of the W and Z. The only evidence we have
concerning this is the success which standard model radiative corrections
have in accounting for precision electroweak measurements, since these favor
a comparatively light Higgs mass. We take this leap for the rest of this book.

11.1 Effective theories (again)

It is an experimental fact that Nature comes to us with an enormous variety
of energy scales, ranging from the size of the entire visible universe down to
the smallest distances we can presently measure. Science progresses because
long-distance physics can be understood without needing to know in detail
what is going on at shorter distances, and it can do so because the physics
of long distances does not depend strongly on very many features of shorter-
distance phenomena. For instance, atomic energy levels can be understood
in detail without knowing more about the nucleus than its total mass, spin,
magnetic moment, and electric charge.

Effective field theory provides a mathematical expression for this remark-
able fact, by showing us how to identify efficiently which interactions are
important at long distances (and so low energies) in any given physical situ-
ation. When the microscopic (high-energy) theory is itself understood, it is
often possible to explicitly construct the relevant effective theory governing
the low-energy fields, `i, by ‘integrating out’ the heavy degrees of freedom,
ha. We have seen some explicit examples of this kind of calculation already
in this book, in Chapters 7 and 10.

What such calculations show is that the relevant low-energy theory may
be written as the sum over low-dimension interactions constructed purely
from the light fields, of the form

Leff =
∑

I

cI OI(`i) , (11.1)

where the effective interactions, OI , are built from powers of the light fields
and their derivatives, and are organized in order of increasing dimension. If
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OI is a dimension-d operator, then its effective coupling, cI , has dimension
(mass)4−d and may be computed once the dynamics of the heavy fields, ha,
is known.

In the examples of these kinds of calculations performed in Chapters 7 and
10 it was found that the virtual effects of a heavy particle of mass M could
be reproduced by effective dimension-5 (or dimension-6) interactions with
effective couplings c ∼ c̃/M (or c ∼ c̃/M2), with the dimensionless constants
c̃ being order 1 (or perhaps involving a loop factor, like c̃ ∼ α/4π, or a
logarithmic dependence on mass ratios). More general calculations verify
that it is generically true that integrating out a heavy particle of mass M

generates a host of effective interactions whose couplings depend on M as
is required on essentially dimensional grounds: dimension-d operators OI

acquire effective couplings with cI ∼ c̃IM
4−d.

11.1.1 Naturalness and UV sensitivity

This heavy-mass dependence of effective couplings — cI ∝ M4−dI for inter-
actions OI having operator dimension dI — naturally ensures the suppres-
sion of nonrenormalizable interactions (i.e. those with dI > 4) by powers
of 1/M , expressing how the uncertainty principle suppresses the quantum
fluctuations which generate the virtual effects of very energetic states. The
fact that these couplings vanish as M → ∞ expresses the experimental
fact that high-energy (short-distance) physics ‘decouples’ from low-energy
(long-distance) physics.

But what about those operators whose dimension is dI ≤ 4? For these,
the same rule would lead us to expect enhancement by the heavy mass M ,
with cI ∼ lnM for dI = 4, cI ∼ M for dI = 3 or cI ∼ M2 for dI = 2. This
is indeed what explicit calculations reveal, some of which are described in
subsequent sections. Generally speaking, the possibility of obtaining such
low-dimension interactions expresses the appearance of positive powers of
the heavy masses in observables of the full theory. (Indeed, the factor of
m2

t in the ρ-parameter of chapter 7, or in KK mixing, can be interpreted in
this way within the effective theory obtained from the standard model by
integrating out the t quark.) These low-dimension interactions are therefore
important, because they can identify when observables are more sensitive
than usual to very heavy mass scales.

This observation leads to several puzzles if the standard model itself is
regarded as being an effective theory, obtained once some still-heavier par-
ticles are integrated out. This is because there is some evidence that na-
ture includes physics involving mass scales much larger than a few hundred
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GeV, and yet the standard model does contain some low-dimension opera-
tors whose effective couplings cannot also be similarly large.

There are, at present, two kinds of evidence for the existence of physics
above the electroweak scale. The strongest of these comes from gravity,
which is characterized by a single dimensionful quantity: Newton’s constant,
GN . Newton’s constant defines an enormous mass scale, Mp = G

−1/2
N '

1.22 × 1019 GeV, which is characteristic of gravitational physics. Indeed
gravity is by far the weakest force – e.g. GN/GF ' 10−33 – precisely be-
cause this mass scale is so large compared with the other mass scales we
know in physics. Since Newton’s constant is an inverse power of mass the
gravitational interactions are nonrenormalizable, and so are likely the low-
energy effective theory for some new physics which intervenes at some energy
v ¿ E <∼ Mp.

A second indication that nature involves physics at scales larger than v =
246 GeV comes from the analysis of neutrino masses in terms of dimension-5
interactions (or in terms of the seesaw mechanism). In this picture neutrino
masses are light because they are inversely related to a very heavy mass,
m ∼ k̃v2/M . Neglecting dimensionless factors, this implies a new scale
M ∼ k̃ × 1014 GeV. (As we see below, a third hint that there may be new
physics at these energies also comes from the observation that under certain
circumstances the standard model gauge couplings can run until all three
take a common value at very high energies, of order 1016 GeV.)

In viewing the standard model as an effective theory and asking how it
may be extended, we are already making a key assumption–that the Higgs
mechanism is correct, and the Higgs boson will be found with the prop-
erties expected within the model. This assumption should give us pause,
but there are good grounds for making it. First, the theory must be ex-
tended to include a Higgs boson or some other degrees of freedom which
perform its function. For instance, as discussed in chapter 6 problem 3, cer-
tain cross-sections become unphysically large at high energies if there is no
Higgs boson. Further, precision tests are now sensitive to radiative (loop)
effects from Higgs bosons, and the fits favor a light Higgs boson. We will,
however, contemplate the possibility that there are multiple Higgs fields, or
a more complicated implementation of electroweak symmetry breaking, in
subsection 11.3.2.

11.2 Dimension zero: Cosmological constant problem

The lowest possible dimension for an operator is dimension 0, corresponding
to no dependence at all on any fields or derivatives. Such an operator can
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appear in the standard model, corresponding to adding an arbitrary con-
stant, ρ0, to the Lagrangian density. Indeed we encountered such a term
in chapter 1 – see Eq. (1.56) – where it was required to renormalize the
quantum zero-point energy, and was interpreted as the energy density of the
vacuum.

11.2.1 The cosmological constant problem

For a particle physicist the vacuum energy is normally irrelevant, since its
value cannot be measured; it is only the difference of energies for various
states which is normally measured, and the vacuum contribution always
cancels in this difference. This is the reason we have not discussed this term
in any detail to this point in this book.

However, the vacuum energy is measurable, just not by particle physicists.
It can be measured because gravity couples to all energies regardless of their
source, and so in particular gravity responds to the energy density of the
vacuum.† For gravity a nonzero vacuum energy is equivalent to including
the presence of Einstein’s ‘cosmological constant’ into the gravitational field
equations, and it can lead to measurable effects for the expansion history of
the Universe (but not to observable effects on smaller distances, like within
the solar system). In fact, current observations of the Universal expansion
suggest that the Universe does indeed have a net vacuum energy density, of
size

ρcc ∼ (2.4× 10−3 eV)4 . (11.2)

The problem with this measurement is that it is so small, since the ar-
guments of the previous section would lead us to expect on dimensional
grounds that the contribution to ρ0‡ of a particle of mass m is (including a
loop factor)

δρ0 ∼ O

(
m4

16π2

)
, (11.3)

which is much larger than the measured value for pretty much any particle
we know of (except possibly for neutrinos).

This expectation is borne out by the explicit calculation of the zero-
point fluctuations of a scalar and fermionic field, presented in Eq. (1.71)
and Eq. (1.114) respectively. Naively, these calculations actually gave an
ultraviolet-divergent result, δρ0 = c0Λ4 + c2m

2Λ2 + c4m
4 log(Λ/m) + · · ·,

† In technical terms, once gravity is included the dimension-zero term is no longer independent
of fields because general covariance requires it to depend on the spacetime metric.

‡ Do not confuse ρ0 in this section with the ρ parameter of the previous one!
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with appropriate constants c0, c1, c2, etc., but when integrating out a par-
ticle we are instructed to define the effective interactions such that they
encode the difference between the theory with the heavy particle and with-
out, after regularization. The issue of whether the Λ4 and Λ2m2 terms exist
and how to understand them is a question about the ultraviolet regulariza-
tion of the theory, that is, about quantum gravity, which we leave aside. The
existence of an m4 contribution is an infrared effect which is independent of
the regularization and of quantum gravity issues. It must be taken seriously.

If there is physics at scale M ∼ Mp ∼ 1019 GeV contributing δρ0 '
(M2

p /4π)2, then this dominates the contributions from physics at lower en-
ergies. In this case the prediction for ρ0 would differ from observations by
some 122 orders of magnitude! However, we saw in chapter 1 that bosons
and fermions can cancel in their contributions to ρ0, and so it could happen
that such a cancellation is at work for physics at scales beyond our current
experimental reach. For instance, this cancellation might be expected if
a new symmetry between bosons and fermions – supersymmetry – should
emerge at these higher energies (more about which below).

However, a serious problem remains even if the physics above the elec-
troweak scale happens to cancel in the vacuum energy. This is because we
believe that we know the spectrum of particles having masses below the
electroweak scale, and these do not cancel in their contributions, leading
to δρ0 ∼ (m2

t /4π)2. This is 56 orders of magnitude larger than the scale
actually observed in nature. Apparently, the constant term in the Lagran-
gian must be chosen to cancel the zero-point fluctuation contribution (and
other quantum contributions) to a precision of more than 50 decimal places,
unless some other mechanism exists to balance off these energy densities.

At present there is no theoretical proposal which is generally accepted by
the community for modifying the standard model in a way which may be
able to explain the tiny size of the vacuum energy in a natural way.† What
makes such proposals difficult to find is the requirement that they must
already modify the predictions for the electron’s contribution to the vacuum
energy, since δρ0 ∼ (m2

e/4π)2 is also much too large a contribution. But it
is very difficult to modify our theories at such low energies without running
into conflicts with other experiments. The cosmological constant problem is
arguably the most severe theoretical problem in high-energy physics today,
as measured by both the difference between observations and theoretical
predictions, and by the lack of convincing theoretical ideas which address it.

† At the time of writing the ‘fine-tuning’ option, in which the constant term precisely cancels
against the contributions of virtual particles, is enjoying a minor revival, motivated by ideas
from string theory.
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11.3 Dimension two: Hierarchy problem

The lowest-dimension effective interaction possible which explicitly involves
the standard model fields is the quadratic term in the Higgs potential,

L2 = µ2 φ†φ , (11.4)

whose coupling we’ve seen is related to the Higgs boson mass by m2
H = 2µ2,

and to the Higgs expectation value by v2 = µ2/λ. Since v = 246 GeV is
measured, these relations show that µ cannot be made large without also in-
creasing λ to compensate. Since the validity of perturbation theory requires
λ/16π2 <∼ 1, we see control over our approximations keeps µ <∼ 4πv = 3
TeV.

11.3.1 The hierarchy problem

We see that phenomenology requires the sole dimensionful parameter of
the standard model to satisfy µ <∼ 3 TeV. But we have also argued that
virtual effects involving very heavy new particles having mass M generically
contribute to µ an amount of order

δµ2 ∼ gM2

16π2
, (11.5)

where g is a dimensionless measure of the coupling strength between the
heavy virtual particle and the Higgs doublet. The denominator is a typi-
cal one-loop factor, which we include since this is the order at which many
heavy particles contribute. Strictly speaking (see problem 11.2) explicit cal-
culations give results which diverge quadratically in the ultraviolet, leading
to expressions of the form δµ2 = c2Λ2 + c0M

2 ln(Λ2/M2) + .... However,
the contribution to the effective coupling, δµ2, is defined to reproduce the
difference between the theory with and without the massive particle, after
renormalization, and this leads to an estimate of the form of Eq. (11.5).

Clearly, if all else is equal then the particle with the largest mass con-
tributes the largest amount to δµ2. And the result is clearly much too large
— for any reasonable value of coupling g — if M is as high as Mp ∼ 1019

GeV, or as 1014 GeV, as might be indicated by the dimension-5 descrip-
tion of neutrino masses. This enormous mismatch between the ‘observed’
value of µ and its natural value once the standard model is embedded into a
more fundamental theory at much higher energies is known as the Hierarchy

Problem.
Although it is logically possible that the ‘bare’ term, µ2

0, appearing in the
Lagrangian precisely cancels these types of contributions for all such massive



11.3 Dimension two: Hierarchy problem 441

particles, the required cancellation is fantastically accurate for M extremely
large – to within 33 decimal places if M ∼ Mp. A cancellation this accurate
is generally known as a fine tuning, and it is widely considered unlikely that
such a cancellation is the explanation. Rather, it is generally believed that
some new physics must be involved at an energy scale not much above the
weak scale, which explains why the Higgs mass parameter does not depend
sensitively on any very massive particles which may exist.

Support for this point of view can be found in other areas of physics, since
this sort of problem is generic to any physical systems described by effective
theories which contain scalar fields. What happens in these other, better
understood, cases? In some cases the scalar is very light, but the scalar field
is either a Goldstone boson for a spontaneously-broken exact symmetry (e.g.
phonons, magnons, spin density waves), or a pseudo-Goldstone boson for a
spontaneously-broken approximate symmetry (such as the pion). Otherwise
the scalar mass is generically near the heavy scale which defines the limits
of validity of the effective description. Sometimes such a state can be made
anomalously light through the explicit tuning of a control parameter of the
system, such as by adjusting the temperature (or another variable) to be
close to a critical point, often related to a phase transition. Examples of this
sort occur within a superconductor close to the superconducting transition,
or by tuning the temperature and pressure of a liquid-gas system to be close
to the critical point at the end of the phase-coexistence curve.

11.3.2 What to do?

Once the fine-tuning alternative is set aside, what are the other options
for the new physics just above the electroweak scale? There are several
proposals for what the physics could be, and at the time of writing (2005) it
is not clear which, if any, is correct. We now briefly summarize some of the
main options, and while so doing dwell a little longer on a particular one
(supersymmetry) than on the others.

The goal is to find modifications of physics at the scale Λ ∼ 4πmH/g

which can explain the absence of O(M2) contributions to the Higgs mass
from virtual very massive particles. Broadly speaking there are three kinds
of approaches:

The Radical Break: The most radical approach is to assert that the fun-
damental scale of physics really is the electroweak scale, and to regard the
evidence presented above for higher scales to be misleading. The gravita-
tional evidence is the trickiest to dispose of in this way, because gravity
exists and the Planck mass, Mp = G

−1/2
N , is well measured.
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There is nonetheless some room for manoeuvre, however. For instance,
an estimate of the W boson mass using only the Fermi constant would have
led to MW ∼ G

−1/2
F ∼ 300 GeV, rather than its true value, MW = 80

GeV. This difference is due to dimensionless factors, like gauge couplings,
and one could hope for similar factors to make the ‘real’ scale of gravity
much smaller than the effective scale obtained on dimensional grounds from
Newton’s constant. What is remarkable is that this can be possible in models
for which there are more dimensions of space than the usual three, and
where some of these dimensions are quite large, because for such models
the Planck mass is related to the scale of gravity in the higher dimensions,
Mg, by Mp = (Mgr)n/2 Mg, where n is the number of extra dimensions and
V = rn is their volume.

As of this writing it is not clear whether this idea successfully deals with
all of the new naturalness issues which arise within this new context; how-
ever, the remarkable thing is that any proposals are possible at all along
these lines. The proposal also requires relinquishing a seesaw description of
neutrino masses, which might be done by introducing sterile neutrinos.

Composite Models: A second possibility asserts that the Higgs doublet
is really not an elementary field at all, but is a composite built from other
more fundamental degrees of freedom. In this picture very massive particles
do not make too large a contribution to µ2 because in the new physics which
intervenes at the electroweak scale there is no elementary Higgs for which
there is a coupling to modify.

In many ways this is the historically conservative idea, for which the Higgs
is qualitatively similar to the other scalar fields appearing in particle physics,
i.e., the mesons (π, K, etc.) that are bound states in QCD. Models based on
this idea generally involve additional gauge interactions, which form bound
states in analogy with the mesons of QCD. The would-be Goldstone bosons
which get eaten by the W and Z are then some of these mesons. Because of
the analogy to QCD, the new gauge field is called technicolor, and models
based on this idea are called technicolor models. In this case, the break-
ing of electroweak symmetry is closely analogous to the breaking of chiral
symmetry in QCD.

Simple technicolor models generally predict a Higgs boson which is both
very heavy and strongly self-coupled, often leading to effective theories for
which the spontaneously-broken gauge symmetries are not linearly realized,
along the lines of those considered in subsection 7.5.1. As such, they can
give comparatively large contributions to quantities like the oblique param-
eters S, T and U , and their simpler variants are therefore often ruled out
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by precision electroweak measurements. More elaborate variants (walking
technicolor, topcolor), which predict a light Higgs mass and small custodial
symmetry breaking corrections, have been proposed, and some of these may
be consistent with current experimental results. A proper discussion of these
models goes well beyond the scope of this book.

Symmetry-Driven Cancellations: The third option differs from the pre-
vious two in that it grants that new physics is likely to exist at energies well
above the electroweak scale, and that the Higgs is elementary and appears
in the as-yet-unknown, more fundamental theories which govern the physics
of these higher scales. In this proposal the contributions of all of the high-
energy particles nonetheless cancel in their contributions to µ2, up to terms
of order m2

H , by virtue of a symmetry of the more fundamental theory.
The symmetry in question is called supersymmetry (often abbreviated

SUSY), and it relates bosons to fermions. Relating bosons to fermions is
useful because these contribute oppositely in sign to δµ2, and so can cancel
if their masses and couplings are related to one another. Tantalizingly, this
same symmetry also causes similar cancellations between bosons and fermi-
ons in their contributions to the cosmological constant, as was mentioned in
passing in subsection 11.2.1.

Although at the time of writing there is no direct experimental evidence
in favor of supersymmetry, there are some fairly indirect hints in its favor,
and it is at present the choice regarded as the most likely explanation of
the hierarchy problem by a majority of the community. Therefore we give a
slightly less brief account of this idea, although still one which just shallowly
skims the surface.

11.3.3 Proposal: supersymmetry

Supersymmetry (SUSY) is a symmetry whose transformations relate parti-
cles having different spin to one another. It is not an internal symmetry,
in the sense that it leaves the Lagrangian density, L, invariant. Rather,
an infinitesimal SUSY transformation changes the Lagrangian by a total
derivative, δL = ∂µV µ for some vector V µ, and as a consequence leaves the
action, S =

∫
d4x L invariant. In this sense SUSY is more like the spacetime

symmetries: rotations, translations and boosts.

11.3.3.1 Supermultiplets

Like the other spacetime symmetries, supersymmetry acts differently on
massless and massive particle states. Acting on a massless particle state
having helicity h, a SUSY transformation gives a new particle state having
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helicity h ± 1
2 . Because it changes spin by half a unit, it follows that the

supersymmetry charge must be a Weyl spinor, Qa, with a = ±1
2 . If Qa raises

the helicity by 1
2 then Q∗

a lowers it by the same amount. In general there
could be more than one such supersymmetry charge, up to a maximum of
N = 8 generators. But we restrict our attention to the case where N = 1,
which turns out to offer the best prospects for particle physics.

The Qa’s satisfy the algebra {Qa, Qb} = 0 and so if a supersymmetry
transformation is applied twice to any given state it gives zero. Because
of this, successive SUSY transformations do not continue to generate new
states, and so massless supermultiplets come with pairs of helicities, (h1, h2),
with h2 = h1 + 1

2 . The ones of physical interest are

(h1, h2) =
(

0,
1
2

)
,

(
1
2
, 1

)
,

(
1,

3
2

)
and

(
3
2
, 2

)
, (11.6)

together with their counterparts of opposite helicity. For non-gravitational
physics it is only the first two of these that are of interest.

In a field theory the particles must come together with their CPT conju-
gates, and since CPT reverses helicity the basic multiplets become:

matter multiplets:
(

0,
1
2

)
⊕

(
−1

2
, 0

)

and gauge multiplets:

(
1
2
, 1

)
⊕

(
−1,−1

2

)
. (11.7)

Given the particle content, it is clear that a matter multiplet can be rep-
resented by a complex scalar field and a Weyl (or Majorana) spinor field
— ϕ, ψL say — while a gauge multiplet is represented by a real gauge field
and a Weyl (or Majorana) spinor field — Aµ, λL. By construction, each
multiplet contains equal numbers of bosons (integer spins) and fermions
(half-odd-integer spins).

SUSY transformations commute with the Hamiltonian, [H, Qa] = 0, and
so the particle states related by these transformations have exactly the same
mass, provided supersymmetry is not spontaneously broken. Spontaneous
SUSY breaking occurs if the vacuum is not invariant, Qa|0〉 6= 0. If the vac-
uum is not supersymmetric, then this is normally indicated by the existence
of some field, F , having a nonzero expectation value, 〈F 〉 6= 0. In this case
the particles in a supermultiplet need no longer have the same mass, and
their difference is typically of order ∆m2 ∼ gM2

s , where Ms is the scale set
by 〈F 〉, and g is a dimensionless measure of the strength of the coupling of
the multiplet of interest to F .
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11.3.3.2 The minimal supersymmetric standard model

The minimal field content of a supersymmetric version of the standard model
is obtained by adding a superpartner for each of the standard model’s par-
ticle types, leading to what is called the Minimal Supersymmetric Standard
Model (MSSM). Assuming supersymmetry commutes with the gauge sym-
metries (as it must for N = 1 supersymmetry) the gauge transformation
properties of these superpartners are precisely the same as for the original
standard model particles.

For the gauge bosons this leads to adding spin-half gauginos for each of
the gauge generators, transforming in the adjoint representation of the gauge
group: the gluinos transform under SUc(3) × SUL(2) × UY (1) as (8,1, 0);
the winos transform as (1,3, 0); and the bino transforms as (1,1, 0).

Similarly, for each standard model fermion we must add a new collec-
tion of complex scalar superpartners, each of which has the same quan-
tum numbers as the corresponding left-handed fermion. For each genera-
tion the complete list of these is: a doublet of sleptons, transforming as
(1,2,−1/2); singlet sleptons, transforming as (1,1, 1); doublet squarks,
transforming as (3,2, 1/6); and up- and down-type singlet squarks trans-
forming as (3,1,−2/3) and (3,1, 1/3).

The supersymmetric expansion of the Higgs sector is a bit more compli-
cated, because the rules for supersymmetric interactions preclude generating
a mass for all of the above particles using only a single Higgs doublet. Gauge
anomalies would also not cancel if only a single Higgs scalar (and its super-
partner) were included. Consequently the minimal Higgs sector requires
two Higgs doublets — denoted HU and HD — both transforming as (1,2),
but differing in their hypercharge assignments, with HU having y = 1

2 and
HD having y = −1

2 ; plus their superpartner Higgsinos, whose left handed
components transform in the same way.

The nomenclature for these particles is to label the spin-half superpartners
of a standard model boson with the ending ‘-ino’, and the spinless super-
partners of standard model fermions with the prefix ‘s-’. Symbolically, the
superpartners are all denoted with the same letter as their standard model
partner, overscored with a tilde (e.g., W̃ , L̃, Ũ , etc.).

11.3.3.3 Supersymmetric interactions

What restrictions does supersymmetry place on the interactions amongst
these particles? Since only particles with spins zero, half and one are present,
the only renormalizable interactions possible are Yukawa couplings, gauge
interactions and a scalar potential which contains terms up to quartic in the
fields.
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Since the gauge interactions are dictated by the gauge transformation
properties given above, they need not be spelled out here in detail. For
the self-interactions of gauge bosons and gauginos these interactions are al-
ready supersymmetric. For matter-gauge interactions supersymmetry sup-
plements the standard model gauge couplings

(ta)i
j [ψiγ

µPL ψj ]Aa
µ + c.c. , (11.8)

with new Yukawa interactions and new terms in the scalar potential. Here ta
is the appropriate gauge generator for left-handed fermions, which includes
a factor of the associated gauge coupling, g. The new Yukawa interaction is
obtained from this by replacing two of these fields by their superpartners:

√
2(ta)i

j [ψiPL λa]ϕj + c.c. , (11.9)

where ϕi is the scalar partner for ψi
L and λa is the appropriate gaugino.

The new term in the scalar potential which is related to the gauge cou-
plings by supersymmetry is called (for historical reasons) a ‘D term’, and is
given by

VD =
1
2

∑
a

[
ϕ∗i (ta)i

j ϕj
]2

. (11.10)

In each of these expressions, the sum on i, j is over both the gauge index
and over field types (for which ta is diagonal). Notice that supersymmetry
dictates that both of these new terms have the same normalization as the
original gauge interaction, implying their strength is set by the correspond-
ing gauge coupling.

The structure of the non-gauge, matter self-interactions are all given in
terms of a function, W , called the superpotential. W = W (ϕ) is a holomor-
phic function – that is, depending on ϕ but not on ϕ∗ – of all of the complex
scalars, ϕi, which appear within the matter supermultiplets. It must be
gauge invariant, and for renormalizable theories W must be at most a cubic
polynomial of its arguments.

This function specifies two kinds of terms in the Lagrangian which are
related to one another by supersymmetry: the Yukawa couplings involving
only matter fields, and a set of scalar self-interactions. (For historical reasons
the scalar potentials, VF , describing these self-interactions are known as ‘F -
terms’.) These terms are given in terms of W (ϕ) by

Lyuk = −1
2

Wij [ψ
i
PL ψj ] + c.c.

VF = W
i
Wi , (11.11)
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where Wi = ∂W/∂ϕi, W
i = (Wi)∗ and Wij = ∂2W/∂ϕi∂ϕj . For example,

a mass term for a single matter multiplet corresponds to the choice W =
1
2 mϕ2, in which case Lyuk = −1

2 m[ψPL ψ] + c.c. and VF = |mϕ|2. Notice
that supersymmetry in this case dictates that the scalars and fermions all
share the same mass, |m|. The total scalar potential is the sum of the matter
and gauge contributions: V = VF + VD.

The MSSM is defined (up to SUSY-breaking terms, to be discussed below)
by its superpotential, and requiring the Yukawa couplings to include the
standard model mass terms leads to the following form,

WMSSM = fmnHDLmEn+gmnHDQmDn+hmnHUQmUn+µHUHD , (11.12)

with fmn, gmn, hmn being the dimensionless complex Yukawa matrices we
have already seen, while µ is a complex parameter having dimensions of
(mass), called the mu parameter. We see here why a second Higgs doublet
is required: unlike for the standard model, we are not free to use the complex
conjugate, H∗

D, to construct a mass term for the up-type quarks. We can-
not do so because supersymmetry requires W to be a strictly holomorphic
function, which cannot depend on the complex-conjugate fields.

Notice that Eq. (11.12) is not the most general gauge-invariant cubic su-
perpotential which can be built using only the assumed MSSM matter con-
tent. WMSSM excludes several kinds of terms which violate baryon number
and lepton number, such as

WBL = µ̂mεijL
i
mHj

U + umnpεijQ
i
αmLj

nD α
p + vmnpεijL

i
mLj

nEp

+wmnpεαβγD α
mD β

n U γ
p . (11.13)

Here we label the complex scalar field using the associated fermion, and all
indices have been made explicit. α, β, γ = 1, 2, 3 are color indices, i, j = 1, 2
are SUL(2) doublet indices and m,n, p = 1, 2, 3 are generation indices. The
dimensionful coefficient µ̂m and the dimensionless coefficients umnp, vmnp

and wmnp are unconstrained by gauge invariance or supersymmetry. If all
such terms are present in addition to those of Eq. (11.12) then baryon and
lepton number cannot be conserved, leading to catastrophic predictions such
as for rapid proton decay.

Recall that an attractive feature of the standard model is its economical
explanation of why baryon number and lepton number seem to be conserved
to a good approximation in experiments. This is understood in the standard
model as being an accidental consequence of the assumed particle content
and renormalizability, since all gauge-invariant renormalizable interactions
automatically conserve both B and L. The existence of the baryon-number
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and lepton-number non-conserving terms in the superpotential, Eq. (11.13),
shows that the MSSM does not have this same attractive feature. The reason
the MSSM does not have this property can be traced to the existence of the
superpartners, since the presence of these new fields allows us to construct
renormalizable B- and L-violating interactions, such as Yukawa couplings
between quarks and sleptons.

If we wish to exclude the possibility of including the terms in Eq. (11.13)
on symmetry grounds, we must assume the existence of a symmetry in ad-
dition to gauge invariance. Of course the required symmetry could simply
be B − L, since the anomalies for this could easily be arranged to cancel.
(See, however, the discussion of subsection 10.4.1 for potential drawbacks
of having this as an exact symmetry.) A more minimal proposal which can
forbid the terms in Eq. (11.13) is conservation of a multiplicative quantum
number called R-parity. This can be defined to be R = (−)F+3B−L, where F

denotes fermion number and B and L are the usual lepton and baryon num-
bers (with the same B and L charges assigned to all of the particles within
a supermultiplet). Since F = 0 for any term in a Lorentz-invariant Lagran-
gian, such a symmetry clearly forbids any interactions for which 3∆B 6= ∆L

(mod 2). Although this precludes writing down renormalizable B- and L-
violating interactions given the MSSM field content, it does not do so at a
nonrenormalizable level (as we shall see) and so can potentially be consistent
with the existence of rare processes which don’t conserve B and/or L.

We remark in passing that if R-parity is a symmetry, it has important
implications for the phenomenology of the MSSM. It does so because its
definition ensures that R = + for all of the ordinary standard model par-
ticles (plus the new Higgs), but R = − for all of the new superpartners.
Among the important implications of this is the requirement that superpart-
ners must be pair-produced in accelerators, since all initial-state particles
are R even. Furthermore, the lightest superpartner (often called the LSP
for short) must be stable in an R-parity conserving world, since there are
no daughters which can carry off the initial particle’s odd R-parity. LSP’s
must therefore be copiously generated in reactions which produce superpart-
ners, and once produced they cannot decay. If the LSP is also electrically
neutral and a color singlet (as if often true), then it would escape invisibly
from a detector, and so would appear to experimenters simply as missing
energy and momentum. Conservation of R parity underlies the robustness of
missing-energy signals for supersymmetry for a wide range of the underlying
parameters.

A stable weakly-interacting LSP having a mass of order MW could have
important implications for cosmology. Since such particles can not decay, a
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residual abundance would be left over from early, hot cosmological epochs.
It turns out that an electroweak scale mass and electroweak strength in-
teractions predict an abundance leading to an energy density comparable
to the energy density of the universe today. Such an LSP therefore pro-
vides a very natural candidate to explain the Dark Matter which is actually
observed to gravitationally dominate galaxies and clusters of galaxies, but
whose makeup is otherwise completely unknown.

11.3.3.4 Supersymmetry breaking and naturalness

The MSSM as described to this point has two very attractive features: its
prediction for the vacuum energy is precisely zero, and its prediction for
the corrections to the dimensionful Higgs parameter µ also vanish. Both
of these predictions vanish because of the precise cancellation which occurs
between the contributions of the bosons and fermions within any given su-
permultiplet circulating inside the loop, along the lines of that discussed for
the vacuum energy in subsection 1.3.1 and subsection 1.3.2. It is essential
for this cancellation that the bosons and fermions within any supermultiplet
share the same masses and have couplings which are related to one another
as described above. Better yet, it can be shown that these cancellations ap-
ply to all orders in perturbation theory and are not artifacts of the one-loop
calculation.

The bad news is that the MSSM as described to this point does not
break supersymmetry spontaneously, and this is why all of the particles
within a given supermultiplet have exactly the same masses, and couplings
that are related to one another in the desired way. Unfortunately, this is
not a good description of experiments, since, among other things, it would
predict the existence of a spinless electron in addition to (and having the
same mass as) the observed one. This would alter atomic physics, not to
mention collider physics. In fact, the absence of evidence for such particles
in e+e− collisions implies a lower limit on the selectron mass of 73 GeV (95%
CL). Any successful phenomenology must supplement the above picture with
some source of supersymmetry breaking.

Unfortunately, once SUSY is broken the cancellations in ρc and µ are
no longer perfect, although the failure to cancel must vanish if the typical
splitting in mass in a supermultiplet, ∆m2 ∼ M2

s , is taken to zero. This
means that the resulting corrections to µ are typically δµ2 ∼ M2

s , even if
the overall mass of the supermultiplet within the loop is M À Ms. As a
result they can be small enough to be natural provided Ms is near enough
to the electroweak scale. On the other hand, for Ms this large the partial
nature of the cancellations lead to contributions to ρc which are at least as
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large as† δρc ∼ M4
s . This is mixed news because it implies that breaking

supersymmetry at the weak scale can provide a solution to the hierarchy
problem (provided Ms is not too large), but is unable in itself to resolve the
cosmological constant problem.

How does supersymmetry break? This is normally done by coupling the
MSSM as described above to some new degrees of freedom which are chosen
so that their ground state breaks supersymmetry. This is not at all trivial
to do, but there are a number of extant proposals for which it is possible to
split the masses within a supermultiplet by an amount Ms which can easily
be several hundred GeV.

Happily, although it goes beyond the scope of this book to show when
and why, it turns out that it is often true that the implications of super-
symmetry breaking for the MSSM particles can be expressed in terms of a
collection of low-dimension effective interactions amongst the MSSM par-
ticles which explicitly break supersymmetry. These interactions are meant
to capture the effects for the MSSM of the virtual effects of the particles in
the supersymmetry-breaking sector, which are assumed themselves not to
be directly observed. The resulting SUSY-breaking interactions are general
enough to capture the implications of coupling the MSSM to a broad class of
specific supersymmetry-breaking sectors. By parameterizing our ignorance
about supersymmetry breaking in this way we can see how its effects can
affect phenomenology without having to commit to a particular model.

There are three kinds of terms which arise as effective SUSY-breaking
interactions: (i) generic scalar masses; (ii) generic gaugino masses; and (iii)
holomorphic trilinear scalar self-interactions: LSB = Ls + Lg + L3, where

Ls = −(M2)i
jϕ
∗
i ϕ

j

Lg = −1
2

mab[λ
a
PL λb] + c.c.

L3 = W(ϕ) + c.c. , (11.14)

where ϕi generically represents all of the matter scalars, λa similarly denotes
the gauginos, and the holomorphic function W is an arbitrary cubic poly-
nomial of the scalar fields consistent with the assumed symmetries. Notice
that gauge invariance implies there are at most three independent gaugino
masses, m1, m2 and m3, one for each factor of the standard model gauge
group. Similarly, the definition of the function W is very similar to that of
the superpotential, W , and so we expect to find in W any term which is
present in W . For instance, if R-parity is conserved, this means that W has

† In many models the corrections to ρc can be larger, since they can be of order δρc ∼ M2
s M2,

where M is the scale of the heavy particles being integrated out.
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the same form as in Eq. (11.12), although coupling constants — f̂mn, ĝmn,
ĥmn and µ̂ — need not be related to the couplings — fmn, gmn, hmn and
µ — which appear in W . (It is nevertheless common to assume these to
be proportional to one another, taking f̂mn = Amnfmn (no implied sum on
m,n), etc., and for this reason these trilinear interactions are often called
‘A-terms’.)

It is clear that supersymmetry breaking introduces a great number of new
effective couplings, and this considerably complicates the comparison of the
MSSM with experiment. Notice however that it is generic that it is the
superpartners and not the standard model particles which get masses when
supersymmetry breaks, and so it would be natural to find that the super-
partners should be much heavier (and so not yet discovered in experiments).
The reason for this is that, besides the higgsinos (which receive a mass from
the µ term in the superpotential even before SUSY breaking), these new
particles are either fermions in the adjoint representation or scalars, and
so for them gauge invariance allows mass terms. This is in contrast to the
standard model quarks, leptons and gauge bosons, which cannot get a mass
until the gauge group SUL(2)× UY (1) spontaneously breaks, and so whose
masses therefore remain suppressed by powers of the Higgs v.e.v., v, and
small Yukawa couplings, even after supersymmetry breaking.

11.3.3.5 Phenomenology of the MSSM

A complete discussion of the phenomenology of the MSSM would require a
second volume to this book. We restrict ourselves here to a discussion of
two aspects of the model. First we describe a particular sector of the MSSM
— the Higgs sector — which we choose to illustrate some of the features
which are generic to (broken) supersymmetric extensions of the standard
model. Then we briefly describe some of the potential problems to which
the generic parameterization of SUSY-breaking interactions can be prone.
We make no attempt to be complete or to provide full details.

The Higgs Sector

The first requirement for successful phenomenology is for the scalar po-
tential to have minima which break the standard model gauge group in
the desired way, with only Higgs doublets getting expectation values and
not squarks or sleptons (say). This can be more difficult than one might
think, due to the large number of scalars present and because of the restric-
tions which supersymmetry puts on the form of its potential. It turns out
that the soft supersymmetry-breaking terms can help to ensure the proper
symmetry-breaking pattern arises, in an interesting way.
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An important feature of the supersymmetry-breaking effective couplings
is that they vary with scale, with all of the effective couplings running in
a calculable way. This running can be important if the supersymmetry-
breaking sector should involve very massive particles (as is often the case),
since the models then predict the couplings at an ultraviolet scale and they
must be run down to the electroweak scale in order to be used in observables
measured at these lower energies. But scalar self-couplings tend to induce
negative corrections to the Higgs mass parameters (see problem 11.2), and
the Higgs doublets couple quite strongly to the squark fields due to the
large values of the top and bottom Yukawa couplings which appear in the
supersymmetric part, VF , of the scalar potential. These couplings therefore
tend to drive the HU mass-squared to negative values, as is required to
generate a nonzero 〈HU〉. Within this picture the large top-quark mass
makes it very natural that the Higgs fields are the only ones to have negative
squared masses, while all other scalars are stabilized at zero field by positive
squared-masses which can easily be larger than M2

W .
An important distinction between the Higgs sector of the MSSM and of

the standard model is the requirement in the MSSM for two Higgs fields, HU

and HD. Both are required to acquire nonzero vacuum expectation values,
which we denote by vu and vd, in order to give masses to all fermions. These
must satisfy v2

u + v2
d = v2 = (246 GeV)2 in order to properly reproduce the

value of the gauge boson masses. However, a two-Higgs model can have a
problem, because the generic symmetry-breaking pattern when two Higgs
doublets acquire v.e.v.’s is to completely break the SUL(2) × UY (1) gauge
symmetry, including the electromagnetic subgroup. To see why, choose a
gauge such that the v.e.v. of HD is in the lower component,

〈HD〉 =

(
0
vd

)
. (11.15)

In this case, any v.e.v. in the lower component of HU will break electromag-
netism. The photon is only massless if HU carries a v.e.v. only in its top
component,

〈HU〉 =

(
vu

0

)
. (11.16)

This kind of vacuum alignment is automatic in the standard model, because
HD and HU are then replaced by a single field, φ, and its conjugate, φ̃.

It happens that the MSSM does tend to generate the proper expectation
values, and the reason for this is that its scalar potential is not that of a
generic two-Higgs model. In particular, the quartic terms of the potential
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are quite restricted because they all arise only from the supersymmetric
terms in the Lagrangian, and in particular the D-term potential provides an
energetic bias in favor of the proper vacuum alignment. The relevant term
comes from the contribution of the diagonal SUL(2) generator in the sum
appearing in VD:

VD =
g2
2

2

(
H†

Ut3HU + H†
Dt3HD

)2
+ · · · , (11.17)

where t3 = diag
(

1
2 ,−1

2

)
. This term prefers the fields HU and HD to align

so that they take opposite eigenvalues for t3, as is required.
Another important difference between the standard model and a two-

Higgs model like the MSSM concerns the size of the Yukawa couplings which
can be inferred from the observed pattern of fermion masses. The inferred
values of these couplings can differ because they depend on the relative size
of the v.e.v.s, vu and vd, since the fermions only couple to either vu or vd

and so mt ∝ vu while mb ∝ vd. The size of the Yukawa matrices within the
MSSM compared to the standard model therefore becomes

gmn(MSSM) = gmn(SM) v/vu , hmn(MSSM) = hmn(SM) v/vd .

(11.18)
In particular, for two-Higgs models it could happen that the largest eigen-
values of fmn, gmn and hmn are all comparable, with the large difference
between the t mass and the b and τ masses being due to a large value for
vu/vd.

It is conventional to write this ratio of v.e.v.s as the tangent of an angle,
vu

vd
≡ tanβ ,

vu

v
= cosβ ,

vd

v
= sin β . (11.19)

Although β can be predicted in principle given the scalar potential, in the
MSSM this prediction turns out to depend on the details of the poorly-known
supersymmetry-breaking contributions. The size of β can be probed to a
certain degree by comparing the MSSM radiative corrections with precision
electroweak measurements. The best electroweak fits at present favor a
rather large value: tanβ ∼ 5—40, perhaps favoring this kind of explanation
for the large ratio mt/mb.

The two Higgs fields of the MSSM contain 8 real fields, of which three are
‘eaten’ to become the longitudinal components of the W and Z bosons, as
in the standard model. This leaves 5 physical scalars rather than the single
one of the standard model. These scalars correspond to two charged and
three neutral particles, usually written as H±, h, H, and A. The convention
is to denote by h and H the lighter and heavier neutral scalars, while A is
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a neutral pseudoscalar. It is possible to make more specific predictions for
the masses of these particles in the MSSM than in a generic two-Higgs dou-
blet model. This predictivity arises because the quartic interactions of the
MSSM Higgs potential are completely determined by the supersymmetric
part of the theory, and so involve couplings (like gauge couplings) which can
be measured elsewhere. It turns out that the masses for all of these scalars
are determined in terms of 3 unknown mass parameters, subject to two con-
straints coming from the known value of v and the observational constraints
on tanβ.

The pattern of masses which emerges from the analysis of the classical
Higgs potential includes the relations

m2
H =

1
2

[
m2

A + M2
Z + ∆

]

m2
h =

1
2

[
m2

A + M2
Z −∆

]
, (11.20)

where ∆ = [(m2
A −M2

Z)2 + 4m2
AM2

Z sin2(2β)]1/2. This implies that the mass
of the h particle is smaller than the lighter of the A and Z masses. If tanβ

is large (so β is near π/2) then we further expect mh to equal either mA or
MZ , whichever is lighter. Since current bounds indicate mA > MZ this leads
to the tree-level prediction that mh is close to the Z boson mass. Radiative
corrections to the scalar potential can be important, and tend to raise mh

compared with these predictions. They leave the general picture that these
scalars should not be much beyond the reach of current accelerators.

Flavor and CP Problems

We close this section with a brief discussion of a potentially serious dif-
ficulty with the MSSM. This difficulty is related to the Pandora’s Box of
parameters which enter into its physical predictions once the soft super-
symmetry breaking interactions are admitted. These parameters raise two
separate kinds of potential problems for the MSSM.

Generally, below the mass scale of superpartners, the phenomenology of
the MSSM is very similar to that of the standard model. This is because
R parity causes superpartners to appear an even number of times in any
vertex, which precludes them from inducing tree-level effective operators;
they can only appear in loops, and so their effects are suppressed by an
extra factor of O(α/π) relative to the generic prediction of particles in their
mass range. Therefore, for instance, the corrections to the ρ parameter and
other electroweak observables due to SUSY particles are generally within
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experimental bounds. However, there are some types of experimental re-
sults which are so precise that the added MSSM particles can conflict with
experiment.

The first problem arises due to the complicated flavor structure which the
soft SUSY-breaking terms allow. These terms introduce potentially compli-
cated flavor-changing interactions into the gauge and gaugino interactions
of the scalars. But we have seen that these flavor-changing interactions
are measured to be very small, with the success of the standard model de-
scription of K −K mixing relying crucially on delicate GIM cancellations.
However, the effective ∆S = ±2 interactions which are generated by loops
involving the flavor-changing scalar interactions generically do not similarly
cancel, leading to predictions which are too large compared with the ob-
served mixing. Agreement between theory and experiment requires special
properties, such as generation diagonal or generation blind mass matrices.

The same is true for CP -violation in the MSSM, because there are an
enormous number of phases which are possible within the many complex
parameters of the soft SUSY-breaking terms. These generically give un-
acceptably large effects for CP -violation in B mesons and nuclear dipole
moments unless these phases are chosen to be small, or the scalar masses
have special features.

Although it is difficult to draw a definitive conclusion without knowing
the kind of soft-breaking terms which are produced by the SUSY-breaking
sector, any successful SUSY-breaking proposal must explain why these CP -
violating and flavor-changing effects are acceptably small.

11.4 Dimension four: Triviality, θQCD, flavor problems

All of the interactions within the standard model apart from the two just
described – dimensions zero and two – have dimension four, and so have
dimensionless couplings. On one hand they can be sensitive to ultraviolet
scales and so it is useful to look for cases where phenomenology requires us to
make unusual choices for these couplings. On the other hand, the ultraviolet
sensitivity is only logarithmic, and so it is likely that only contributions
from physics at extremely large scales can appear in an unnatural way. We
describe here three kinds of puzzles which are driven by the observed pattern
of dimension-4 interactions in the standard model.
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11.4.1 Triviality

We saw in Chapter 7 that the electromagnetic and strong couplings vary with
scale. As the energy scale considered becomes larger, the strong coupling
becomes weaker, see Eq. (7.42), a property called asymptotic freedom. The
electromagnetic coupling, on the contrary, becomes larger as we explore
more ultraviolet scales, see Eq. (7.41).

There is a potential problem with a theory where the coupling grows when
it is run up to higher energies. It is possible that the coupling could become
infinite at some finite energy scale, Λ. Indeed, if trusted, Eq. (7.41) would
indicate that α, considered as a function of lnµ, diverges as µ approaches
an ultraviolet scale ΛL, called the Landau pole;

1
α(µ)

=
1

α(µ′)
+ bem log

(
µ′2

µ2

)
implies

1
α(ΛL)

= 0 for ΛL = µ exp
(

1
2bemα(µ)

)
, (11.21)

with ΛL > µ because bem > 0.
Of course, just because perturbation theory may indicate that a coupling

diverges in this way doesn’t mean that it really does diverge, because the
coupling becomes large before becoming infinite and at some point pertur-
bative tools are no longer reliable for studying its evolution. However, for
scalar field theories and abelian gauge theories there are numerical, strong-
coupling calculations which give sound reasons for believing that some cou-
plings really can diverge at approximately the scale implied by a perturbative
calculation like the one above.

Theories for which couplings diverge in this way are often referred to as
‘trivial’ – hence the name triviality problem – because the only way they
can make sense, unmodified, to arbitrarily high energy scales is if the renor-
malized coupling is zero (hence, a trivial theory). But the nature of the
problem is different within the point of view that the theory of interest is
an effective theory which is only meant to describe the low-energy limit of
some more fundamental, as-yet-undiscovered, higher-energy physics. Since
a low-energy theory with a triviality problem cannot make sense up to arbi-
trarily high energies, it must be replaced at higher energies by an ultraviolet
completion: that is, some other kind of theory involving new degrees of
freedom and interactions, whose presence changes the physics in some way
which prevents the coupling of interest from diverging. (Alternatively, the
coupling might not be defined at all, such as would happen if the particles
whose couplings it describes were bound states which don’t appear in the
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new theory of their constituents which supersedes at higher energies). From
this point of view triviality problems are interesting because they provide a
clue as to what goes on at higher energies, by indicating an upper limit on
the energy where this the new physics must be.

There are similarities and differences between this situation and the ap-
parent divergence of an asymptotically-free coupling, like that of QCD. In
both cases the development of a strong coupling at a particular scale points
to the appearance there of interesting, possibly strongly-interacting, physics.
In both cases it can happen that the coupling of interest does not even ap-
pear in the new effective theory that intervenes at this scale. The main
difference is that for theories like QCD this new theory intervenes at low
energies, and so the degrees of freedom it involves have their roots in the
particles of the asymptotically-free microscopic theory which underlies it
(e.g. the hadrons are built as bound states out of the quarks and gluons of
QCD, with a known dynamics). Much less can be said for couplings which
diverge in the ultraviolet, since so much less is known about the new degrees
of freedom which might arise there, apart from the scale above which they
must appear.

Within the standard model we can ask the perturbative part of the prob-
lem: Is there a scale above which the perturbative running of the dimen-
sionless couplings drives us beyond the domain of perturbation theory? We
can already see from Eq. (7.41) that this does occur for QED, although
for QED we know that the standard model itself intervenes well before the
Landau pole is reached. It also occurs in the standard model itself, how-
ever, as we now see by computing the relevant running explicitly. There are
three kinds of dimensionless couplings whose evolution must be followed:
the gauge couplings, the Yukawa couplings, and the dimensionless Higgs
self-coupling. The gauge couplings run according to the simple equations
discussed in chapter 7,

16π2 µ2 dg1

dµ2
=

41
12

g3
1 , 16π2 µ2 dg2

dµ2
= −19

12
g3
2 and 16π2 µ2 dg3

dµ2
= −7

2
g2
3 .

(11.22)
The running of the Yukawa couplings is described by the more complicated
relations

16π2 µ2 dfmn

dµ2
=

3
4
fmpf

∗
qpfqn +

1
2
fmn

(
Y 2 − 9

4
g2
1 −

9
4

g2
2

)
, (11.23)

16π2 µ2 dgmn

dµ2
=

3
4
gmpg

∗
qpgqn − 3

4
gmph

∗
qphqn
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+
1
2
gmn

(
Y 2 − 17

12
g2
1 −

9
4

g2
2 − 8g2

3

)
, (11.24)

16π2 µ2 dhmn

dµ2
=

3
4
hmph

∗
qphqn − 3

4
hmpg

∗
qpgqn

+
1
2
hmn

(
Y 2 − 5

12
g2
1 −

9
4

g2
2 − 8g2

3

)
, (11.25)

where Y 2 ≡ 3h∗pqhpq + 3g∗pqgpq + f∗pqfpq ,

and the Higgs self-coupling satisfies

16π2 µ2 dλ

dµ2
=

(
−9g2

2

2
−3g2

1

2
+6hmnh∗mn+6gmng∗mn+2fmnf∗mn

)
λ

+12λ2 +
9
4
g2
2 +

9
8
(g2

2+g2
1)

2 − 3hmnh∗pnhpqh
∗
mq

−3gmng∗pngpqg
∗
mq − fmnf∗pnfpqf

∗
mq . (11.26)

Although we write here the complete matrix structure for the Yukawa cou-
pling matrices fmn, gmn, and hmn, in practice one can neglect all Yukawa
couplings except those appearing in mt, mb, and mτ , and if this is done then
each can be considered as a single parameter.

No general closed-form analytic solution is known for these equations, but
they are relatively straightforward to evolve numerically, and we can say a
good deal about their behavior even without doing this. First, we see that
g2 and g3 are asymptotically free. There is no danger that they will grow
at ultraviolet scales. Also, g1 is fairly small, and the lepton and down-
type quark Yukawa couplings, fmn and hmn, are tiny; since dg1/d ln µ ∝ g3

1

and dfmn/d lnµ ∝ fmn and similarly for hmn, this prevents these couplings
from diverging unless we consider extremely ultraviolet scales, µ À Mp ≈
1019 GeV. But we expect new physics to intervene in any case before these
scales because of the nonrenormalizability of the gravitational interactions.
Therefore, we should not be concerned about the UV behavior of these
couplings. Since the top-quark Yukawa coupling, g33, is quite large, it is
not obvious that the same holds for it; but the negative g2

3 gmn term turns
out to hold this coupling in check, so g33 does not grow divergently before
the gravitational scale. Provided new physics enters somewhere below the
gravitational scale, triviality has no implications for these couplings.

The potentially problematic coupling is the Higgs scalar self-coupling, λ.
The numerical value of this coupling, which is related to the Higgs mass,
is not known; indeed it is not even known experimentally whether a single
Higgs field is the correct description of how electroweak symmetry-breaking
occurs in nature. We nevertheless press on and assume that it is, in order
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to find what we can learn about the Higgs mass from the assumption that
the standard model provides a good description well into the ultraviolet.

The running of λ introduces two potential dangers. Besides checking to
see if λ gets driven to be large at high energies – the triviality problem – we
must also check to see if it changes sign, since λ > 0 is a crucial for obtaining
a Higgs v.e.v. v ∼ µ/λ. Negative λ instead indicates that both the φ†φ and
(φ†φ)2 terms in the Higgs potential prefer to drive φ†φ to large values. (For
a quartic potential positive λ also is required to keep the energy bounded
from below, but we do not know that the potential need be strictly quartic
at large fields once loop corrections are large enough to change the sign of λ.)
If λ becomes negative at any renormalization scale µ = M , then we expect
that the true vacuum has a Higgs expectation value, v, of order the largest
scale where we reliably know λ < 0, which would imply the unacceptable
result v À 246 GeV.

Both of these possible dangers arise. Indeed, if λ is small then the presence
of the negative term proportional to −g4

mn in the standard model running
can cause λ to become negative. Since this occurs within the weak-coupling
regime, its description using the equations governing perturbative running
should remain valid. Numerical study of the renormalization group equa-
tions show that, if we require the standard model to be valid right up to
the scale of µ = Mp ∼ 1019 GeV, then the Higgs boson mass must satisfy
mH > 130 GeV to prevent λ from becoming negative at some ultraviolet
scale below Mp. This constraint weakens if new physics is allowed to inter-
vene at scales lower than Mp.

If, on the other hand, λ is large, then the dominant term in its evolution is
the λ2 term, which causes it to grow with scale. This can lead to a runaway
behavior in which λ leaves the domain of perturbation theory at some finite
renormalization scale, ΛL. If we neglect the other terms in favor of the λ2

term, we find

µ2 dλ

dµ2
=

12λ2

16π2
⇒ 1

λ(µ)
=

3
4π2

log

(
Λ2

L

µ2

)
, (11.27)

which shows that perturbation theory indicates that new physics must in-
tervene at energies lower than ΛL ∼ µ exp[2π2/3λ(µ)]. While this result
is based on a perturbative treatment which breaks down when λ is large,
because only λ is involved the large-λ regime should be well-described by
nonperturbative (lattice) studies of purely scalar field theories, and these
indicate that the coupling really does diverge. If we therefore demand that
the standard model be a complete theory all the way up to Mp ∼ 1019 GeV,
so that ΛL > Mp, the Higgs mass must have an upper bound mH

<∼ 180
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GeV. Again, this constraint weakens if the standard model is only required
to be a complete theory up to some less ultraviolet scale.

In summary, the standard model’s triviality problem brings both good
news and bad news. The good news is that it shows that the standard
model cannot be a complete theory at all scales, because there is then no
value of the Higgs self-coupling for which λ is always finite and positive.
The bad news is that the scale above which triviality implies it must fail
is exponentially large compared with the electroweak scale, and it could be
as large as Mp, before which we know in any case that something has to
happen because of the nonrenormalizability of gravity. How much this tells
us depends on how heavy the Higgs proves to be, once it is discovered. If
130 GeV < mH < 180 GeV it is logically possible there the first new scale
which is encountered is the lepton-number-violating scale to which neutrino
masses appear to point. However, the larger mH is, the lower is the triviality
scale, with eventually mH meeting ΛL slightly below 1 TeV. If the Higgs is
sufficiently heavy, then new physics is likely nearby.

11.4.2 The strong CP problem*

Every renormalizable interaction which could appear in the standard model
is actually present with a nonzero coefficient, except for one; the parameter
Θ3, introduced in Eq. (2.13). Present constraints on the size of the neutron
electric dipole moment imply that it must be smaller than ∼ 10−9. This
remarkably small magnitude ensures that low-energy QCD is approximately
P and CP conserving; the puzzle of why the value should be so small is called
the strong CP problem.

One might ask: what is wrong with simply choosing Θ3 = 0? Within
the standard model this choice must be made at a particular scale, for in-
stance somewhere above the Z or t-quark mass. Since the weak interactions
also break C and CP, Θ3 will renormalize (or run) due to loops involving
standard model particles, and so will be nonzero at the low energies where
neutron dipole moments are measured. Within the standard model the re-
sulting nonzero value is less than 10−15, however, and so is too small to be
detected in existing experiments. This shows that it is consistent simply
to choose the value of Θ3 to be small within the standard model, and that
phenomenologically-small values for Θ3 do not pose a naturalness problem
for the standard model itself.

Such a small value for Θ3 is nevertheless rather surprising. Furthermore,
the small size of Θ3 often does become a naturalness problem once the
standard model is embedded into a more microscopic theory, such as within
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the supersymmetric extensions discussed above. For this reason we describe
in this section a fairly mild modification of the standard model for which
the small size of Θ3 could be made to ‘relax’ to zero. It can do so because
in the modified theory Θ3 is related to the expectation value for an almost-
massless new scalar field (called the axion), for which the dynamics favors
configurations with Θ3 = 0. Although the particle associated with this axion
field is very light, it could have escaped detection so far because it couples
to the other standard model fields only through small nonrenormalizable
interactions.

Another reason we examine the strong-CP problem is that its discussion
provides a vehicle for describing some important features of the QCD ground
state, which are interesting in their own right. However this discussion
involves more advanced techniques in quantum field theory than does the
rest of this book, and for this reason this section is somewhat technical and
can be skipped on a first reading. Limitations of space also only permit us
to sketch some of the main ideas without giving complete details.

11.4.2.1 The QCD Vacuum Angle

The physical implications of a term in the Lagrangian of form,

LΘ = Θ3
g2
3

64π2
εµναβGa

µνG
a
αβ , (11.28)

are not immediately obvious, and require some discussion. The first puzzle
is that the quantity Θ3 multiplies is in fact a total derivative, which one
might therefore expect not to matter at all. Explicitly, one may write,

g2
3

64π2
εµναβGa

µνG
a
αβ = ∂µKµ , (11.29)

Kµ ≡ g2
3

32π2
εµναβ

(
Ga

νG
a
αβ −

g

3
fabcG

a
νG

b
αGc

β

)
.

Because of this property, the spacetime integral of the term multiplying Θ3

is determined by the change in the charge
∫

d3xK0 ≡ NCS between initial
and final surfaces;

g2
3

64π2

∫
d3x

∫ tf

ti

dtεµναβGa
µνG

a
αβ =

∫
d3xK0(x, tf )−

∫
d3xK0(x, ti)

≡ NCS(tf )−NCS(ti) , (11.30)

where we assume boundary conditions which ensure the vanishing of contri-
butions from spatial infinity. The quantity NCS is called the Chern-Simons

number of the gauge field configuration.
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Even though Θ3 multiplies a total derivative, it can have physical impli-
cations, because the change in NCS need not be zero in a vacuum to vacuum
process. This is because the QCD vacuum is topologically nontrivial; there
exist gauge field configurations for which Ga

µν = 0, and yet NCS 6= 0. The
easiest way to see this is simply to present an example. The field,

Aa
i (x) =

2
g3

(
dθ

dr
x̂ix̂a +

sin 2θ

2r
(δia − x̂ix̂a)− sin2 θ

r
εiaj x̂j

)
, θ ≡ πρ2

ρ2 + r2
,

(11.31)
(with Aa=4,...8

i = 0 and ρ some length scale) satisfies NCS = 1 even though
Ga

µν = 0. Since the classical Hamiltonian vanishes when evaluated at config-
urations having vanishing field strength, such fields are associated with the
vacuum semiclassically. Topology enters by ensuring that NCS does not take
arbitrary values; there is a topological theorem which shows that NCS is an
integer whenever it is evaluated for a configuration for which Ga

µν(x) = 0
everywhere on a fixed time surface. A 4-dimensional gauge-field configura-
tion, Aa

µ(x, t), with the property that NCS(t À 0)−NCS(t ¿ 0) = 1 is called
an instanton.

These observations have the following physical implication. The existence
of the charge NCS implies that the QCD ground state is not unique, but
instead consists of a collection of degenerate states which are distinguished
by their eigenvalue for NCS . The significance of LΘ is that it assigns the
following phase to any transition between two vacuum states having different
values for NCS . That is, if |a〉 has eigenvalue NCS(a) and |b〉 has eigenvalue
NCS(b), then

〈b | a〉 = 〈b | a〉Θ3=0 exp [iΘ3(NCS(b)−NCS(a))] . (11.32)

It is clear from this that Θ3 is only defined modulo 2π; since a shift by this
amount has no physical significance. Furthermore, this phase shares the
symmetry properties of NCS , and because εµναβ is P and T odd, so is NCS .
NCS is C even because Ga

µν appears within it an even number of times. The
presence of LΘ associates a phase, Θ3, to the QCD ground state, and the
physics of this phase breaks P and CP but not C (or CPT).

For later purposes we note in passing that, strictly speaking, the existence
of the nonzero matrix element, Eq. (11.32), lifts the degeneracy between the
states |a〉 and |b〉, leading to a ground state which is instead the following
linear combination of these states

|0θ〉 =
∑
n

exp(iθn)|n〉 , (11.33)

where NCS |n〉 = n|n〉. Such a vacuum is called a theta vacuum, and has an
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energy which depends on Θ. Notice we can absorb the parameter θ into a
shift in Θ3, in which case the vacuum becomes |0〉 =

∑
n |n〉. We implicitly

make this shift in what follows.

11.4.2.2 The Axial Anomaly (Again)

When fermions (like quarks) are present Θ3 does not, in general, give the
only phase associated with a ∆NCS 6= 0 transition. There can also be phases
associated with fermions couple to the instanton which mediates the transi-
tion. This fermionic phase is associated with the anomaly in the approximate
axial symmetries of QCD, which were first encountered in subsection 2.5.3.

As we saw in section 2.5, and discussed in much more detail in section 8.3,
the QCD has approximate axial symmetries under which the left and right
handed components of the light quark fields are rotated in opposite direc-
tions. For instance, for the up quark: u → exp(iγ5θu)u. The associated
axial current,

Jµ
u5 ≡ iūγµγ5u , (11.34)

would be exactly conserved were it not for two things; the small up-quark
mass, which breaks this symmetry, and the axial anomaly. The current’s
nontrivial gauge anomaly is Tr(T5{Ta, Tb}) = g2

3δab, and so if we ignore the
quark mass Eq. (2.126) implies the axial current is not conserved by the
amount

∂µJµ
u5 =

g2
3

32π2
εµναβGa

µνG
a
αβ . (11.35)

The relevance of these facts for the present discussion is revealed once
both sides of this last expression are integrated over space and time, since
this shows that the axial charge, Qu5 ≡

∫
d3xJ0

u5, changes by an amount

Qu5(tf )−Qu5(ti) = 2[NCS(tf )−NCS(ti)] . (11.36)

This shows that an instanton process also changes the axial-quark number by
two units (for massless quarks). By considering separately the contribution
from the right- and left-handed components of the current, iūγµPL u and
−iūγµPR u, one can show that this arises through the creation of a left-
handed particle (or destruction of its antiparticle) and the destruction of a
right-handed particle (or creation of its antiparticle).

The above reasoning shows that there would be no vacuum-to-vacuum
instanton processes if any of the quark masses vanished, because it proves
that these processes would instead produce a quark and an antiquark, and so
would therefore not take the vacuum into the vacuum. For massive quarks,
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the mass term in the Lagrangian allows these particles to annihilate one
other, so the instanton process remains vacuum-to-vacuum after all.

Although instanton processes can relate ground states when all quarks
are massive, in the presence of fermions the phase which appears in the
amplitude of Eq. (11.32) is no longer given purely by Θ3. Instead, the full
phase associated with an instanton process is

Θ̃3 ≡ Θ3 +
∑
q

Arg mq = Θ3 + Arg Det [g h] , (11.37)

with
∑

q running over all quark flavors, and g and h denoting the Yukawa-
coupling matrices gmn, hmn of Eq. (2.25).

This expression requires some explanation because to this point we have
generally chosen the mass parameters for all quarks to be real, and so for
which Arg mq = 0. If a quark mass parameter in the lagrangian were not
initially real, we were always free to make it real (and non-negative) by per-
forming a field redefinition under which the relevant quark field was rotated
by an axial transformation. Within the standard model the only term which
was changed by this rotation was the charged-current weak interaction, and
as a consequence this redefinition pushed any phases into the CKM matrix.
However, since this argument proceeds at the classical level, it ignores the
axial anomaly. Once the axial anomaly is taken into account, it turns out
that the redefinition which removes phases from the quark mass matrix also
shifts the Θ3 term in the QCD Lagrangian, in such a way that the quantity
Θ̃3 remains unchanged. Because of this, only the quantity Θ̃3, not Θ3, is
independent of field redefinitions, and so is physical quantity which deter-
mines whether P and CP are violated in QCD. When Θ̃3 = 0, CP is only
violated by the phase in the CKM matrix, and so the strong-CP problem
really asks why Θ̃3 is small, not Θ3.

11.4.2.3 Neutron electric dipole moment

It is a complicated problem to compute how a nonzero value for Θ̃3 causes CP
violation in physical observables. We restrict ourselves here to summarizing
more detailed calculations of how Θ̃3 contributes to the neutron electric
dipole moment, since this furnishes the strongest constraint.

Section 9.1 argued that the low-energy behavior of hadrons can be de-
scribed by an effective theory involving hadron fields rather than quarks. If
CP is not a good symmetry, this Lagrangian can have a term

Ledm = − idn

8
εµναβFµν n̄[γα , γβ]n , (11.38)

with Fµν = ∂µAν − ∂νAµ being the usual electromagnetic field strength.
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This term resembles the magnetic-dipole term of Eq. (9.2), except for the ap-
pearance of the antisymmetric tensor εµναβ . Following the reasoning which
leads to Eq. (9.5) now gives an interaction with an slowly-varying back-
ground electromagnetic field of the form

Hd = −dn(n̄ σn) ·E , (11.39)

which describes an electric dipole moment for the neutron.
A rough estimate for the size implied for dn when Θ̃3 6= 0 can be found

on dimensional grounds, giving dn ∼ eΛ−1
QCDΘ̃3. In fact this turns out to

be an overestimate, since we saw that the physical implications of the angle
Θ̃3 can be removed by a harmless field redefinition if any quarks become
massless. This implies that dn must vanish if either mu = 0 or md = 0.
Since both are smaller than the scale ΛQCD, a better estimate would be

δn ∼ emumd

(mu + md)Λ2
QCD

Θ̃3 . (11.40)

This is to be compared with the experimental value,

|δn| < 6× 10−26e cm , (11.41)

leading to the constraint Θ̃3 < 5 × 10−10. A more careful treatment using
chiral perturbation theory gives approximately the same answer. The neu-
tron electric dipole moment currently provides the strongest constraint on
Θ̃3.

Is it reasonable to expect the combination Θ̃3 to be exactly zero? We know
relatively little about the origin of the Yukawa matrices gmn, hmn; from the
point of view of the standard model, they are parameters to be determined
from experiment. We do know that these matrices are in general complex,
and when we diagonalize them as in subsection 2.3.3 and Eq. (2.90), the
resulting CKM matrix is complex, with a phase δ13 of Eq. (2.90) which is
not small. This shows there is no evidence that the Yukawa matrices should
not be complex, with entries having O(1) phases. We therefore expect that,
even if for some reason Θ3 = 0, the phases in the Yukawa matrices should
lead to a Θ̃3 which is O(1). Although within the standard model it is
technically natural to have Θ̃3 small, it would be preferable if there were a
physical mechanism which makes it so.

11.4.3 Proposal: Axions

The axion proposal posits that a new real scalar field a is added to the
standard model. This field is assumed to be a Goldstone boson for an
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approximate axial symmetry, carried by at least one of the quarks. If this
symmetry were to be exact, the axion would therefore couple exclusively
through derivatives, and so possess a shift symmetry, a → a+ε, for constant
parameter ε. It is assumed that this symmetry is broken by standard model
anomalies, which make this shift symmetry only approximate.

With these assumptions, the allowed Lagrangian terms are,

La = −1
2
∂µa ∂µa + Jµ∂µa− a

64π2fa

[
g2
3ε

µναβGb
µνG

b
αβ (11.42)

−k2g
2
2ε

µναβW b
µνW

b
αβ − k1g

2
1ε

µναβBµνBαβ

]
.

Here fa is an unknown constant with dimensions of mass, and

Jµ = iψ̄i,mγµ (Ximn+iYimnγ5) ψi,n + Xφ(φ†iDµφ + h.c.) (11.43)

denotes the part of the Noether current for the axion symmetry which de-
pends on standard model fields. The dimensionless coefficients Ximn, Yimn

and Xφ are model-dependent and depend on how the symmetry acts on
the various fields. The index i runs over [Q,U,D, E,L], and m and n are
generation indices. As written, the coefficients Ximn are antisymmetric and
Yimn are symmetric under m ↔ n. The constants k1 and k2 express the
SUL(2)×UY (1) part of the anomaly for the axion symmetry, and the corre-
sponding quantity for QCD has been assumed to be nonzero and absorbed
into the definition of fa.

Notice that all of the interaction terms written are dimension 5, and lower-
dimension interactions are forbidden by the assumed properties of the axion
shift symmetry. The quantity fa parameterizes the scale at which this sym-
metry is spontaneously broken (as must occur in order to have a Goldstone
boson) and this scale is assumed to be large compared with standard model
scales. Although the specific form for k1, k2, Ximn, Yimn, and Xφ, may be
important in studying the phenomenology of the production and detection
of axions, our interest here is in the interaction term with the gluon fields
since these are what allow the axion to solve the strong-CP problem.

The introduction of the field a is relevant to the strong-CP problem be-
cause its expectation value, 〈a〉, in a Poincaré-invariant vacuum is a constant
which does not vary throughout space, and when evaluated at such a con-
figuration La is exactly like LΘ, corresponding to a shift in the value of the
Θ angle by Θ̃3,eff = Θ̃3 + 〈a〉/fa. But expectation values are determined
dynamically, by minimizing energies, and if this minimization should choose
〈a〉 = −faΘ̃3, then the effect of the axion field will be to exactly cancel the
CP violating effect of Θ̃3, leading to P- and CP-invariant strong interactions.

Now, if the shift symmetry, a → a + ε, were exact, then the axion would
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be exactly massless and any value for 〈a〉 would be equally acceptable from
an energetic point of view. In this case we have gained nothing, since the
strong-CP problem is changed from why Θ̃3 is so small, to why the axion
field should take a special value of −faΘ̃3 in its vacuum.

However, as we have seen, the term LΘ can have physical significance
in the absence of massless quarks, since it appears in the matrix elements
which relate vacua having different values of NCS . It follows that in these
circumstances a shift in a does have physical effects, indicating that the
corresponding symmetry is broken. Since these show up through effects in-
volving NCS-changing processes (instantons), these are also the effects which
induce a potential, V (a), for the field a, with the true vacuum being the one
in which this potential is minimized.

In order to compute V (a) we must calcuate the energy per unit volume
associated with the field a taking on a constant value throughout space.
To this end, consider comparing the energies of two would-be vacua, |0, a1〉
and |0, a2〉, having different values of a. When computing their energy it is
convenient to assume the volume of space to take a finite but large value,
Ω, and to compute the following expectation value

〈0, a| exp(−Hτ) |0, a〉 = exp[−E(a)τ ] . (11.44)

The energy difference between the two configurations a1 and a2 is then

V (a1)−V (a2) = − 1
Ωτ

(
ln〈0, a1|e−Hτ |0, a1〉−ln〈0, a2|e−Hτ |0, a2〉

)
. (11.45)

This energy depends on a for the same reason that the energy of the
θ-vacuum depends on θ: exp(−Hτ) has an a-dependent matrix element
between states which have different eigenvalues for NCS . Using the freedom,
as discussed above, to write the vacuum as |0, a〉 =

∑
n |n, a〉, and using the

matrix element 〈n, a| exp[−Hτ ]|m, a〉 = exp[i(Θ̃3 + a/fa)(n−m)], leads to

exp(−τΩV (a)) =
∑
nm

〈n, a| exp(−Hτ)|m, a〉

=
∑
nm

Vmn exp[i(m− n)(Θ̃3+a/fa)] , (11.46)

where

Vmn = 〈n, a = 0, Θ̃3 = 0| exp[−Hτ ]|m, a = 0, Θ̃3 = 0〉 , (11.47)

which is real and positive.†
† The reality of this quantity ultimately follows from unitarity. In the Euclidean signature used

here, for which the action is purely real when the Θ3 term is absent (up to a tiny correction due
to CP-violation in the electroweak sector), it is positive because of a property called reflection
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Now comes the main point: this expression is maximized — and so V (a)
is minimized — when the phases are all zero, which occurs precisely at the
CP-preserving value a = −faΘ̃3. Therefore, the correct vacuum value of a,
obtained by minimizing the energy, is automatically the one which ensures
the P and CP conservation of QCD.

In order to compute the mass of the particle associated with the scalar
field, a, we must compute the curvature of the effective potential, V (a), near
its minimum,

m2
a =

(
∂2V (a)

∂2a

)

min

. (11.48)

This requires an evaluation of Vmn, which can be shown (using a field-
theoretic calculation we do not present) to be given in the large-Ω limit
by

Vmn ∼ exp

[
−(n−m)2

2χΩτ

]
, (11.49)

where χ is called the topological susceptibility, in terms of which the mean-
squared change in NCS is given by χΩτ , with χ ∼ mumdΛ3

QCD/(mu + md).
χ can be computed in detail using lattice gauge theory techniques.

For notational convenience we denote the difference between a and its
value at the minimum of V by ã = a − amin. Expanding V (a) for small ã

gives

exp(−ΩτV (a)) ∝
∑
nm

ei(m−n)ã/fa 〈n| exp(−Hτ)|m〉

∝
∑
nm

ei(m−n)ã/fa exp

[
−(n−m)2

2χΩτ

]

=
∑
n

einã/fa exp

(
− n2

2χΩτ

)

∼
∫

dn exp

(
inã

fa
− n2

2χΩτ

)

∝ exp

(
− ã2χΩτ

2f2
a

)
. (11.50)

Therefore, up to an irrelevant additive constant,

V (ã) =
(

χ

2f2
a

)
ã2 , (11.51)

positivity , which is a consequence of unitarity. Further discussion on this point lies outside
the scope of this book.
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and so

m2
a =

χ

f2
a

. (11.52)

This shows that the axion mass is inversely proportional to fa and propor-
tional to the square root of the topological susceptibility.

The larger the value of fa, the lighter axions would be, and the weaker
would be their interactions with normal matter. Unfortunately, fa is a
parameter of the model which can a priori take on any value. However, it
is subject to experimental bounds based on the failure to find evidence for
axions despite numerous searches. Direct laboratory searches rule out the
lowest values of fa, and astrophysical bounds provide further limits because
unless fa is very large, axions would be produced in red giant stars and
supernovae more copiously than observations of those bodies would allow.
Considering these systems leads to a limit of approximately ma < 10−3 eV,
or fa > 1010 GeV.

Cosmology also provides an upper limit on fa. It does so despite the
fact that very light axion particles are very hard to produce, since their
interactions scale inversely with fa. However the dominant axion energy in
the early universe comes from coherent axion fields not lying at the minimum
of their potential, and the resulting axionic energy density is proportional to
fa. Since this energy density falls with the universal expansion only as fast
as does non-relativistic matter (and so more slowly than does radiation), the
mass density of axions remaining from early-universe production can easily
exceed the mass density actually observed in the universe. This places a
lower bound on fa, corresponding to ma > 10−6 eV, which is somewhat
dependent on the cosmological model. On the other hand, if axions are
just now close to dominating the universal energy density, they make an
ideal candidate for the universal cold dark matter which appears to make
up about 25% of the energy density of the universe.

At the time of this writing (2005), there is no evidence for the existence of
axions. However, heroic experimental efforts should soon be sensitive to any
relic axions left over from the big bang, relying for their detection on the
axion’s interaction with electromagnetic fields due to the k1 and k2 terms of
the lagrangian, Eq. (11.42), and if these are nonzero should either discover
or rule out the axion within the relatively near future.

11.4.4 The flavor problem

Another puzzle which involves the dimension-4 couplings asks: What is the
origin of the observed pattern of quark and lepton masses and mixings?
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These are built into the standard model through the values taken by the
dimensionless Yukawa couplings, but the model would have made equally
good sense regardless of what values these couplings took (provided they
were small enough to justify the perturbative analysis). As such the standard
model provides a description of, but not an explanation for, these masses
and mixings. The puzzle of explaining these masses and mixings is called
the Flavor Problem.

A considerable amount of thought has been put into coming up with possi-
ble explanations of the observed mass patterns, typically through variations
of the idea that physics at energies higher than the electroweak scale en-
joys an exact or approximate symmetry which acts on the generation labels
of the standard model fermions (or the constituents from which they are
made, if the standard model fermions are composites). The pattern of fer-
mion masses then becomes related to the physics which breaks this ‘family’
symmetry. What makes this kind of model-building challenging is the diffi-
culty in ensuring the GIM-type suppression of flavor-changing interactions
once this symmetry is broken. At present there is no compelling picture
along these lines which explains the kinds of masses and mixing matrices
which are observed.

Although a full theory of nature would hopefully explain the observed
masses and mixings, we emphasize that the flavor problem is not a natural-
ness problem in the same sense as are the hierarchy or cosmological constant
problems. That is because once the pattern of Yukawa couplings is chosen in
a microscopic theory, including very small values like the electron’s Yukawa
coupling ye = me/v = 2× 10−6, these small couplings remain small as suc-
cessive particles having very high energies are integrated out. Since these
couplings remain small as high scales are integrated out, it is logically pos-
sible that we may not learn why the fermion masses and mixings are what
they are until we understand the physics of extremely high energies, perhaps
not even until we reach scales µ ∼ Mp. Contrast this with the situation for
the hierarchy problem, which requires something new to happen not too far
above the electroweak scale, or the cosmological constant problem, which
seems to require something new already at energies as low as 10−3 eV.

The fermion Yukawa couplings remain small under renormalization be-
cause they renormalize multiplicatively. That is, the corrections to a cou-
pling are proportional to the coupling itself. This can be seen directly from
the one-loop running equations, which are given explicitly in Eq. (11.23).
Evaluating these within a mass basis, for which the Yukawa matrices are di-
agonal and real, leads to the an evolution equation for any diagonal element,
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yn, which has the form

16π2µ2 dyn

dµ2
= yn

[
a1g

2
1 + a2g

2
2 + a3g

2
3 +

∑

k

cky
2
k

]
, (11.53)

where the ar’s and ck’s are known dimensionless constants.
If yn is initially small, then its cube can be neglected on the right-hand

side of this equation, leading to the formal solution

yn(µ) = yn(µ0) exp

[∫ ln µ2

ln µ2
0

A(t)dt

]
, (11.54)

where

A =
1

16π2


a1g

2
1 + a2g

2
2 + a3g

2
3 +

∑

k 6=n

cky
2
k


 . (11.55)

For instance, if the other couplings slowly vary, so A is approximately con-
stant, then yn(µ)/yn(µ0) = (µ/µ0)2A. We see from this that [yn(µ) −
yn(µ0)]/yn(µ0) ∼ 2A ln(µ/µ0) for small A, showing that yn doesn’t change
in order of magnitude even when run over many decades of scales.

There is a good reason why the diagonal Yukawa couplings in the mass
basis renormalize multiplicatively in this way. They do so because in the
limit where a diagonal element vanishes, yn = 0, the corresponding fermion
becomes massless. But in this limit the theory acquires a new symmetry,
corresponding to axial rotations of this massless fermion. It is this symmetry
which ensures that yn = 0 is a fixed point of the running equations, and so
ensures that every term on the right-hand side of Eq. (11.53) must involve
at least one power of yn.

11.5 Dimension six: Baryon number violation

The standard model represents the most general possible renormalizable La-
grangian consistent with the assumed field content and gauge symmetries.
At the nonrenormalizable level the same choice of symmetries and field con-
tent allows only one new type of interaction at dimension five — whose
implications are examined in subsection 10.4.2 for neutrino masses. After
dimension five comes the deluge, however, with a host of possible effective
interactions arising at dimension six. These interactions describe the domi-
nant contributions of very massive particles to a wide variety of observable
deviations from standard model predictions, some of which are explored in
problem 2 and problem 4 of this chapter.

Unlike the previous sections, which presented potential problems for the
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standard model, the dimension 6 operators represent a success. The renor-
malizable standard model predicts that they should all be absent, and in-
deed, no evidence currently exists for any of these operators, and the limits
on some of them are quite restrictive. Instead, dimension 6 operators should
be seen as an opportunity: they are the most natural place to look if we ex-
pect the standard model (augmented with dimension 5 operators) to break
down.

Rather than trying to survey all dimension 6 operators, in this section we
focus instead only on those dimension-six interactions which violate baryon-
number conservation. The interactions we find are the lowest dimension
possible which do so, and as such can be expected to capture robustly the
low-energy implications of any very high energy baryon-number violating
physics.

11.5.1 Baryon number violation

There are six possible dimension-6 baryon-number violating interactions
consistent with the standard model field content and gauge symmetries,
LB =

∑6
I=1 cI

mnpqOI
mnpq + h.c., where

O1
mnpq = εαβγεij [Qi

mγPL Lj
n][DpαPR Uqβ]

O2
mnpq = εαβγεij [Qi

mαPL Qj
nβ ][UpγPR Eq]

O3
mnpq = εαβγεijεkl [Q

i
mαPL Qj

nβ][Qk
pγPL Ll

q]

O4
mnpq = εαβγ(τaε)ij(τaε)kl [Q

i
mαPL Qj

nβ][Qk
pγPL Ll

q]

O5
mnpq = εαβγ [DmαPR Unβ][UpγPR Eq]

O6
mnpq = εαβγ [UmαPR Unβ ][DpγPR Eq] . (11.56)

Here, as before, α, β, γ = 1, 2, 3 denote color-triplet indices; i, j, k, l = 1, 2
are SUL(2)-doublet indices and m, n, p, q = 1, 2, 3 are generation labels.
Any other ∆B 6= 0 interaction (such as those involving γµ or γµν) can
be rewritten as a linear combination of these six, possibly after the use of a
Fiertz rearrangement of the fermions (see chapter 1, problem 9).

On dimensional grounds, the effective couplings for these interactions are
inversely proportional to two powers of a heavy mass: cI

mnpq = c̃I
mnpq/M

2,
where M represents the mass scale at which baryon-violating interactions
arise and the dimensionless couplings, c̃I

mnpq, contain any relevant loop or
coupling-constant factors. To the extent that processes which violate baryon
number are rare we expect that M must be very large.

Since the dimension-six interactions of Eq. (11.56) satisfy ∆B = ±1, they
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can mediate proton decay, a process which is absolutely forbidden within
the standard model. Experimental searches for proton decay are clearly
of considerable interest, since there are no fundamental principles which
preclude its occurence (unlike, say, violations of electric-charge conservation,
whose presence would ruin Uem(1) gauge invariance and so also destroy
the unitarity of photon interactions), even though we also understand why
they have not been observed to date (the accidental B conservation of the
renormalizable interactions of the standard model). Since ∆B = ±1 for all
dimension-6 terms, ∆B = ±2 processes — like nn oscillations — can only
proceed suppressed by even more powers of 1/M , and so should occur with
negligibly small rates.

Despite diligent searching, proton decay has never been observed. As of
this writing (2005), the present lower limit for proton decay into the πe+

channel is τ > 1.6× 1033 years (90% CL). On dimensional grounds, the pre-
diction is of order τ−1 ∼ |cI |2m5

p (where mp is the proton mass and cI is the
relevant effective coupling). This gives an upper bound |cI | <∼ (1016 GeV)−2.
This points to an enormous mass scale, which is interestingly close to the
1014 GeV mass scale indicated by the dimension-5 description of neutrino
masses, as well as to the upper limit, Mp ∼ 1019 GeV, before which we
know new gravitational physics must arise. As we shall see, within Grand
Unified theories (see below) there is also a second line of evidence (coupling
unification) which points to this same mass scale.

Identifying the dimension-6 operators allows an efficient identification of
the selection rules which any ∆B 6= 0 process like proton decay must satisfy,
subject only to the assumption that only standard model particles partici-
pate. Inspection of the operators of Eq. (11.56) reveals several of these:

• All of these interactions satisfy the selection rule ∆B = ∆L, which implies
that protons must decay into anti-leptons, allowing p → π0`+ or n →
π−`+ but forbidding p → π+π0, p → π+π+π− or n → π+`−. This shows
that the standard model field content ensures that B − L conservation is
automatically conserved at low energies to a better approximation than
B conservation, regardless of whether or not this is true for the higher-
energy particles whose virtual effects are ultimately responsible for baryon
number violation. Hence, even if proton decay is observed and it satisfies
B − L conservation, this does not imply that B − L is exactly conserved
at much higher energies.

• All of the dimension-6 interactions satisfy sign∆S = − sign∆B. For
instance, any transition which lowers B by one unit can destroy zero, one
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or two strange quarks, but cannot create any strange quarks. This forbids
decays like p → K

0
`+ or n → K

−
`+.

• ∆S = 0 processes satisfy the isospin selection rule ∆I = 1
2 , and imply

relations like

Γ(p → π0`+
R ) =

1
2

Γ(n → π−`+
R ) =

1
2

Γ(p → π+ν) = Γ(n → π0ν)

and Γ(p → π0`+
L ) =

1
2

Γ(n → π−`+
L ) . (11.57)

More detailed predictions are possible if it is known that only a subset of
the dimension-6 operators contribute. For instance, in many Grand Unified
models it is known that low-energy baryon-number violating interactions are
generated by tree graphs involving the exchange of a super-heavy spin-one
particle, and such an exchange can only generate a linear combination of
interactions O1 and O2.

11.5.1.1 B-violation in the MSSM*

The key assumption on which the previous analysis relies is the presump-
tion that the nonrenormalizable interactions must be constructed only from
standard model fields. This assumption would not be true if physics at the
electroweak scale should prove to be supersymmetric, since it is then also
possible to construct interactions using the many superpartners which then
are also present.

We have already seen that once these fields are included it is possible
to have baryon-number violating interactions already at the renormalizable
level. In fact, this observation motivated the definition of R-parity, since the
assumption of R-parity invariance was sufficient to preclude baryon-number
nonconservation at dimension 4 or less. Due to the strong motivations which
supersymmetry has as a replacement for the standard model, we pause here
to describe the lowest-dimension B- and L-violating interactions which pre-
serve R-parity-invariance.

It turns out that both B and L breaking interactions are first possible
at dimension 5 in a supersymmetric and R-parity invariant world. These
can be described by the following three types of quartic interactions in the
superpotential of the low-energy supersymmetric theory:

(LLHUHU) , (QQQL) and (U U D E) , (11.58)

where all gauge and generation indices are suppressed. The first of these
is the supersymmetric extension of the ∆L = ±2 dimension-5 interaction
which we saw can describe neutrino masses using only standard model fields.
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Fig. 11.1. ∆B 6= 0 operator from a dimension-5 SUSY coupling.

The others are new, and rely for their existence on the presence of super-
partner fields, such as through dimension-5 quark-quark-squark-slepton in-
teractions.

Such dimension 5 interactions lead to loop corrections which induce di-
mension 6 ∆B 6= 0 interactions involving only quarks and leptons. For
instance, a quark-quark-squark-slepton interaction can be combined with
a renormalizable quark-squark-gaugino and lepton-slepton-gaugino interac-
tion in the loop graph of figure 11.1 to produce an effective 4-fermion 3-
quark/1-lepton interaction which can mediate proton decay. The blob in
the figure represents the dimension-5 coupling, the dashed line denotes a
squark or slepton and the double line is a gaugino. This graph leads to the
following estimate for the dimension-6 quark coupling,

c6 ∼
(

g2 mg

16π2M2
s

)
c5 , (11.59)

where cd is the effective coupling of the respective dimension-d interaction,
g is the relevant gauge coupling, mg is a gaugino mass and Ms denotes a
typical squark or slepton mass in the loop.

Recalling the bound |c6| <∼ (1016 GeV)−2 and taking g ∼ 0.3, mg ∼ 100
GeV and Ms ∼ 300 GeV leads to the estimate |c5| <∼ (1024 GeV)−1, which
is potentially problematic. It turns out that such an operator is typically
generated in high-energy models through the exchange of a superheavy bo-
son, leading to the estimate c5 ∼ y2/M , where y is of order the light-quark
Yukawa couplings, y ∼ mq/v ∼ 10−4. With such a choice, the bound on
c5 implies M >∼ 1016 GeV. We see that the observed proton decay rate is
consistent with baryon number violation as described by dimension-5 oper-
ators and new physics lighter than Mp only if the decay rate is suppressed
by small dimensionless couplings like y.

Supersymmetric theories for proton decay can also imply different selec-
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tion rules for nucleon decays. For instance, both of the baryon-number
violating contributions to the superpotential, Eq. (11.58), must involve at
least two generations of quarks, since color neutrality requires taking an
antisymmetric combination of the three color indices. Because the fields
involved in the superpotential are scalars and so obey Bose statistics, the
resulting term vanishes if evaluated with all fields having the same gener-
ation index. Once expressed in terms of a basis of mass eigenstates this
indicates that decays like p → π0e+ must be Cabbibo-suppressed compared
to those like p → π0µ+, say (although this suppression must be weighed
against the reduced phase space associated with having second-generation
fermions amongst the decay products).

11.5.2 Proposal: grand unified theories

Historically, baryon number violating interactions were initially considered
within the context of Grand Unified Theories (GUTs). These theories were
invented because of a dissatisfaction with the gauge structure of the standard
model, for which the gauge group has three independent coupling constants
corresponding to the three factors in the gauge group SUc(3) × SUL(2) ×
UY (1). The fermion content of the theory is also complicated, containing a
variety of fermions each of which transforms in a different way under the
gauge group, and each of which has separate Yukawa couplings to the Higgs
field.

On the other hand, if the gauge group were a simple group (see ap-
pendix B), like SU(N) or O(N), consisting of a single factor, then there
would be only one gauge coupling. Can the standard model be obtained
from such a gauge group through a process of spontaneous symmetry break-
ing, in the same way that the gauge group SUc(3) × Uem(1) emerges from
the standard model gauge group at the electroweak scale?

This turns out to be possible, and the framework for so doing is surpris-
ingly simple and elegant. As a result, such unified models have captured the
imagination of physicists, even though there is not yet any evidence that
this actually happens in nature — with one tantalizing exception to which
we return below.

The simplest group into which SUc(3)×SUL(2)×UY (1) can be embedded
in this way is SU(5), the group of 5-by-5 unitary matrices having unit de-
terminant. The gauge generators of SU(5) are 5-by-5 traceless, Hermitian
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matrices, having the schematic form




a1 a4 a5 b1 b2

a∗4 a2 a6 b3 b4

a∗5 a∗6 a3 b5 b6

b∗1 b∗3 b∗5 c1 c3

b∗2 b∗4 b∗6 c∗3 c2




, (11.60)

where the diagonal elements are real and tracelessness implies that their
sum vanishes. The idea is to identify the upper-left 3-by-3 block (the a’s)
as the gauge group SUc(3), the lower-right 2-by-2 block (the c’s) as SUL(2),
and the diagonal generator which commutes with each of these as UY (1):

Y =




−1
3

−1
3

−1
3

1
2

1
2




. (11.61)

The normalization of Y is chosen in order to ensure that we obtain the
proper charge assignments for quarks and leptons.

Can the known quarks and leptons be assembled into representations
of SU(5)? With the above identification of the SUc(3) × SUL(2) × UY (1)
gauge group, the 5-dimensional column vector (the defining representation
of SU(5)) contains the following SUc(3) × SUL(2) representations: 5 =
(3,1)⊕ (1,2). That is, writing the 5 as a column vector, (f1, f2, f3, h1, h2)T ,
the f ’s transform as (3,1) and the h’s as (1,2). We see that the top three
components (the f ’s) transform in the same way as do right-handed quarks,
while the bottom two components (the h’s) transform like the lepton dou-
blet. But since all SU(5) generators are traceless, the hypercharges for
these two must satisfy 3yf + 2yh = 0, and so the hypercharge assignments
can only work if we take yf = −1

3 and yh = 1
2 , indicating that f must be the

right-handed down-type singlet, DR, while h is the right-handed doublet,
LR. (This is also what tells us how to normalize the hypercharge generator,
Y .)

It remains to find an SU(5) representation (or representations) which can
contain Q, U and E. Since Q carries both an SUL(2) index and an SUc(3)
index, this suggests we try a representation built from the tensor product
of two 5-dimensional representations, and one of these — the antisymmetric
product, ΦIJ = −ΦJI ∈ 10 — does the job. Explicitly, the standard model
content of the ΨI ∈ 5 and ΦIJ ∈ 10 representations can be written in the
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following way,

ΨI =

(
Dα

Li

)

R

ΦIJ =

(
εαβγUγ −Qαj

Qiβ εijE

)

L

, (11.62)

which also correctly gives the hypercharge assignments. This shows that
one generation of left-handed standard model fermions precisely fits into the
5 ⊕ 10 representation of SU(5), with no states left over and no additional
states needed.

We remark in passing that all of the known fermions can fit into an even
simpler representation if we are prepared to enlarge the gauge group even
further, to SO(10). The main observation in this case is that an entire
generation of fermions can be fit into a single spinor representation – the
16 – of SO(10), provided it is supplemented by a standard model singlet
fermion, N . (This observation is most succinctly summarized by giving
the transformation properties of this representation in terms of SU(5) ⊂
SO(10): 16 = 5 ⊕ 10 ⊕ 1.) As we have seen, such a singlet fermion has
a natural interpretation as a sterile neutrino, allowing SO(10) models to
incorporate a seesaw pattern of neutrino masses within a very appealing
framework.

Since there are a total of 24 SU(5) gauge generators, but only 8+3+1 =
12 standard model gauge generators, SU(5) contains 12 new gauge fields
which are not in the standard model. These fields correspond to the b’s
of Eq. (11.60), and so transform under the SUc(3) × SUL(2) gauge group
as a (3,2), with hypercharge −1

2 . We write these as a doublet of color-
triplet fields: Xiα. In the same way that the W and Z acquire mass due
to electroweak symmetry breaking, we expect the X bosons to acquire large
masses, M À MW , due to the symmetry breaking from SU(5) down to
SUc(3) × SUL(2) × UY (1) (which requires that the theory contain scalar
fields which develop v.e.v.s, in analogy with the Higgs field of the standard
model).

Baryon-number violation necessarily enters into such a theory because
quarks and leptons coexist within a single gauge representation. This en-
sures the existence of gauge interactions for which leptons convert to quarks
(or back) together with the emission or absorption of an X boson. Virtual X

boson exchange therefore gives rise at low energies to an effective dimension-
6 baryon-number violating interaction, with coefficient cI ∼ g2

5/M
2 where g5

is the SU(5) gauge coupling constant. The constraints on cI from the proton
lifetime then show that the X boson mass must be very large, M >∼ 1015

GeV if g5 ∼ 0.1.
Such a large X boson mass also fits well with another observational issue,
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which we now describe. This issue asks: Given that the gauge couplings of
the three factors of the standard model gauge group are different, how can
they all be described by a single SU(5) coupling? This can be possible in
principle because the gauge couplings run with energy, according to

1
α(µ)

=
1

α(µ0)
− b ln

(
µ2

µ2
0

)
, (11.63)

where, for generic spin-zero, spin-half and spin-one matter the coefficient b

is given by (generalizing Eq. (7.40), Eq. (7.42), and Eq. (11.22))

b =
1

12π

[
T (R0) + 2T (R1/2)− 11T (A)

]
. (11.64)

Here the Dynkin index, T (R), for a representation R is defined in terms of
the trace of the group generators by Tr[tatb] = g2T (R)δab. R0 here denotes
the gauge representation of the complex scalars, R1/2 is the same for the left-
handed Weyl fermions and A represents the adjoint representation. With
these conventions we have T (F ) = 1

2 and T (A) = N for the fundamental
(F ) and adjoint (A) representations of SU(N).

At energies above the scale M where SU(5) breaks, the running is due
to loops involving complete SU(5) multiplets of particles, and so the cou-
plings of all SU(5) gauge bosons run in the same way, with b = b5 computed
using the appropriate SU(5) representation content at these energies (i.e.
5 and 10 for the fermions, the adjoint 24 for the gauge bosons plus what-
ever Higgs representations are required to accomplish the desired pattern of
spontaneous symmetry breaking).

However, below M SU(5) is broken, and so it need not be possible to
assemble the available particles into SU(5) multiplets. (Although we have
seen that this is possible for the quarks and leptons, it is not for the gauge
bosons because the heavy X particles are too heavy to be present in the
low-energy theory below M .) Consequently, the three standard model gauge
couplings can run differently below M , with

1
α1(µ)

=
1

α1(µ0)
− b1 log

(
µ2

µ2
0

)

1
α2(µ)

=
1

α2(µ0)
− b2 log

(
µ2

µ2
0

)

1
α3(µ)

=
1

α2(µ0)
− b3 log

(
µ2

µ2
0

)
. (11.65)

Because M is so large, the couplings can become very different when run to
the electroweak scale.
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Fig. 11.2. coupling unification in the MSSM

Can the couplings change by enough to give the values observed in the
standard model? To find out, it is useful to start with the known experi-
mental values for the couplings at µ = MZ and run these to higher energies
to see if there is a scale µ = M where they all unify. When doing so, it
is important to identify the standard model gauge couplings with the hy-
percharge generator normalized using the same conventions as those for the
generators of the other gauge groups. Since for these we use Tr[tatb] = 1

2δab

in the fundamental representation, inspection of Eq. (11.61) shows that it is
T =

√
3/5 Y whose coupling should equal the couplings g2 and g3 at some

scale.
We therefore plot the inverse couplings, 1/α3, 1/α2 and 3/5α1, vs lnµ2,

starting with their measured values at µ = MZ . The result in the standard
model is shown on the left in figure 11.2. Eq. (11.65) implies the resulting
curves are straight lines whose slopes are given by −bi. (The plot actually
uses 2-loop evolution equations, but the difference is insignificant.) The
three lines approach one another as µ increases, because −b1 < 0 < −b2 <

−b3. Any two converging straight lines must cross; the question is whether
the third curve also crosses the others at this same scale (within errors due
to our imperfect knowledge of the α’s, particularly α3). We see that in the
standard model, they quite clearly fail to cross.

How the couplings vary with scale depends on the field content with
masses below the scale of interest. The failure of the three couplings to
unify (become equal) at a single scale, which we just found, was conditional
on the standard model field content being correct all the way up to the
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scale M where the unification might have occurred. If there are additional
fields with masses between MZ and M , and particularly if they do not form
complete multiplets of SU(5), then the story will be different. (New fields
which do form SU(5) multiplets change the value of α where lines cross, but
not the µ where the crossing occurs, at least in the 1-loop approximation.)

An interesting thing happens if we assume instead that it is the MSSM
particle content which governs the running at energies above, say, 1 TeV.
In this case, because the elements of a supermultiplet transform in the
same way under gauge transformations, we may group their contributions
to Eq. (11.64) together, giving

b =
1
4π

[
T (Rm)− 3T (A)

]
, (11.66)

where Rm is the representation of the matter supermultiplets and A is the
(adjoint) representation of the gauge supermultiplets. Using the MSSM field
content in this way, we find that the gauge couplings do cross at a common
scale, as shown on the right in figure 11.2. Even more interesting, the scale
at which they cross is about M = 1.7 × 1016 GeV, very close to the scale
required for the X bosons if they are not to produce too rapid proton decay.

What does this tell us? It could be telling us two very exciting things:
that supersymmetry is a symmetry of nature which is broken at energies
just out of reach; and that the standard model gauge group really is unified
at very high energies. On the other hand it could instead just be a cruel
coincidence. At this point we do not yet know how much importance to give
to this tantalizing high-energy convergence of the standard model couplings.

11.6 Problems

[11.1] Quadratic Contributions to the Higgs Mass

Suppose the standard model is supplemented by an additional real
scalar field, s, subject to a discrete symmetry, s → −s. The new terms in
the Lagrangian are

Lnew = −1
2
∂µs∂µs− 1

2
m2

ss
2 − λs

24
s4 − λ′

2
s2φ†φ . (11.67)

Compute the loop correction to the Higgs mass by evaluating the following
loop graph in the limit where no momentum flows through the external
lines. In the graph it is the s particle which circulates about the loop and
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the external lines denote φ fields.

sÁÀ

Â¿

⇒ δm2
H = − iλ′

2

∫
d4q

(2π)4

[
1

q2 + m2
s − iε

]

=
λ′

32π2

[
Λ2 −m2

s ln

(
Λ2

m2
s

)
+ O

(
m2

s

Λ2

)]
,

where Λ represents an ultraviolet cutoff. Hint: going from the first to the
second line requires Wick rotation, see subsection 7.4.5.

[11.2] Fermion Dipole Moments
Identify the gauge-invariant dimension-6 operators which, in unitary

gauge, have the Lorentz structure [f1γ
µνPL f2] Fµν , where fi denote spinor

fields and Fµν is the electromagnetic or gluon field. The matrix ele-
ments of such operators contribute to the anomalous magnetic (or chromo-
magnetic) dipole moments (and transition moments) of the quarks and
leptons. The corresponding electric moments are obtained from these
using the replacement Fµν → εµνλρF

λρ.

[11.3] Redundant Effective Interactions
Consider the expansion of an arbitrary action in powers of a small pa-

rameter, ε (which could represent powers of 1/M in a low-energy effective
theory):

S[ϕ] = S0[ϕ] + εS1[ϕ] + · · · , (11.68)

where ϕi denotes the relevant field content. In such an expansion any
term in S1 which vanishes on the use of the zeroth-order equations, such
as

Ŝ1[ϕ] =
∫

d4x ci(x)
[

δS0

δϕi(x)

]
, (11.69)

is called a redundant interaction because it can be removed by performing
an appropriate field redefinition, ϕi → ϕi + εδϕi. Neglecting terms which
are O(ε2), find the required redefinition, δϕi, which removes the interac-
tion, Eq. (11.69), given above. What is the generalization of this result
to the O(εn) term in the action?

The ability to remove such interactions by a field redefinition shows that
they cannot contribute to physical observables. This justifies the use of
the lower-order equations of motion to simplify the kinds of interactions
which must be entertained at any given order in a low-energy effective
theory. Notice that this statement is not restricted to the use of such
interactions in tree-level graphs in the effective theory.
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[11.4] Anomalous Gauge-Boson Self-couplings
Identify the most general SUL(2) × UY (1) invariant dimension-6 inter-

actions which contribute to gauge-boson self-couplings. How many inde-
pendent new kinds of couplings are allowed in this case?

[11.5] Neutralinos in the MSSM
The MSSM contains four new neutral Majorana fermionic fields: the

Bino B̃, the neutral Wino W̃ 0, and the two neutral components of the
Higgsinos, H̃0

U and H̃0
D. In the absence of electroweak symmetry breaking,

B̃ and W̃ 0 have Majorana masses, while the Higgsinos have a Dirac mass
arising from the µ term:

Lneutral = −mB̃

2
B̃B̃ − mW̃

2
W̃W̃ −

(
µH̃0

UPL H̃0
D + h.c.

)
.

However, electroweak symmetry breaking adds several terms when the
Higgs fields are replaced by their expectation values.

Use Eq. (11.9) to show that, if the four fields are written as a column
vector χ ≡

(
B̃ W̃ H̃0

U H̃0
D

)T

, then the mass term including contributions
from the Higgs v.e.v.s becomes,

Lneutral = −1
2

(χMPL χ + h.c.) , M =




mB̃ 0 g1vu

2
−g1vd

2

0 mW̃
g2vu

2
−g2vd

2
g1vu

2
g2vu

2 0 µ
−g1vd

2
−g2vd

2 µ 0


 .

Argue that the eigenvectors and the absolute values of the eigenvalues
of the matrix M are the masses of the four chargeless Majorana states,
and that in general none of the states coincide precisely with any of the
original fields.



Appendix A

Experimental values for the parameters

We present here a summary of the values for the various parameters of
the standard model as has been determined by experiment, together with
a brief description of the physical processes from which the comparison be-
tween theory experiment has been used to obtain these parameters. The
accuracy with which we know these parameters is improving with time, so
the reader should consult the recent literature for the most up to date values
of parameters. The Particle Data Group maintains exhaustive and current
lists at a public website, http://pdg.lbl.gov/ and also issues booklets and
reviews every two years. Most of the values quoted below are taken from
the 2004 review by the Particle Data Group.

Most of the masses listed are determined either in particle physics exper-
iments, or for the very long lived or stable particles, in trap experiments.
The masses of quarks are difficult to determine, since the quarks themselves
do not appear as particles; in fact the masses of the light quarks are even
difficult to define unambiguously. The charm and bottom masses are de-
fined as the “running mass” at the scale set by the “running mass,” in the
MS renormalization scheme. For the top quark, such ambiguities are sub-
dominant to experimental error. The photon mass is known to be less than
10−24 GeV from geomagnetic observations, and is believed theoretically to
be exactly zero. The mass of the gluon is theoretically zero, but since the
gluon exists only within bound states, this refers to its Lagrangian mass,
rather than the mass of particles containing a gluon. At the time of writ-
ing, the best limits on neutrino masses come from cosmology; specifically,
larger neutrino masses than 0.2 eV would change the formation of large scale
structure in the universe, contrary to observation. An arguably less model
dependent particle physics limit on the electron mass, mνe < 3eV, has been
obtained from the tritium beta decay endpoint. A limit on one neutrino
type can be interpreted as a limit on all three, because neutrino oscillation
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Particle name symbol mass (GeV) source

electron e− 0.000 510 998 918(44) trap experiments
muon µ− 0.105 658 369(9) NMR
tau τ− 1.776 99(29) BES (e+e− → τ+τ−)

electron neutrino νe < 2× 10−10 cosmology
muon neutrino νµ < 2× 10−10 cosmology
tau neutrino ντ < 2× 10−10 cosmology

photon γ 0 classical E&M
gluon g “0” theoretical value

W boson W± 80.425(38) LEP II, Tevatron
Z boson Z0 91.187 6(21) LEP I

Higgs boson H > 114 LEP II

up quark u 0.0019(3)(MS, µ = 2 GeV) Lattice
down quark d 0.0044(3)(MS, µ = 2 GeV) Lattice

strange quark s 0.087(4)(MS, µ = 2 GeV) Lattice
charm quark c 1.31(7) (MS, µ = m) cc̄ meson masses
bottom quark b 4.24(11)(MS, µ = m) bb̄ meson masses

top quark t 172.7(29) (pole mass) Tevatron

charged pion π± 0.139 570 18(35) pionic atoms
neutral pion π0 0.134 976 6(6) π+ decays

proton p 0.938 272 029(80) trap experiments
neutron n 0.939 565 36(8) trap etc.

Table A.1. Particle masses

Coupling symbol renorm. point value

Electromagnetic αem ¿ me 1/137.035 999 11(46)
Electromagnetic αem µMS = MZ 1/127.934(27)

weak g2, αw µMS = MZ 0.652, 1/29.6
hypercharge g1, αY µMS = MZ 0.357, 1/98.4

Weinberg angle sin2 θW µMS = MZ 0.23121(15)
Fermi GF ¿ MW 1.16637(1)× 10−5 GeV−2

strong α3 µMS = MZ 0.1187(20)
strong Θ Θ3 ¿ MZ |Θ3| < 10−9

Table A.2. Numerical values of coupling constants

experiments show that the differences in the neutrino masses squared are
less than 5× 10−3 eV2.

Most of the numerical values for coupling constants presented are in the
MS renormalization scheme, evaluated at the scale of the Z mass. We also
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quote the electromagnetic coupling evaluated at low scales–it has no scale
dependence below the electron mass scale. The electromagnetic interaction
strength is determined from laboratory experiments such as the Josephson
effect and the quantum Hall effect, and (most accurately) by comparing
the measured magnetic moment of the electron to a very high precision
calculation within the theory of electromagnetism, QED. The high energy
value is determined partly from data (necessary to account for the strong
interactions of light, charged hadrons) and partly perturbatively. The other
couplings are determined largely from the Z resonance studies of LEP I.

The best values for the CKM matrix elements, in magnitude, are currently,

|Vmn| =




.9741− .9756 .219− .226 .0025− .0048
.219− .226 .9732− .9748 .038− .044
.004− .014 .037− .044 .9990− .9993


 . (A.1)

Unitarity has been used to constrain elements which are poorly constrained
experimentally. In particular, direct constraints on the bottom row, involv-
ing the top quark, are extremely weak.



Appendix B

Symmetries and group theory review

We give here a very short review of symmetries, and of the theory of Lie
groups needed in their study. The treatment is not intended to be complete
or rigorous, just to give a brief introduction for the readers unfamiliar with
the material.

B.1 Symmetry transformations as a group

A symmetry transformation is a transformation on the states of a theory
|ψ〉 and the operators O,

|ψ〉 → U |ψ〉 , O → U OU∗ , (B.1)

which preserves “all physics.” In particular, amplitudes must be preserved
(up to a phase, a complication we ignore here and in the following)

〈ψ1| |ψ2〉 → 〈ψ1|U∗ U |ψ2〉 = 〈ψ1| |ψ2〉 , (B.2)

which shows that U must either be unitary or anti-unitary. We will only
consider unitary symmetries here. (Here U∗ is the Hermitian conjugate of
U . We write U † only if U is a matrix.)

A symmetry in which a local operator O(x) (an operator built out of fields
at point x only) is transformed into a local operator at the same point, is
called an internal symmetry. Such symmetries can be considered separately
from spacetime symmetries, such as translations, rotations, and boosts. In
fact, it is a theorem that the full group of symmetries is always a product
of the internal symmetries and the spacetime symmetries. In this appendix
we concentrate on internal symmetries; spacetime symmetries are discussed
in the next appendix.

Because the states and operators under discussion may appear at dif-
ferent times, the symmetry operator must commute with time evolution,
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[H, U ] = 0. Similarly, it must commute with the momentum operators.
This is summarized by saying that it must commute with the Lagrangian
density, [L, U ] = 0. Therefore the symmetries of the theory can usually be
identified by looking at the symmetries of the Lagrangian.

In a renormalizable theory, an operator O and its symmetry transform
UOU∗ = O′ must be of the same dimension. Since the fields are the op-
erators of the smallest dimension, this means the fields transform linearly
among themselves,

ϕa → UϕaU
∗ = M−1

ab ϕb , (B.3)

where ϕ collectively symbolizes the fields of the theory and a, b are indices
on the set of fields. Classically, the symmetries of a theory are the set of
transformations on the fields of this form, under which L is unchanged. The
relation between ϕ′ and ϕ involves a matrix inverse essentially because ϕ

annihilates a particle |ϕ〉, and must therefore have the inverse transformation
properties of the particle.

Acting with two symmetry transformations successively, |ψ〉 → U1|ψ〉 →
U2U1|ψ〉, yields another symmetry transformation, namely, the one induced
by the operator (U2U1). This defines a multiplication rule under which
symmetry transformations form a group. In general the symmetry group can
be factorized as a product of non-factorizable subgroups, and it is sufficient
to examine the behavior of the subgroups individually. In particle physics
these subgroups are usually small discrete groups (which we will not discuss)
and continuous (Lie) groups. The latter can generally be factorized into a
product of simple Lie groups and U(1) groups.

B.2 Lie groups and Lie algebras

A Lie group is a group which is also a manifold. In particular, there is a
small neighborhood around the identity 1 which looks like a piece of Re n,
with n the dimension of the group. One can always choose a coordinate basis
for this region; the coordinate unit vectors ta are called the Lie algebra and
an arbitrary element g of the group which is close to the identity can always
be expanded in the coordinates,

g = 1 + iωαtα , (B.4)

with ωα (infinitesimal) parameters. (The i is customary so that for groups
of unitary matrices, the tα are Hermitian.)

Now consider two elements of the group which are each close to the iden-
tity, say, g1 = 1+ iωα

1 tα and g2 = 1+ iωα
2 tα. The multiplication rule to first
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order in these parameters is given by

g1g2 = 1 + i(ωα
1 + ωα

2 )tα + O(ω2) , (B.5)

which is addition of the departures from the identity. At the next order,
g1g2 and g2g1 can differ:

g1g2(g2g1)−1 = (1 + iωα
1 tα)

(
1 + iωβ

2 tβ
)

(1− iωγ
1 tγ) (1− iωσ

2 tσ)

= 1− ωα
1 ωβ

2

[
tα , tβ

]
. (B.6)

Therefore, to determine the multiplication rule to second order we need to
know the commutators of the Lie algebra elements. Since g1g2g

−1
1 g−1

2 is
still close to the identity, it can still be expressed in terms of coefficients
multiplying Lie algebra elements, so the commutator must also be a sum of
elements of the Lie algebra:

[
tα , tβ

]
= ifγ

αβtγ . (B.7)

The structure constants, fγ
αβ are real valued and explicitly anti-symmetric

in the last two indices, and are antisymmetric in all indices if the tα are
chosen orthonormal.

The Lie algebra elements and the structure constants together constitute
the Lie algebra of the group. They turn out to be sufficient to determine
the group almost uniquely.†

The groups of interest in particle physics are compact Lie groups. These
can all be thought of as groups of matrices. Of particular interest is the
group of N ×N special (unit determinant) unitary matrices, SU(N), which
we describe in more detail in the next section.

B.3 Group representations

We saw in Eq. (B.3) that a symmetry transformation acts on a field operator
like a matrix multiplication. Successive symmetry transformations act like
a series of matrix multiplications, which gives us a condition on the matrices
which can appear in Eq. (B.3). Namely, under successive transformations
by two group elements,

U(g2g1)ϕaU
∗(g2g1) = U(g2)U(g1)ϕaU

∗(g1)U∗(g2)

† A Lie group can have several disconnected pieces; the Lie algebra specifies only the connected
piece containing the identity. For simple compact Lie groups, the Lie algebra gives a unique
simply connected group, and any other connected group with the same Lie algebra must be this
group modded out by a discrete identification map. For instance, the Lie algebra of rotations
gives the group SU(2). The group SO(3) has the same Lie algebra, but differs in that a rotation
by 360◦, represented in SU(2) by Diag[−1 − 1], is identified with the identity in SO(3).
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M−1
ab (g2g1)ϕb = U(g2)M−1

ab (g1)ϕbU
∗(g2)

M−1
ac (g2g1)ϕc = M−1

ab (g1)M−1
bc (g2)ϕc . (B.8)

Since this must hold for any field ϕ, the matrices themselves must be equal,

M−1(g2g1) = M−1(g1)M−1(g2) or M(g2g1) = M(g2)M(g1) . (B.9)

Matrix multiplication must respect group element multiplication. A set of
matrices associated with elements of a group which satisfy this condition
are called a representation of the group. Since the matrices can be thought
of as operating on column vectors, physicists often refer to column vectors
(or fields) which are multiplied by such matrices as representations. More
properly, one should say that such column vectors or fields are “acted on” or
“transform under” the representation. To understand the ways symmetries
can act on fields and field products we must understand representations and
their tensor products.

In any representation, the identity element of the group must be mapped
into the identity matrix 1. An element close to the identity must map into
an element close to the identity matrix, so

M(1 + iωαtα) = 1 + iωαTα , (B.10)

with Tα some matrices particular to the representation. (We use Greek
letters to index the Lie algebra and Roman letters for matrix indices.) It
then follows by considering products of such matrices and using Eq. (B.9)
that the matrices Tα must satisfy a Lie algebra with the same structure
constants as the tα: [

Tα , Tβ

]
= ifγ

αβTγ . (B.11)

Furthermore, any set of matrices Tα which satisfy this identity can be ex-
ponentiated to give a representation. Frequently a basis of fields can be
found under which the Tα are all block diagonal, in which case the repre-
sentation is said to reduce into the blocks. A representation wich cannot be
block diagonalized by any basis change is called irreducible. The problem of
classifying representations of a group G is the problem of finding all sets of
matrices Tα which obey the same commutation relations as the Lie algebra
of the group.

Every group has a representation, called the singlet or trivial representa-
tion, in which M(g) is the 1×1 identity matrix for each g, and Tα = 0 for all
α. (Eq. (B.9) is satisfied because 1× 1 = 1, and Eq. (B.11) is automatically
satisfied since both sides are zero.) Invariance of the Lagrangian under a
symmetry is equivalent to the requirement that the Lagrangian transform
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under the singlet representation. Therefore it will be important to see how
other representations can be combined together to give the singlet represen-
tation.

Every group also contains a representation called the adjoint representa-
tion, made up of n× n real matrices, with n the number of elements in the
Lie algebra, and with Tα given by (Tα)bc = −ifα

bc (with b, c the matrix
indices). For the case of an abelian group (a group where the f vanish)
the adjoint representation is the same as the singlet representation. For the
group of rotations, SU(2), it is the spin-1 representation.

Physicists generally refer to the several fields which transform together
in an irreducible representation of the symmetry group as “a” field trans-
forming under that representation. If two such fields φ, χ transform under
two different representations with representation matrices M, N which are
respectively m×m and n× n, then the operator φa χb transforms as

U(g−1)φa χbU
∗(g) = Mac(g)Nbd(g) φc χd . (B.12)

The object MacNbd can be considered an (mn) × (mn) matrix obtained as
the tensor product of the matrices M and N . So the product of two opera-
tors transforms under the tensor product of the representation matrices. In
general such tensor products are reducible–for instance, in the familiar ex-
ample of angular momentum SU(2), two spin-1

2 operators can combine into
a spin-1 or a spin-0 operator, because the tensor product 1

2 ⊗ 1
2 is reducible,

1
2 ⊗ 1

2 = 1⊕ 0.
Representations and the rules for their tensor products are quite group

dependent. We will quickly outline what happens for U(1) and SU(N),
since these arise the most often in physics and in particular are the only
groups needed in the standard model.

B.3.1 Representations of U(1)

The group U(1) is the group of phase rotations. A generic element is eiθ and
the group is parametrized by θ. Any irreducible representation can be writ-
ten as a 1×1 complex matrix (a complex number) and the representation is
determined by a charge q, with the group element g = eiθ being represented
by eiqθ. The tensor product of two representations is just a representation
with the sum of the charges. Therefore, the charge of a product of operators
is the sum of their charges. For the Lagrangian to have a U(1) symmetry,
each term in the Lagrangian must have the charges of the fields add up to
zero.
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B.3.2 Representations of SU(N)

The group SU(N) consists of complex N ×N matrices U which are unitary,
U † = U−1, and satisfy DetU = 1. (The U in SU(N) stands for unitary, the
S for “special,” meaning determinant 1.)

A generic element of SU(N) can be written U(ω) = exp(iωαtα), with
tα a standard set of N × N complex matrices and ωα parameters. Before
imposing unitarity and determinant 1, there are 2N2 independent tα. How-
ever, unitarity requires each tα be Hermitian, eliminating half, and the unit
determinant condition requires each tα be traceless, eliminating one more
possibility. Therefore there are N2 − 1 independent elements tα of the Lie
algebra, which should be chosen to be orthogonal and to satisfy the same
normalization condition. For SU(2) they can be chosen to be half the Pauli
matrices, Eq. (2.12). In this case the structure functions are

[
τi

2
,

τj

2

]
= ifkij

τk

2
, fkij = εkij (B.13)

the totally antisymmetric tensor. For SU(3) the Lie algebra elements can
be chosen to be half the Gell-Mann matrices of Eq. (1.186). There is no
simple expression for the resulting structure functions.

Besides the singlet representation, the smallest representation for SU(N)
is the SU(N) matrices themselves, M(U) = U . This is called the funda-

mental representation.

Fundamental representation: Tα = tα . (B.14)

This is, for instance, the representation quarks transform under in QCD.
It is customary to refer to the representations of SU(N) according to the
rank of the representation matrices, so the singlet representation is called
the 1 representation and the fundamental representation is called the N
representation.

Equally important is the anti-fundamental representation, M(U) = U∗,
given by complex conjugating (but not transposing) the SU(N) matrices.

Anti-Fundamental representation: Tα = −t∗α . (B.15)

This is the representation which antiquarks transform under. To see that it
is a valid representation, note that

[
−t∗α , −t∗β

]
=

([
tα , tβ

])∗
= (ifγ

αβtγ)∗ = ifγ
αβ(−t∗γ) . (B.16)

Therefore the −t∗α obey the same commutation relations as the tα. These
matrices have rank N , but since the symbol N is taken, the representation
is called the N representation.
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A field which transforms under the fundamental representation is left-
multiplied by U , and can be thought of as a column vector. For the anti-
fundamental representation, the column vector is left-multiplied by U∗, and
is more conveniently thought of as a row vector right-multiplied by U † =
U−1. In general, if M is a representation of a group, M∗ is also, and is called
the conjugate representation to M . The contraction of a fundamental and
an anti-fundamental field (or any operators in conjugate representations to
each other) forms a singlet,

for χa N , φa N , χT φ ≡ χaφa is singlet 1 . (B.17)

At the same time, inserting the generators of the representation between
them,

for χa N , φa N , χT Tαφ ≡ χa(Tα)abφb is adjoint . (B.18)

Since there are N2 − 1 elements in the adjoint representation and one in
the singlet, this uses up the N × N = N2 objects in the tensor product of
fundamental and anti-fundamental representations;

N⊗N = (N2 − 1)⊕ 1 . (B.19)

It is also important to know how multiple fundamental representations
tensor together. Here it is important to know that the totally antisymmetric
object εab..., which contracts N fundamental indices, is an invariant. Using
it to contract N − 1 objects transforming in the fundamental representation
gives an object transforming in the anti-fundamental representation. For
SU(2), this means that a single fundamental representation object can be
“flipped” into an anti-fundamental representation object by ε, as we did
with the Higgs field in Eq. (2.24). In SU(2) the fundamental and anti-
fundamental representations are equivalent and generally not distinguished
from each other. In SU(3), contracting two fundamental fields with the
antisymmetric tensor, εabcφbψc, produces an anti-fundamental object, and
three gives a singlet. The other (symmetrized) linear combination of two
fundamental fields has six components and is called the 6 representation:

3⊗ 3 = 3⊕ 6 in SU(3) . (B.20)

More generally one gets representations containing N(N − 1)/2 and N(N +
1)/2 elements. In general, SU(N) groups have a large number of representa-
tions, all of which can be found by taking antisymmetrized and symmetrized
combinations of fundamental representation objects. Further enumerating
them is beyond the scope of this appendix.



Appendix C

Lorentz group and the Dirac algebra

This appendix provides a review and summary of the Lorentz group, its
properties, and the properties of its infinitesimal generators. It then reviews
representations of the Lorentz group and the Dirac algebra. This material is
intended to supplement chapter 1, for those students who are not as familiar
with the Lorentz group and Dirac equation as they find they need to be.

C.1 Lorentz group

According to special relativity, physical laws are unchanged by a linear
change of coordinates,

x′µ = Λµ
νx

ν + ξµ (C.1)

with Λ and ξ real, provided it leave unchanged the invariant separation
between points,

(x− y)µ(x− y)µ = ηµν(x− y)µ(x− y)ν = −[(x− y)0]2 + [~x− ~y]2 .

This condition does not constrain ξ, since it cancels in the difference, but it
imposes a constraint on Λ,

xµxµ = x′µx′µ = ηµνΛµ
αxαΛν

βxβ , (C.2)

for all xµ. A transformation of the form shown in Eq. (C.1) which satisfies
Eq. (C.2) is called a Poincaré transformation. These transformations close
and form a group, called the Poincaré group. The subgroup where Λ is the
identity matrix and ξ is arbitrary is a subgroup called the group of transla-
tions. We assume that this group and its implications, such as conservation
of energy and momentum, are familiar to the reader. Instead we concentrate
on the subgroup in which ξ = 0, which is called the Lorentz group.

It is convenient to think of an element of the Lorentz group as a matrix
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which is operating on the coordinate xµ. This is possible if we always write
Λ with its first index raised and second index lowered, so it carries xµ to
x′µ, both with raised index. Writing in this way, repeated Lorentz trans-
formations are implemented via matrix multiplications of the respective Λ
matrices:

x′µ = Λµ
ν xν and x′′µ = Λ′µν x′ν ⇒ x′′µ = Λ′µν Λν

α xα ≡
[
Λ′Λ

]µ
α xα .

(C.3)
We see from Eq. (C.2) that the condition on Λµ

ν to be a Lorentz trans-
formation is,

ηµνx
µxν = ηαβΛα

µΛβ
νx

µxν (C.4)

for all xµ. Since this must hold for all xµ, we have

ηµν = Λα
µηαβΛβ

ν , (C.5)

or (writing ηµν as η when using matrix notation)

η = ΛT ηΛ . (C.6)

The group of matrices Λ satisfying Eq. (C.6) is called O(3, 1), and is a Lie
group. Therefore the same technology of Lie algebra generation may be
applied to it as to the groups of the previous appendix.

As we will discuss momentarily, not all elements of O(3, 1) can be built
infinitesimally from the identity. Those elements which can, form a subgroup
written SO(3, 1), which we will now analyze. A Lorentz transformation Λµ

ν

which is infinitesimally close to the identity must be of form,

Λµ
ν = δµ

ν + ωµ
ν , (C.7)

with ωµ
ν a matrix of infinitesimal coefficients. The condition on ωµ

ν for
Λµ

ν to be a valid Lorentz transformation is found by inserting Eq. (C.7)
into Eq. (C.6) and expanding to linear order in ω:

ηµν =
(
δα
µ + ωα

µ

)
ηαβ

(
δβ
ν + ωβ

ν

)

= ηµν + (ωνµ + ωµν) + O(ω2) ,

0 = ωνµ + ωµν . (C.8)

That is, the condition on ωµ
ν is that ωµν be antisymmetric on its indices.

The space of real antisymmetric 4 × 4 matrices is 6 dimensional, so the
Lorentz group is 6 dimensional.

Now ωµ
ν is related to ωµν as ωµ

ν = ηµαωαν . Since η00 = −1 and ηii = 1
for i = 1, 2, 3, the sign of the space-time component of ωµ

ν must be the same
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as the sign of the time-space component, while the space-space components
must be antisymmetric. Thus, the most general form of ωµ

ν is,

ωµ
ν =




0 b1 b2 b3

b1 0 −r3 r2

b2 r3 0 −r1

b3 −r2 r1 0


 , (C.9)

symmetric in the space-time entries and anti-symmetric in the space-space
entries. The b1, b2, b3 entries respectively cause infinitesimal boosts in the
1, 2, 3 directions; the r1, r2, r3 entries cause infinitesimal rotations about the
1, 2, 3 axes. A general element of SO(3, 1) can be written as an exponential
of a finite ωµ

ν ,

Λµ
ν = (expω)µ

ν = δµ
ν + ωµ

ν +
1
2
ωµ

αωα
ν +

1
6
ωµ

αωα
βωβ

ν + . . . . (C.10)

When only the ri are nonzero, this gives a rotation by angle |~r| about the
r̂ axis. When only the bi are nonzero, this gives a boost by velocity tanh |~b|
along the b̂ axis. When both ~r and ~b are nonzero the Lorentz transformation
cannot be described either solely as a rotation or as a boost. Note that, while
a rotation by angle |~r| = 2π gives the identity Λ, no nonzero magnitude of
boost |~b| returns the identity. Hence the group SO(3, 1) is non-compact.

Now we argue that O(3, 1) has 4 disconnected pieces, one of which is
SO(3, 1). To see this, take the determinant of Eq. (C.6):

Det η = Det ΛT ηΛ = Det η × (Det Λ)2 . (C.11)

Since η is nonsingular, we can divide by Det η:

(Det Λ)2 = 1 ⇒ Det Λ = ±1 . (C.12)

The determinant must vary continuously within a path connected region of
O(3, 1), but you cannot go discontinuously from 1 to −1, so any elements
of O(3, 1) with Det Λ = −1 cannot be elements of the connected group
SO(3, 1). An element of O(3, 1) with Det Λ = 1 is called proper, and an
element with Det Λ = −1 is called improper.

Furthermore, if we write out the µ = 0, ν = 0 element of Eq. (C.6), it is

η00 = Λµ
0ηµνΛν

0

−1 = −Λ0
0Λ0

0 +
∑

i=1,2,3

Λi
0Λi

0

(Λ0
0)2 = 1 +

∑

i=1,2,3

(Λi
0)2 ≥ 1 , (C.13)

so the square of the time-time component of any Λ must always be at least
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1, and Λ0
0 must be either ≥ 1 or ≤ −1. Again, you cannot go continuously

from ≥ 1 to ≤ −1, so no elements of SO(3, 1) have Λ0
0 < 0. An element of

O(3, 1) with Λ0
0 ≥ 1 is called orthochronous, and an element with Λ0

0 ≤ −1
is called non-orthochronous.

The canonical example of an improper (but orthochronous) element of
O(3, 1) is the parity transformation,

P =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (C.14)

which satisfies Eq. (C.6) but has determinant −1. The canonical example of
a non-orthochronous (and also improper) transformation is the time reversal

transformation,

T =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (C.15)

which also satisfies Eq. (C.6) but has T 0
0 = −1. It turns out that any

element of O(3, 1) must be an element of SO(3, 1), times either the iden-
tity (proper orthochronous), P (improper orthochronous), T (improper non-
orthochronous), or PT (proper non-orthochronous). The improper or non-
orthochronous Lorentz transformations need not be symmetries of nature–in
fact, in the standard model, they are not–but it is an axiom of field theory
that the elements of SO(3, 1) must be symmetries.

C.2 Generators of the Lorentz group

As discussed in section B.1, each element Λ ∈ SO(3, 1) must have associated
with it a unitary operator U(Λ) which implements it on the Hilbert space,
and which represents the group operation,

U(Λ1)U(Λ2) = U(Λ1Λ2) . (C.16)

For an element infinitesimally close to the identity, it must be possible to
expand these operators in a Lie algebra of generators,

U(ω) = 1 +
i

2
ωµν Ĵ

µν + O(ω2) , (C.17)
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for some operators Ĵµν , antisymmetric in µ, ν. Similarly, there are genera-
tors for translations,

U(ξ) = 1− iξµP̂µ . (C.18)

The P̂ i are also called momentum operators, and the Ĵ ij are called angular
momentum operators.

The commutation relations between the operators P̂µ, Ĵµν can be worked
out by using Eq. (C.16). For instance, consider a translation by a small dis-
tance ξµ, either preceded or followed by a Lorentz transformation involving
ων

α. We will evaluate the difference between the two orders of operation,
in two ways.

First, if we translate first and then rotate, then the coordinate is trans-
formed according to

x′µ = xµ + ξµ ,

x′′µ = (δµ
ν + ωµ

ν)(xν + ξν)

= xµ + (ωµ
νx

ν) + (ξµ + ωµ
νξ

ν) , (C.19)

where the first and second parenthesis represent a rotation and a translation.
The result is the same rotation, and a translation by ξµ plus an extra piece
involving ω and ξ. If the rotation is performed first, we get

x′µ = xµ + ωµ
νx

ν ,

x′′µ = xµ + (ωµ
νx

ν) + (ξµ) , (C.20)

which is the rotation and the translation just by ξ. The unitary operators
for these transformations are,

U(ωξ) = 1 +
i

2
ωµν Ĵ

µν − iηµν(ξµ + ωµ
αξα)P̂ ν ,

U(ξω) = 1 +
i

2
ωµν Ĵ

µν − iηµν(ξµ)P̂ ν . (C.21)

The difference of the operators, to second order in the infinitesimals, is

U(ωξ)− U(ξω) = −iηµνω
µ

αξαP̂ ν . (C.22)

(There is actually also a second order in ω piece, but it is the same for the
two U ’s and therefore cancels in this difference.)

Alternately, we can say using Eq. (C.16) that

U(ωξ) = U(ω)U(ξ) =
(
1 +

i

2
ωµν Ĵ

µν
) (

1− iηαβξαP̂ β
)

,

U(ξω) = U(ξ)U(ω) =
(
1− iηαβξαP̂ β

) (
1 +

i

2
ωµν Ĵ

µν
)

,
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U(ωξ)− U(ξω) = − i2

2
ωµνηαβξα

[
Ĵµν , P̂ β

]
. (C.23)

Now equating Eq. (C.22) and Eq. (C.23), we learn what the commutator of
P̂ with Ĵ must be:

− i2

2
ωµνξα

[
Ĵµν , P̂α

]
= −iωµνξαηναP̂µ . (C.24)

This must hold for any antisymmetric ωµν and any ξα, so (antisymmetrizing
over the indices on ω) the operators must satisfy

[
Ĵµν , P̂α

]
= i

(
ηµαP̂ ν − ηναP̂µ

)
. (C.25)

By a completely analogous but more involved procedure one can also show,
[
Ĵµν , Ĵαβ

]
= i

(
ηνβ Ĵµα + ηµαĴνβ − ηµβĴνα − ηναĴµβ

)
, (C.26)

and (this is simpler)
[
P̂µ , P̂ ν

]
= 0 . (C.27)

These commutation relations are called the Poincaré algebra.
To make contact with the more familiar generators of rotations and boosts,

it is convenient to define

Ĵi ≡ εijk

2
Ĵjk , (C.28)

K̂i ≡ Ĵ0
i , (C.29)

which are respectively the generator of rotations about the i axis and of
boosts along the i axis, so a rotation by ~θ is exp(−iJiθi) and a boost by
~v is exp(−iKivi). They satisfy the commutation relations, following from
Eq. (C.26),

[
Ĵi , Ĵj

]
= iεijkĴk , (C.30)

[
Ĵi , K̂j

]
= iεijkK̂k , (C.31)

[
K̂i , K̂j

]
= −iεijkĴk . (C.32)

The first expression is the familiar commutator between rotations. The
second means that, if a rotation is performed before a boost, the boost will
be in a different direction than before the rotation is performed, which is
intuitively clear. The third result is more surprising; the commutator of two
boosts is a rotation. More importantly, the sign is opposite on the last result
than on the previous two.
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C.3 Representations of the Lorentz group

Just as for an internal symmetry, an SO(3, 1) transformation will carry a
field to a linear combination of fields, so the fields must transform under
representations of the group. The difference is that the transformed field
will be at the Lorentz transformed point:

U(ω)ϕa(x)U∗(ω) = D−1
ab (ω)ϕb(Λx) , (C.33)

with D−1(ω) = D(−ω) an ω dependent matrix in the space of fields. The
fields can be chosen to block-diagonalize the matrix D into irreducible rep-
resentations of the Lorentz group. For instance, in QED, the components of
the gauge potential Aµ mix with each other under Lorentz transformations,
but they never mix with the different spin components of the electron ei;
so there is one “block” of D which mixes the Aµ and an independent block
mixing the ei. Our goal now is to find the possible structures D can take.

Just as for internal symmetries, there are two very simple irreducible rep-
resentations, which are also physically important. One is the trivial (singlet)
representation,

U(ω)φ(x)U∗(ω) = φ(Λx) , (C.34)

which for SO(3, 1) is called the scalar representation. Lorentz symmetry
demands that the Lagrangian be a Lorentz scalar. The other is the vector

representation, for which the field index is a 4-vector index and the repre-
sentation matrix is Λ itself:

U(ω)Aµ(x)U∗(ω) = (Λ−1)µ
νA

ν(Λx) . (C.35)

A representation is determined by a set of matrices J µν with the same
commutation relations as the Ĵµν . That is, the matrix Dab must be of the
form

Dab(ω) = exp
(

i

2
ωµνJ µν

ab

)
, (C.36)

with the exponentiation interpreted as matrix exponentiation with a, b the
matrix indices, and J µν satisfying

[
J µν , J αβ

]
= i

(
ηνβJ µα + ηµαJ νβ − ηµβJ να − ηναJ µβ

)
. (C.37)

The problem of finding representations is the problem of finding all sets of
matrices with this algebra.

It is believed that only field theories containing finite numbers of fields are
well defined. Therefore we need only look for finite-dimensional representa-
tions of SO(3, 1). The classification of the representations is made easier by
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the following convenient property of the group. Using Eq. (C.30)–Eq. (C.32),
one can show that the operators

L̂i ≡ Ĵi + iK̂i

2
, R̂i ≡ Ĵi − iK̂i

2
, (C.38)

satisfy the commutation relations,

[
L̂i , L̂j

]
= iεijkL̂k , (C.39)

[
R̂i , R̂j

]
= iεijkR̂k , (C.40)

[
L̂i , R̂j

]
= 0 . (C.41)

Therefore the generators of SO(3, 1) can be split into two subsets which
commute with each other, and each satisfy the same commutation relations
as the group SU(2). This group is familiar as the group of rotations and
its representations are well known; they are the spin-0 representation, the
spin 1

2 representation, the spin 1 representation, and so forth. A general
irreducible representation can be described by its transformation properties
under L̂ and under R̂, eg, spin m/2 under L̂ and spin n/2 under R̂.

Only four representations will be of any interest to us in studying the
standard model, because it turns out that only four representations can
participate in renormalizable interactions in a theory satisfying the basic
principles laid out in section 1.2.

The first of these is the scalar representation already introduced. The
scalar representation transforms as (0, 0), that is, as spin-0 under L̂ and
spin-0 under R̂. The Lie algebra representations are Ĵ µν = 0 and the
transformation matrix D = 1 is the identity.

The second common representation is the vector representation, which
transforms as (1

2 , 1
2). The Lie algebra is represented as J µν

α
β

= −i(ηµαην
β −

ηµ
βηνα), and D = Λ, as already discussed. Note that for both of these

representations, the matrix D is always real; therefore it is consistent to
consider real valued scalar or vector fields.

The other two interesting representations are called spinor representa-

tions, and consist of two fields which mix with each other under Lorentz
transformations. Since these are probably less familiar to the reader and
are in some ways more complicated than the scalar and vector representa-
tions, we will discuss them at length in the next section.
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C.4 Spinors and the Dirac algebra

We now introduce the other two physically important representations of the
Lorentz group, the left and right handed spinor representations. A field
transforming in one of these can be rewritten in terms of the other, and it
is convenient to combine them together using Majorana notation, which we
will also introduce and which we use throughout this book.

C.4.1 Spinor representations

The simplest nontrivial matrices which satisfy Eq. (C.39) are the Pauli ma-
trices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, (C.42)

which satisfy the commutation relation
[σi

2
,

σj

2

]
= iεijk

σk

2
. (C.43)

Therefore, if the matrices representing L̂i and R̂i are σi/2 and 0 respec-
tively, we get a representation of the Lorentz algebra. Inverting Eq. (C.38),
rotations and boosts are implemented by the matrices,

Ji =
σi

2
, Ki = −i

σi

2
, (Left handed spinor) (C.44)

which it is easy to show satisfy Eq. (C.30) through Eq. (C.32).
Therefore, a pair of fields ψa, a = 1, 2 can transform under Lorentz trans-

formations according to

U(−ω)ψaU
∗(−ω) = Dab(ω)ψb , D(ω) = [exp(−i(ri−ibi)σi/2)] , (C.45)

where ri, bi are the amount of rotation and boost performed, as introduced
in Eq. (C.9). The two fields ψa are generally referred to as the components
of a single spinor field with a the spinor index, which is almost always
suppressed by writing ψ and D in matrix notation (ψ as a column vector,
D as a matrix). Such a spinor field is called a left handed Weyl spinor ψL.

Alternately, Ri could be represented by the Pauli matrices and Li by 0’s,

Ji =
σi

2
, Ki = i

σi

2
, (Right handed spinor) (C.46)

in which case a Lorentz transform acts on ψ via

U(−ω)ψaU
∗(−ω) = Dab(ω)ψb , D(ω) = [exp(−i(ri+ibi)σi/2)] . (C.47)

A field transforming this way is called a right handed Weyl spinor ψR.
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Since the matrices D we just constructed are in general complex, a spinor
ψL or ψR must be a pair of complex fields. We can ask how the complex
conjugate of ψL transforms. Because complex conjugation flips the i in front
of K in Eq. (C.44), the answer is that it transforms as a right handed Weyl
spinor. More properly, defining the matrix

ε ≡ iσ2 =

(
0 1
−1 0

)
satisfying εσ∗i = −σiε , (C.48)

we see that ε times the conjugate of ψL transforms according to,

U(−ω)εψ∗LU∗(−ω) = ε

(
exp

[
−i(ri−ibi)

σi

2

]
ψL

)∗

= ε exp
[
+i(ri+ibi)

σ∗i
2

]
ψ∗L

= exp
[
−i(ri+ibi)

σi

2

]
εψ∗L , (C.49)

which is precisely the transformation rule for a right handed Weyl spinor.
Similarly, −εψ∗R transforms as a left handed Weyl spinor, and −ε(εψ∗L)∗ = ψL

transforms as a left handed Weyl spinor again. Both the field and its complex
conjugate will typically appear in the Lagrangian so it is important to have
a notation which can deal with each. Whether we consider the left or right
handed version as the field rather than the conjugated object is a matter of
convention.

C.4.2 Weyl, Majorana, Dirac

There are two common notational ways of dealing with the fact that a field
can be written either as a left or a right handed spinor.

One, called Weyl notation, expresses the fields as two component objects,
and then specifies whether one is referring to ψL or to its right handed
conjugate εψ∗L by using either an undotted or a dotted index: ψα = ψL and
ψα̇ = εψ∗L. (Indices are raised and lowered using ε and dotted and undotted
according to whether they are conjugated.) This notation is common in the
supersymmetry and string theory literature.

An alternative which we will use, Majorana notation, writes a single four
component field ψM , defined as

ψM =

(
ψL

εψ∗L

)
, (C.50)

that is, ψM redundantly records both the left handed and the right handed
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ways of writing the field. The individual pieces can be accessed separately
by using the projection operators

PL ≡
(

1 0
0 0

)
and PR ≡

(
0 0
0 1

)
. (C.51)

The action of rotations and boosts on ψM are respectively,

Ji =

(
σi
2 0
0 σi

2

)
, Ki =

( −iσi
2 0
0 iσi

2

)
. (C.52)

If a left-handed spinor transforms nontrivially under an internal symmetry
group, then since the right-handed version involves complex conjugation, the
right-handed version εψ∗L transforms under the conjugate representation.
In particular, if ψL has charge q under a U(1) symmetry and is in the
fundamental representation of an SU(N) symmetry, then εψ∗L has charge
−q and transforms under the anti-fundamental representation of SU(N).
One must keep this in mind when constructing Lagrangians out of Majorana
spinors.

In QED and QCD, if we write the spinor fields as left-handed objects, the
fields form pairs with conjugate symmetry transformation properties. For
instance, in QED, there is a field EL which is charge -1 under Uem(1), called
the left-handed electron, and a field −εE∗

R which is charge 1 under Uem(1),
called the left-handed positron. In this case it is most convenient to think
of the latter as the conjugate of a right-handed field with charge -1, ER,
called the right-handed electron, and to combine them together in a single
4-component object called a Dirac spinor, e = [EL ER]T .

The Lorentz transformation properties of Majorana and Dirac spinors are
the same. The two distinctions are that the upper and lower components
of a Dirac spinor generally have the same transformation properties under
internal symmetries, while for Majorana spinors they have conjugate trans-
formation properties; and the upper and lower components of a Dirac spinor
are independent, while for a Majorana spinor they are redundant notations
for the same field.

C.4.3 Tensor products of spinors

Since the Lagrangian must be a Lorentz scalar, it must be a sum of terms
even in spinorial fields. Therefore we need to know how products of two
spinor fields transform. We will only consider the combination of a spinor
field ψ1 with the complex conjugate of another, ψ†2. This is sufficient for
Majorana spinors because ψT

2 ψ1 can be re-expressed in terms of ψ†2ψ1, and
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it suffices for Dirac spinors with internal symmetries because only such com-
binations are invariant under the internal symmetries.

The Hermitian conjugate of a spinor field ψ transforms as

U(−ω)ψ†U∗(−ω) = (D(ω)ψ)† = ψ†D†(ω) . (C.53)

The Ji are Hermitian, but the Ki are anti-Hermitian, so D(ω) is not in
general unitary. Therefore ψ† does not have the inverse transformation
property of ψ. However, there is a Hermitian, unit determinant matrix β,

β ≡
(

0 1
1 0

)
, βJi = Jiβ , βKi = −Kiβ , (C.54)

which flips the sign of K but not J when commuted across D†, so D†β =
βD−1. Therefore, defining ψ = ψ†β, called the Dirac conjugate of ψ,

U(−ω)ψβU∗(−ω) = ψ†D†(ω)β = ψ†βD−1(ω) = ψD−1(ω) , (C.55)

so ψ has the inverse transformation property of ψ.
Since ψ has 4 components, there are sixteen independent 4 × 4 matrices

Γ which can be used to combine spinors, ψ2Γψ1. These can all be gotten
from four such matrices, called the gamma matrices γµ, given in Eq. (1.87).
These satisfy anticommutation relations called the Clifford algebra,

{
γµ , γν

}
= 2ηµν1 . (C.56)

The matrices J µν can be expressed in terms of the gamma matrices:

J µν =
−i

4

[
γµ , γν

]
, (C.57)

which together with Eq. (C.56) is enough to prove that J µν satisfies the
Lorentz algebra, Eq. (C.37). Further, these relations ensure that

[
J µν , γα

]
= i (ηµαγν − ηναγµ) , (C.58)

from which it follows that

D−1(ω)γµD(ω) = Λµ
νγ

ν . (C.59)

Therefore, while the combination ψ2ψ1 is a scalar,

U(−ω)ψ2ψ1U
−1(−ω) = ψ2D

−1(ω)D(ω)ψ = ψ2ψ1 is a scalar , (C.60)

the combination ψ2γ
µψ1 is a vector,

U(−ω)ψ2γ
µψ1U

−1(−ω) = ψ2D
−1(ω)γµD(ω)ψ1 = Λµ

νψ2γ
νψ1 is a vector .

(C.61)



506 Lorentz group and the Dirac algebra

Similarly, defining σµν = 2iJ µν , the combination

U(−ω)ψ2σ
µνψ1U

−1(−ω) = Λµ
αΛν

βψ2σ
αβψ1 (C.62)

is a rank-2 antisymmetric tensor.
Next, define

γ5 = γ5 ≡ i

24
εµναβγµγνγαγβ = −iγ0γ1γ2γ3 , (C.63)

where the latter follows from the anti-commutation of the distinct gamma
matrices. We have that

U(−ω)ψ2γ
5ψ1U

−1(−ω) =
i

24
εµναβψ2D

−1γµγνγαγβDψ1 (C.64)

=
i

24
εµναβΛµ

σΛν
ρΛα

κΛβ
ζψ2γ

σγργκγζψ1

= (Det Λ)
i

24
εσρκζψ2γ

σγργκγζψ1

= (Det Λ) ψ2γ
5ψ1 .

Therefore ψ2γ
5ψ1 is a pseudoscalar, a scalar under SO(3, 1) which flips sign

under parity transformations. Finally, the quantity ψ2γ
µγ5ψ transforms as

a pseudovector,

U(−ω)ψ2γ
µγ5ψ1U

−1(−ω) = ψ2D
−1γµγ5Dψ1 = (Det Λ)Λµ

νψ2γ
νγ5ψ1 .

(C.65)
Since this gives 1 + 4 + 6 + 4 + 1 = 16 independent contractions, the above
are exhaustive; any other matrix sandwiched between ψ2 and ψ1 must be a
linear combination of 1, γµ, σµν , γµγ5, and γ5.

The choice of matrices made above is called the chiral basis and is con-
venient because the right and left handed components of ψ factorize. How-
ever, multiplying ψ by an arbitrary unitary matrix S and all matrices by
Γ → SΓS−1 leaves the theory unchanged. While the explicit expressions for
the matrices are obviously changed, certain relations are not, and are there-
fore particularly valuable. In particular, the Clifford algebra, Eq. (C.56),
the relations Eq. (C.57), Eq. (C.58), Eq. (C.59), the definition Eq. (C.63) of
γ5 in terms of the other γ matrices, and the relations between the projection
operators and γ5,

PL =
1+γ5

2
, PR =

1−γ5

2
, (C.66)

are basis independent and should therefore be sufficient to evaluate any
invariant quantities.



Appendix D

ξ-gauge Feynman rules

Unitary gauge, as described in chapter 5, has several disadvantages that
make it inappropriate for most calculations that go beyond tree level in
the perturbative expansion. One of these difficulties is that the spin-one
propagator does not fall to zero for large momenta, p →∞, thereby making
the ultraviolet behavior of the theory appear to be worse than it really is.
It is therefore usually more convenient to use in these computations a gauge
in which the proper ultraviolet behavior is more manifest. A one-parameter
family of such gauges is given by the Lorentz-covariant ξ-gauges.

Although no loop graphs are attempted in this book, the modification of
the Feynman rules appropriate for ξ-gauges are included here for the sake
of completeness. There are three new types of propagator that arise in ξ-
gauge. The first of these is a modified spin-one boson propagator that was
given in chapter 5.

The particular cases ξ = 1 and ξ = 0 are respectively known as Feynman–

’t Hooft Gauge and Landau Gauge. There are also two other types of un-
physical particles that arise in the ξ-gauge graphs. These are the unphysical

scalars and the Fadeev–Popov–DeWitt ghosts. Their role is to cancel the
contributions within loops of the various unphysical components of the vec-
tor boson propagator. Neither the unphysical scalars nor the ghosts ever
appear in external lines in scattering amplitudes.

The unphysical scalars are just the three remaining real scalars of the
original Higgs doublet that were explicitly ‘eaten’ by the massive spin one

particles in Unitary Gauge: φ =
(

w+

1√
2
(v+H+iz)

)
. Two of these scalars may be

combined into an electrically-charged complex scalar field, w+ (together with
its complex conjugate) which is absorbed in Unitary Gauge by the W boson.
The third, z, is the real spinless particle that was eaten in Unitary Gauge by
the Z0 boson. Unitary gauge corresponds to the ξ →∞ limit of the ξ gauge,

507
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in which the unphysical particles become infinitely heavy. When computing
loop corrections, this limit becomes singular, so strict unitary gauge should
not be used in loop calculations.

D.1 Internal lines

The charged unphysical scalar, w±, has a propagator that is given by

w± : s s G(p) = −i

∫
d4p

(2π)4
1

p2 + ξM2
W − iε

; (D.1)

The propagator for the other unphysical scalar, z, is

z : s s G(p) = −i

∫
d4p

(2π)4
1

p2 + ξM2
Z − iε

; (D.2)

The ordinary gauge boson propagator differs from the one we found in
unitary gauge; it is given in Eq. (5.55), but for completeness we repeat it
here:

¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦s sµ ν Gµν(p) = −i

∫
d4p

(2π)4
ηµν + (ξ−1) pµpν

p2+ξm2

p2+m2−iε
. (D.3)

Note, however, that the contraction of external state polarizations still sat-
isfies Eq. (1.119),

∑
λ εµ(λ)ε∗ν(λ) = ηµν + pµpν/m2, the m2 is not modified

by ξ.
Finally there are the ghost particles. These are complex scalar particles

which are required by consistency to carry the the statistics of a fermion.
That is, the operators which create and annihilate them, satisfy anticommu-
tation relations; when using them in diagrams, there is a factor of (−1) from
each closed loop of ghosts, just as there is a factor of (−1) from a closed
fermionic loop. There is one such (complex) ghost particle for each gener-
ator in the gauge group: we will denote them ωα

g , ω±W , ωZ , and ωγ . Each
ghost has a mass that is given by ξ times the mass of the corresponding
gauge boson, so the eight color ghosts, ωα

g , and the electromagnetic ghost,
ωγ , are massless while the ghosts corresponding to the massive W (or Z)
bosons have squared-masses ξM2

W (respectively: ξM2
Z). Their propagators

are therefore,

ωg : s q q q q q q q- s G(p) = −i

∫
d4p

(2π)4
1

p2 − iε
; (D.4)
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ωγ : s q q q q q q q- s G(p) = −i

∫
d4p

(2π)4
1

p2 − iε
; (D.5)

ωZ : s q q q q q q q- s G(p) = −i

∫
d4p

(2π)4
1

p2 + ξM2
Z − iε

; (D.6)

ω±W : s q q q q q q q- s G(p) = −i

∫
d4p

(2π)4
1

p2 + ξM2
W − iε

. (D.7)

Note that, since ghosts are complex and have fermionic statistics, we must
specify the sense of propagation.

It should be clear from the above propagators that the limit ξ →∞ naively
returns unitary gauge; the unphysical particles’ masses are all proportional
to ξ, and the large ξ limit of Eq. (D.3) returns Eq. (5.54).

D.2 Vertices

We next turn to the Feynman rules for the interactions of the various parti-
cles in ξ-gauge. The interaction terms for all physical particles are the same
as those given in chapter 5, so we do not repeat them here. Instead we list
only the “new” couplings involving the unphysical scalars and ghosts.

D.2.1 Unphysical scalar couplings

The unphysical scalars, w± and z, have all of the couplings of the Higgs
doublet—that is to say, Yukawa couplings and gauge-boson couplings. Their
Yukawa couplings are

zff Coupling:

- -sj i
(

ηf
mf

v

)
(γ5)ij (2π)4 δ4(k+l+p) ; (D.8)

in which ηf = +1 if f is an ‘up-type’ fermion (u, c, or t) and ηf = −1 if f

is ‘down-type’ (d, s, b, or e, µ and τ).
Also:

w+du, w+eν Coupling:

- -sj i i
√

2Vud

(
mu

v
PL−md

v
PR

)

ij
(2π)4 δ4(k+l+p) ,

(D.9)



510 ξ-gauge Feynman rules

and,

w−ud, w−νe Coupling:

- -sj i i
√

2V ∗
ud

(
mu

v
PR−md

v
PL

)

ij
(2π)4 δ4(k+l+p) .

(D.10)
Here mu, md are understood to mean 0, me in the case of the leptonic
coupling.

Next, there are interactions between unphysical scalars and either other
unphysical scalars or the Higgs scalar, generated from the Higgs potential
term:

zzzz Coupling:

�

�

@

@

@

@

�

�

s −3im2
H

24v2
(2π)4δ4(k+l+p+q) ; (D.11)

zzw+w− Coupling:

�

�

@

@

@

@

�

�

s −im2
H

2v2
(2π)4δ4(k+l+p+q) ; (D.12)

w+w+w−w− Coupling:

�

�

@

@

@

@

�

�

s −2im2
H

4v2
(2π)4δ4(k+l+p+q) ; (D.13)

zzHH Coupling:

�

�

@

@

@

@

�

�

s −im2
H

4v2
(2π)4δ4(k+l+p+q) ; (D.14)
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w+w−HH Coupling:

�

�

@

@

@

@

�

�

s −im2
H

2v2
(2π)4δ4(k+l+p+q) ; (D.15)

z2H Coupling:

@

@

�

�

s −im2
H

2v
(2π)4δ4(k+l+p) ; (D.16)

w+w−H Coupling:

@

@

�

�

s −im2
H

v
(2π)4δ4(k+l+p) . (D.17)

Finally, there are cubic and quartic scalar-gauge field interactions, aris-
ing from the Higgs field kinetic term. Those terms containing only H and
gauge fields have already been listed in section 5.4; here we give the terms
containing z and w± fields.

w+w−A Coupling:

§̈
§̈
§̈

¥¦

¥¦

s

A; qµ

w+; p w−; k ie(p−k)µ (2π)4δ4(p + k + q) ; (D.18)

w+w−Z Coupling:

§̈
§̈
§̈

¥¦

¥¦

s

Z; qµ

w+; p w−; k
ie(1−2 sin2 θW )
2 sin θW cos θW

(p−k)µ(2π)4δ4(p+k+q) ;

(D.19)
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zHZ Coupling:

§̈
§̈
§̈

¥¦

¥¦

s

Z; qµ

z; p H; k
e

2 sin θW cos θW

(p−k)µ(2π)4δ4(p+k+q) ;

(D.20)

w±zW∓ Coupling:

§̈
§̈
§̈

¥¦

¥¦

s

W∓; qµ

w±; p z; k
g2

2
(p−k)µ(2π)4δ4(p+k+q) ; (D.21)

w±HW∓ Coupling:

§̈
§̈
§̈

¥¦

¥¦

s

W∓; qµ

w±; p H; k
±ig2

2
(p−k)µ(2π)4δ4(p+k+q) ; (D.22)

w±W∓A Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s
W∓; µ A; ν

w±

−ieMW ηµν (2π)4δ4(p+k+q) ; (D.23)

w±W∓Z Coupling:

¨¥¨¥¨¥¨¥¨¥¨¥¨¥§¦§¦§¦§¦§¦§¦s
W∓;µ Z; ν

w±

ig2 sin2 θW MZηµν (2π)4δ4(p+k+q) ;
(D.24)

zzZZ Coupling:
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s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

z z

Z;µ Z; ν

−ie2
Z

2× 4
ηµν (2π)4δ4(p+k+l+q) ; (D.25)

zzW+W− Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

z z

W+; µ W−; ν

−ig2
2

2× 2
ηµν (2π)4δ4(p+k+l+q) ; (D.26)

zw±W∓A Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

z w±

W∓; µ A; ν

∓eg

2
ηµν (2π)4δ4(p+k+l+q) ; (D.27)

zw±W∓Z Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

z w±

W∓; µ Z; ν

±ezg sin2 θW

2
ηµν (2π)4δ4(p+k+l+q) ; (D.28)

Hw±W∓A Coupling:



514 ξ-gauge Feynman rules

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

H w±

W∓; µ A; ν

−ieg

2
ηµν (2π)4δ4(p+k+l+q) ; (D.29)

Hw±W∓Z Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

H w±

W∓; µ Z; ν

iezg sin2 θW

2
ηµν (2π)4δ4(p+k+l+q) ; (D.30)

w+w−AA Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

w+ w−

A;µ A; ν

−2ie2

2
ηµν (2π)4δ4(p+k+l+q) ; (D.31)

w+w−AZ Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

w+ w−

A; µ Z; ν

− ieeZ

(
1−2 sin2 θW

)
ηµν (2π)4δ4(p+k+l+q) ;

(D.32)

w+w−ZZ Coupling:



D.2 Vertices 515

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

w+ w−

Z; µ Z; ν

−ie2
Z

(
1−2 sin2 θW

)2

2× 2
ηµν (2π)4δ4(p+k+l+q) ;

(D.33)

w+w−W+W− Coupling:

s
@
@
@

�
�

�

¦¦¦¦¦

¨¨¨¨

§§§§§

¥¥¥¥

w+ w−

W+; µ W−; ν

−ig2
2

2
ηµν (2π)4δ4(p+k+l+q) ; (D.34)

D.2.2 Ghost couplings

The ghosts couple principally to the gauge bosons. The ghosts that cor-
respond to the W and Z generators of the gauge group have additional
couplings to the scalars of the theory. In a general gauge theory the ghost
Lagrangian takes the form:

−∂µω∗α∂µωα− (∂µω∗α)ωγAβ
µcα

βγ−ξω∗αωβ
(
〈φ〉T tαtβφ + φ†tβtα〈φ〉

)
. (D.35)

Here φ is the full Higgs field and 〈φ〉 is just the vacuum expectation value.
In the following, the ghost field on the left is the ω and the field on the

right is the ω∗, which therefore has the opposite sign from what might be
expected. The gauge couplings are:

Gluon-ghost-ghost coupling

®

®

®

®

®


¡¢
¡¢
¡¢
¡¢

sq q q q q q q q q q q q q q- -k, α p, γ

l, µ, β

− g3pµfαβγ (2π)4δ4(k+l+p) ;
(D.36)



516 ξ-gauge Feynman rules

Aω±W ω±W coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ω±W , k ω±W , p

γ : l, µ

∓ iepµ (2π)4δ4(k+l+p) ; (D.37)

Zω±W ω±W coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ω±W , k ω±W , p

Z : l, µ

∓ ie cotΘW pµ (2π)4δ4(k+l+p) ;
(D.38)

W±ω∓W ωγ coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ω∓W , k ωγ , p

W± : l, µ

∓ ie pµ (2π)4δ4(k+l+p) ; (D.39)

W±ω∓W ωZ coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ω∓W , k ωZ , p

W± : l, µ

∓ ie cotΘW pµ (2π)4δ4(k+l+p) ;
(D.40)

W±ωγω±W coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ωγ , k ω±W , p

W± : l, µ

± ie pµ (2π)4δ4(k+l+p) ; (D.41)

W±ωZω±W coupling

§̈
§̈
§̈

¥¦

¥¦

sq q q q q q q q q q q q q q- -ωZ , k ω±W , p

W± : l, µ

± ie cotΘW pµ (2π)4δ4(k+l+p) ;
(D.42)
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The scalar couplings are:

HωZωZ Coupling:

sq q q q q q q q q q q q q q- -ωZ ωZ

H

−iξM2
Z

v
(2π)4δ4(k+l+p) ; (D.43)

Hω±W ω±W Coupling:

sq q q q q q q q q q q q q q- -ω±W ω±W

H

−iξM2
W

v
(2π)4δ4(k+l+p) ;

(D.44)
which, note, are both proportional to the particle mass, like all

Higgs couplings;
zω±W ω±W Coupling:

sq q q q q q q q q q q q q q- -ω±W ω±W

z

±ξM2
W

v
(2π)4δ4(k+l+p) ; (D.45)

w±ω∓W ωZ Coupling:

sq q q q q q q q q q q q q q- -ω∓W ωZ

w±

iξMW MZ

v
(2π)4δ4(k+l+p) ;

(D.46)
The w±ω∓W ωA coupling vanishes.

w±ωZω±W Coupling:

sq q q q q q q q q q q q q q- -ωZ ω±W

w±

−iξMW MZ(1−2 sin2 θW )
v

(2π)4δ4(k+l+p) ;

(D.47)
w±ωAω±W Coupling:

sq q q q q q q q q q q q q q- -ωA ω±W

w±

−2iξM2
W sin θW

v
(2π)4δ4(k+l+p) .

(D.48)



Appendix E

Metric convention conversion table

In this book we have systematically used the metric convention, ηµν =
Diag[−1, +1, +1,+1], the “Pauli,” “East Coast,” or “Mostly Plus” metric.
The other common convention, the “Bjorken and Drell,” “West Coast,” or
“Mostly Minus” convention, takes ηµν = Diag[+1,−1,−1,−1]. The “Mostly
Minus” metric convention is currently in more common use in the field of
phenomenology. The “Mostly Plus” convention predominates in the general
relativity, string theory, supersymmetry, and formal field theory communi-
ties.

To make this book more useful to its intended audience, who primarily use
the opposite metric convention, we describe in this appendix the differences
between these conventions, culminating in a “translation table” between the
conventions, which should ease the difficulty in hopping between our con-
ventions and the conventions appearing in most of the relevant literature.
There are other conventions besides the metric which must be decided on,
and these are not uniform in either community; since it would be too com-
plicated to discuss every possible set of conventions, we will focus only on
the most common coherent set of “Mostly Minus” conventions, taken to be
those of Peskin and Schroeder, “An Introduction to Quantum Field Theory,”
Westview, c©1995.

Finally, we will end this section with an explanation of why we prefer
the “Mostly Plus” metric. We postpone that discussion to the end because
some physicists approach this issue with almost religious conviction, and it
is important to us that you not slam this book shut before reading the rest
of this appendix.

518
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E.1 Propagation of the differences

In going between metric conventions, it is necessary to decide what is kept
the same. Generally xµ = (t, ~x) in both conventions, and similarly pµ =
(E, ~p). Therefore ∂µ = (∂t, ∂~x) is also the same. This means that xµ, pµ,
and ∂µ are opposite. The relations for spinorial objects, gauge fields, and
generators of transformations are more complicated and are discussed in
turn.

E.1.1 Dirac algebra

The Dirac matrices γµ are required to obey the anticommutation relations
(the Clifford algebra),

{
γµ , γν

}
≡ γµγν + γνγµ = ηµν . (E.1)

The difference in sign in ηµν then requires a difference in normalization
for the Dirac matrices. We will only discuss the chiral basis for the Dirac
matrices. In this case, the relationship is,

γµ
mostly plus

= −iγµ
mostly minus

or iγµ
mostly plus

= γµ
mostly minus

. (E.2)

In the mostly plus metric, all gamma matrices are Hermitian except γ0,
which is anti-Hermitian. In the mostly minus metric, the reverse is true; γ0

is Hermitian but the others are anti-Hermitian. Because of this change, it is
necessary in the mostly plus case to introduce a new matrix β = iγ0

mostly plus
=

γ0
mostly minus

, which is Hermitian and which serves the role of relating ψ̄ and
ψ†. In the mostly minus case, this matrix is the same as γ0 and is generally
not given an independent symbol.

The factor of i changes the appearance of the fermionic kinetic term in
the Lagrangian;

Lfermion = −ψ̄( /D + m)ψ , Mostly Plus , ψ̄(i /D −m)ψ , Mostly Minus .

(E.3)
This makes a corresponding change in the Dirac equation,

Mostly Plus: [i/p + m]u(p) = 0 ; Mostly Minus: [/p−m]u(p) = 0 . (E.4)

We reiterate that these expressions look different, but they have exactly
the same content; the different appearance is because the definition of the
symbol γµ has changed, and because γµpµ in one case is −γ0p0 +~γ · ~p, while
in the other it is γ0p0 − ~γ · ~p.

The sign of the matrix γ5 is also convention dependent. The eigenspinors
of γ5 are the spinors of definite chirality. The old convention for γ5 was
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that right-handed spinors should have eigenvalue 1 and left-handed spinors
should have eigenvalue -1. The “mostly minus” literature has generally
maintained this convention. However, this convention was established be-
fore the discovery of the weak interactions, which couple exclusively to left-
handed particles; so it is in some ways more convenient to adopt the opposite
sign convention. Weinberg does this and we have followed his convention.
Therefore,

γ5
mostly plus

= −iγ0γ1γ2γ3 =

(
I 0
0 −I

)
;

γ5
mostly minus

= iγ0γ1γ2γ3 = −γ5
mostly plus

. (E.5)

We emphasize that this is not a consequence of our choice of metric, it is a
separate choice to modernize the notation which we choose to make at the
same time. Because of this choice, the ubiquitous 2PL = (1+γ5) projectors
which appear in this book would be 2PL = (1−γ5) in the notation of almost
all “mostly minus” authors.

In addition, there are differing conventions in the definition of the charge
conjugation matrix C (which should be distinguished from the charge conju-
gation operator C). We have followed the most common practice of defining
C such that, for Majorana fermions, Eq. (1.97) holds: ψM = Cψ

T

M . We
cannot compare with Peskin and Schoeder because C is not defined there.
Therefore we take the mostly minus convention also to give ψM = Cψ

T

M ,
which requires C = −iγ2γ0 (mostly minus).

Finally, because of the different factor of i in γµ, the behavior of fermion
bilinears under Hermitian conjugation differs in the two conventions. In
chapter 1, problem 1, the first set of relations all hold unchanged in mostly
minus, but in the second and third sets, the equations involving γµ and γµγ5

have the opposite sign.
These differences are summarized in table E.1.

E.1.2 Gauge fields and Poincaré generators

We follow the convention, Dµ = ∂µ − igT aAa
µ for gauge fields (with T a = q

the charge for a U(1) field). Peskin and Schroeder choose the opposite sign
for U(1) fields but the same sign for nonabelian fields. Therefore,

Aµ
mostly plus

= Aµ
mostly minus

, but Gµ
mostly plus

= −Gµ
mostly minus

. (E.6)

With this sign convention, Aµ = (Φ, ~A), with Φ and ~A the conventional
scalar and vector potentials, in both conventions. With this choice, the
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Equation Mostly Plus Mostly Minus

Clifford Algebra
[
γµ , γν

]
= 2ηµν

[
γµ , γν

]
= 2ηµν

Dirac Lagrangian −ψ( /D + m)ψ ψ̄(i /D −m)ψ

Dirac Equation [i/p + m]u(p) = 0 [/p−m]u(p) = 0

Spinor bilinears
∑

σ uu/vv(p, σ) = −i/p±m
∑

σ uu/vv(p, σ) = /p±m

γ Hermiticity βγ†µ = −γµβ , β ≡ iγ0 βγ†µ = +γµβ , β ≡ γ0

Charge conjugation ψM = Cψ
T

M , CT = −C Same

Gamma transposes γT
µC = −Cγµ Same

Table E.1. Metric convention conversion table

relation between the field strength and the non-covariant field strength is
opposite for mostly plus as for mostly minus: the field strengths are,

Mostly Plus : ~Ei = Fi0 = F 0i, ~Bi =
1
2
εijk × (Fjk = F jk) ;

Mostly Minus : ~Ei = F0i = F i0, ~Bi =
1
2
εijk × (Fkj = F kj) . (E.7)

As for the generators of the Lorentz group, we adopt the convention that
P̂µ acting on a state return its 4-momentum pµ. Therefore Pµ

mostly plus
=

Pµ
mostly minus

. The lowered components are opposite, Pµ = −i∂µ in mostly
plus whereas it is i∂µ in mostly minus. The phase e−iωt+ip·x becomes eipµxµ

in mostly plus, while it is e−ipµxµ
in mostly minus. An active translation by

ξµ is therefore implemented by the operator e−iP̂ µxµ . (To remember this,
recall that an active transformation is one which changes the position or
time of a particle. If a particle with wave function ei~p·~x is shifted so what
was its origin is now at ~ξ, then the phase is 0 at ~ξ and must be e−i~ξ·~x at the
origin.)

In both conventions, Jµν = xµpν − pµxν when acting on a scalar field.
That is, Jµν

mostly plus
= Jµν

mostly minus
. The object with both lowered indices is

also the same in the two conventions, but when one index is raised and one
is lowered, the conventions differ. With these conventions, ~Ji = 1

2εijkJjk is
the conventional angular momentum operator. Because of the opposite sign



522 Metric convention conversion table

on the metric, the signs in appendix C Eq. (C.25) and Eq. (C.26) are flipped
between the two conventions.

Propagators

Spin symbol Mostly Plus Mostly Minus

0
−i

p2+M2−iε

i

p2−M2+iε

1
2

- −i(−i/p+m)
p2+m2−iε

i(/p+m)
p2−m2+iε

1 Massless ¤¡¤¡¤¡¤¡£¢£¢£¢ −iηµν

p2−iε

−iηµν

p2+iε

1 Unitary ¤¡¤¡¤¡¤¡£¢£¢£¢
−i

(
ηµν+pµpν

M2

)

p2+M2−iε

−i
(
ηµν−pµpν

M2

)

p2−M2+iε

1 Rξ
¤¡¤¡¤¡¤¡£¢£¢£¢

−i
(
ηµν+ (ξ−1)pµpν

p2+ξM2

)

p2+M2−iε

−i
(
ηµν+ (ξ−1)pµpν

p2−ξM2

)

p2−M2+iε

Vertices

type symbol Mostly Plus Mostly Minus

Scalar
r r

, −iλν , −iλ −iλν , −iλ

Yukawa - -r −ifmn −ifmn

Gauge-scalar r r¡¢
¡¢¤£

¤£
¤¤¤¢¢¡¡¡££, ie(p−k)µ , −ie2ηµν ie(p−k)µ , +ie2ηµν

Gauge-Higgs ¤¡¤¡¤¡£¢£¢ ¤¡¤¡¤¡£¢£¢r r, −ie2νηµν , −ie2ηµν ie2νηµν , ie2ηµν

Aψ̄ψ ¡¢
¡¢¤£

¤£
- -r −eγµ ieγµ [−i,abelian]

A3, A4 ¢¢¢¤¤ ¡¡¡££r ¢¢¢
¢¢¤¤¤
¤¤
¡¡¡

¡¡
£££

££ r¤£
¤£¡¢

, +gfabc . . . , −ig2 . . . +gfabc . . . , −ig2 . . .

ghost p p p p p p p p p p p p p pr r¤£
¤£¡¢ , −gpµ , −iξg2v +gpµ , −iξg2v

Table E.2. Metric convention conversion table for Feynman rules
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We have taken these differences, the differences due to the Dirac algebra
described above, and the differences due to the metric, and used them to find
the changes to Feynman rules, summarized in table E.2. Vertices involving
gauge bosons are for nonabelian interactions; for QED, the sign of e in
mostly minus must be switched.

E.2 Why we use “Mostly Plus”

There are two key advantages of the “Mostly Plus” metric.
First, it is much easier to go back and forth between covariant and non-

covariant notation when using “Mostly Plus.” This is because the non-
covariant notation also involves a metric, δij , the metric on the three spatial
indices. It would be awkward to make this metric purely negative, and no
one does. In the “Mostly Plus” convention, in passing to the noncovariant
notation, the part involving a metric stays unchanged, only the temporal
part, which is already being split off and treated differently, has its sign
flipped. In the “Mostly Minus” convention, to pass to non-covariant nota-
tion, it is the part which is otherwise being treated as special which retains
its sign, and the term which has a metric in it must have its sign flipped.

Second and even more important, most complicated calculations in quan-
tum field theory involve Wick rotation, that is, continuation to an imaginary
value of the time or momentum variable. Indeed, field theories are prob-
ably only formally well defined after such continuation. When using the
“Mostly Plus” convention, this continuation is very simple; the negative
term in the metric is switched to being positive. When using the “Mostly
Minus” convention, if one merely continues the time or frequency coordinate
to imaginary values, one is left with a totally negative metric. One either
has to work with a totally negative metric, or flip the sign convention of
the metric at the same time as analytically continuing. Either approach
introduces extra opportunities for confusion and error, and neither one is
very appealing.

In addition to these major advantages, there are a number of minor ad-
vantages to the “Mostly Plus” metric:

(i) Photon polarization vectors εµ have positive squares. Similarly, most
components of the gauge field Aµ have positive norm. The unphysi-
cal, negative norm gauge field states which can arise in certain quan-
tization procedures (Gupta-Bleuler) arise from the negative piece of
the metric, rather than from the positive piece.

(ii) The sign on scalar and vector propagators is the same.
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(iii) Most of the Dirac matrices are Hermitian.

To be fair, there are also advantages to the “Mostly Minus” metric. In-
deed, if there were not, then everyone would agree by now on a metric
convention. In our view, these advantages are,

(i) most 4-momenta encountered in particle physics are timelike, and
this convention gives them positive squares, p2 = m2 > 0;

(ii) the matrix β and the matrix γ0 = γ0 are the same;
(iii) the Dirac propagator involves /p+m, which does not contain a relative

factor of i between the two terms. In addition, because the γ matrices
satisfy γ†µβ = βγµ without a minus sign, there are no “surprise minus
signs” emerging from the complex conjugation of a matrix element.

Besides these technical reasons is the practical one: “Mostly Plus” users
are in the majority in the phenomenology community and communication
within the community is easiest if people converge on a set of conventions.
The importance of this final reason should not be underestimated.

Based on our experience we prefer the “Mostly Plus” metric, and have
written this book in that convention. We hope that this appendix, and in
particular the two lookup tables it contains, eases the translation between
the conventions in practical calculations and renders this book usable to
both communities.



Appendix F

Bibliography

Here are some other references the reader may find useful to get background
material before reading this book, to get complementary field theory ma-
terial to better understand the more advanced topics treated superficially
here, or to go beyond where this book stops. We will not make any effort
to give a proper bibliography of the primary literature.

Less advanced books which may be useful complementary references:

• “An Introduction to the Standard Model,” by W. Cottingham and D.
Greenwood, Cambridge Press, 1998. Reviews the standard model at a
more introductory level than this book (roughly, senior undergraduate
level), and may be useful for setting the stage.

• “Quarks and Leptons: An Introductory Course in Particle Physics,” by
F. Halzen and A. Martin, Wiley, 1984. Their book is to QED and QCD
as this book attempts to be for the standard model; an elementary intro-
duction aimed at developing the computational tools and getting people
calculating, with a minimum of formal baggage. An excellent introduction
to utilitarian field theory.

Complementary books:

• “An Introduction to Quantum Field Theory,” by M. Peskin and D. Schroe-
der, Westview, 1995. An excellent and readable book on field theory. The
first 4 chapters of their book gives all required background preparation for
this book, and the remaining chapters give the tools needed to take the
material presented in this book to the next level (renormalization, higher
order effects, and a more solid theoretical foundation).

• “Quantum Field Theory,” by L. Ryder, Cambridge Press, 1996 (2’nd ed).
A somewhat more introductory text on field theory, providing more than
enough background material to understand this book.
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• “Quantum Field Theory,” by L. Brown, Cambridge Press, 1994. An id-
iosyncratic but clear introduction to quantum field theory, which gives an
extremely solid underpinning but does not cover nonabelian gauge theo-
ries.

• “The Quantum Theory of Fields, I–III”, by S. Weinberg, Cambridge Press,
2000. An encyclopedic presentation of quantum field theory, excellent
as a reference but probably not as good for a first text as Peskin and
Schroeder’s book.

• “Lie Algebras in Particle Physics,” by H. Georgi, Perseus, 1999 (2’nd ed).
A thorough treatment of group theory for particle physics, essential for
those who find appendix B either too telegraphic or far too incomplete.

More advanced texts:

• “Gauge Theory of Elementary Particle Physics,” by T. Cheng and L. Li,
Oxford Press, 1988. An exhaustive study of nonabelian gauge theory at
an advanced level, especially QCD, electroweak theory, and SU(5) GUT’s.

• “Effective Lagrangians for the Standard Model,” by A. Dobado, A. Gomez-
Nicola, A. Maroto, and J. Pelaez, Springer, 1997. An advanced treatment
of effective field theory and its application to the standard model at ener-
gies below the weak scale. It gives a detailed discussion of chiral perturba-
tion theory and nonlinearly realized electroweak symmetry. The assumed
level of field theory background is fairly high.

• “Dynamics of the Standard Model,” by J. Donoghue, E. Golowich, and
B. Holstein, Cambridge Press, 1992. An advanced discussion of the stan-
dard model, with particular emphasis on bound states in QCD, chiral
symmetry, and radiative corrections.

• “Journeys Beyond the Standard Model,” by P. Ramond, Westview, 2003.
This book provides a nice discussion of the field theory of the standard
model, the physics it contains, and the physics of its proposed extensions,
assuming a much broader field theory background than is assumed in this
book.

• “The Standard Model in the Making: Precision Study of the Electroweak
Interactions,” by D. Bardin and G. Passarino, Clarendon Press, 1999.
An advanced text on the standard model, for someone who has already
mastered everything in this book and in Peskin and Schroeder. Their
book explains in detail how to carry out loop level calculations within
electroweak theory and provides a compendium of high order results in
precision electroweak theory and in perturbative QCD.

• “Neutrino Physics,” by K. Zuber, Taylor and Francis, 2004. A compre-
hensive and up-to-date presentation of neutrino physics, including a more
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complete discussion of the issues in neutrino phenomenology discussed in
this book, and careful discussion of the experimental situation and of the
details of the experiments.
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2π counting, 156
∆I = 1

2
Rule, 356

∆ baryon, 302
Λ baryon, 302
Ω baryon, 302
Σ baryon, 302
Σ∗ baryon, 302
Θ3, and electric dipole moments, 465
Ξ baryon, 302
Ξ gauges, 507
Ξ∗ baryon, 302
γ5, convention for, 519
ΛQCD, 278
ρ parameter, 237
SUc(3)× SUL(2)× UY (1), 54

A terms, Supersymmetry breaking, 451
Abelian Higgs model, 40
Accidental conservation laws, in the standard

model, 95
Accidental symmetries, 240, 242
Accidental symmetries, and the Fermi theory,

242
Accidental symmetry, 68
Action, 12
Ademollo-Gatto theorem, 325, 362
Adjoint Higgs models, 107
Adjoint representation, 491
Altarelli-Parisi (DGLAP) equations, 348
Angular momentum operators, 498
Annihilation operators, 4, 12, 21
Annihilation to photons, 217
Anomalies, 96
Anomalies, and π0 decay, 297, 364
Anomalies, and Qe + Qp, 101
Anomalies, and Qν , 101
Anomalies, and baryon number, 102
Anomalies, and lepton number, 103
Anomalies, and neutrino stability, 154
Anomalies, between electromagnetism and

chiral symmetries, 297
Anomalies, gauge, 99
Anomalies, involving the Lorentz group, 102

Anomalous magnetic moment of a proton, 323
Anomaly matching, 366
Anti-fundamental representation, 492
Antiparticles, 13
Antisymmetry of the baryonic wave function,

301
Asymmetries, left-right, 200
Asymmetry, forward-backward, 201
Asymptotic freedom, 456
Atmospheric neutrino oscillations, 404
Axioms of field theory, 7
Axion, 461
Axion potential, 468
Axions, as cold dark matter, 469

B-L conservation, 104
B-L symmetry, gauged, 108
BaBar experiment, 229
Barn, 198
Baryon masses, 300
Baryon masses, and chiral symmetry breaking,

317
Baryon number, 95, 286
Baryon number, anomalies, 102
Baryon number, of QCD bound states, 287
Baryons, 71, 281
Baryons, and flavor symmetry, 300
Baryons, defined, 281
Baryons, octet and decuplet, 302
Baryons, valence quark content of, 302
Baryons, wave function antisymmetry, 301
Basic principles, 7
Belle experiment, 229
Beta decay, double, 418
Bhabha scattering, 223
Bjorken x, 331
Bloch-Nordsieck resummation, 222
Boosts, generator of, 499
Boson decays, 127
Bottomonium, 285
Bound states, 113
Bound states, bb̄, 199
Bound states, cc̄, 199
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Bound states, of heavy quarks, 284
Bound states, strongly interacting, 75
Branching fraction, 137
Branching fractions, for Z0 bosons, 138
Branching fractions, in W± decays, 145
Branching ratios of the τ lepton, 159
Breaking of UV (3) symmetry by masses, 295
Breit frame, 332
Breit-Wigner lineshape, 206
Breit-Wigner resonance, 208

C symmetry, 73, 75, 77, 80, 81, 85
C symmetry, and QCD bound states, 287
C symmetry, broken by Z and W couplings, 89
C, definition, 86
Cabbibo angle, 81
Callan-Gross sum rule, 337
Canonical form: fermions, 23
Canonical form: scalars, 17
Casimir, in SUc(3), 346
Causality, 13
Center of mass frame, 191
CERN, 203
Charge conjugation symmetry, 86
Charge radius of the proton, 324
Charged current interactions, 78, 154, 236
Charged current interactions, and W± boson

decay, 143
Charged current interactions, and Fermi

theory, 236
Charmonium, 285
Cherenkov radiation, 224
Chern-Simons number, 461
Chiral Lagrangian, 310
Chiral perturbation theory, 279
Chiral symmetry, 103, 290, 292, 321
Chiral symmetry breaking, and baryon

masses, 317
Chiral symmetry, and spectral degeneracies,

297
Chiral symmetry, broken by electromagnetism,

296
Chiral symmetry, explicit breaking, 294
Chiral symmetry, spontaneous breaking, 304
Circular polarization, 28
CKM matrix, 78
Clifford algebra, 505, 519
Cluster decomposition, 7
Cold dark matter, 469
Collinear photon emission, 219
Color, 54
Color confinement, 282
Commutation relations, 38
Compton scattering, 215
Confinement, 282
Confinement hypothesis, 282
Confinement scale, Λc, 283
Confinement, linear, 283
Conservation laws, and stable particles, 153
Conservation laws, approximate, 240
Conservation of baryon number, 95

Conservation of lepton number, 95
Conserved vector current, 325
Conventions, and γ5, 519
Corrections near a resonance, 203
Cosmological constant problem, 437
Cosmological constant problem., 438
Coulomb barrier, 326
Coupling constants, 485
Couplings, fermion-Z0 boson, 137
Couplings, gluon-fermion, 74
Covariant derivative, 38
Covariant derivatives of standard modelfields,

58
CP symmetry, 460
CP symmetry, broken by Kobayashi

Maskawamatrix phases, 89
CP violation, 401
CP violation, in neutrino physics, 401
Creation operators, 4, 12, 21
Cross section, 112
Cross-section, 122
Crossed graphs, 213
Crossing symmetry, 14, 211, 217
CTEQ collaboration, 349
Cubic electroweak interactions, 76
Current conservation, 216
Custodial SU(2) symmetry, 66

D term, supersymmetric, 446
Decay rate, of a polarized Z0 boson, 136
Decay rate, of the Z0 boson, 135
Decay rates, 122
Decay, of the µ− lepton, 155
Decay, of the τ− lepton, 158
Decays, of elementary bosons, 127
Decays, of leptons, 153
Decoupling, 436
Deep inelastic scattering, 331
Deep inelastic scattering, kinematics, 331
Delta baryon, 302
Density matrix, 129
DGLAP (Altarelli-Parisi) equations, 348
Dilepton, 339
Dimension 5 operators in the standard model,

426
Dirac conjugate, 22, 505
Dirac field, 69
Dirac neutrino, 397
Dirac neutrino masses, 415
Dirac neutrinos, 411
Dirac spinor, 69, 504
Dirac traces, 131
Dirac traces, evaluation, 131
Discrete symmetries, 85
Divergences, soft, 347
Divergent soft photon corrections, 221
Double beta decay, neutrinoless, 418
Drell-Yan process, 339
Drell-Yan process, differential cross-section,

340
Dyadics, of fermion spinors, 130
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Dynkin index, 479

Effective Lagrangian, 232
Effective Lagrangians, 232
Effective theory, of QED with hadrons, 321
Electric charge, 39
Electric charge, and anomalies, 101
Electric dipole moment, for the neutron, 465
Electric dipole moments, and Θ3, 465
electromagnetic breaking of chiral symmetry,

296
Electromagnetic interactions, 83
Electromagnetism, as a symmetry of the

vacuum, 64
Electron charge, 83
Electron number, 95
Electroweak interactions, 76
Elementary boson decays, 127
Endpoint, 169
eta’ meson, mass, 313
Evolution equations for PDF’s, 348
Expansion, in large MW , 163
Experimental values, of masses, 485
External lines, Feynman rules, 172

F term, supersymmetric, 446
Factorization, 207, 330
Factorization, on resonance, 208
Fadeev-Popov ghosts, 507
Families, 54
Fermi coupling constant, 164
Fermi effective theory, 225
Fermi Lagrangian, 236
Fermi statistics–and signs in interference

terms, 213
Fermi theory, 232, 234
Fermi theory of neutral currents, 237
Fermi theory of the weak interactions, 424
Fermi theory, and accidental symmetries, 242
Fermion electroweak couplings, Feynman

rules, 178
Fermion loops, minus sign associated with, 180
Fermion masses, 69
Fermionic content of the standard model, 56
Fermionic fields: canonical form, 23
Fermions, charges in the standard model, 56
Fermions, Dirac, 69
Feynman gauge, 174, 507
Feynman graph, symmetry factor, 180
Feynman rules, 153, 172, 508
Feynman rules, and metric convention, 522
Feynman rules, combinatorial factors, 175
Feynman rules, for external lines, 172
Feynman rules, for incoming lines, 172
Feynman rules, for internal lines, 173
Feynman rules, for outgoing lines, 173
Feynman rules, ghosts, 515
Feynman rules, ghosts and unphysical scalars,

509
Feynman rules, ordering of spinorial indices,

173

Feynman rules, vertices for the standard
model, 175

Field strength, 27
Fields, Dirac, 69
Fields, transformation under a symmetry, 488
Fiertz identity, 52, 225
Fiertz rearrangements, 472
Flavor change, absent in Z couplings, 84
Flavor changing, 81
Flavor changing neutral currents, 73, 84
Flavor changing, absent in strong interactions,

75
Flavor octet mesons, 298
Flavor problem, 470
Flavor singlet mesons, 298
Fock space, 4
Forward-backward asymmetry, 201
Forward-backward asymmetry, on resonance,

207
Fragmentation, 344
Fragmentation function, 344
Free quarks, non-observation, 282
Fundamental representation, 492

GF , the Fermi coupling constant, 164
Gamma matrices, 21, 505
Gamma matrices, Hermiticity of, 519
Gauge anomalies, 99
Gauge bosons, 38
Gauge choice, and Feynman rules, 174
Gauge choice, unitary, 42
Gauge coupling unification, 479
Gauge fixing, 62
Gauge group, of the standard model, 54
Gauge invariance, 29, 216
Gauge, renormalizable ξ, 507
Gauge, unitary, 62, 507
Gaugino, 445
Gaugino Yukawa couplings, 446
Gell Mann–Okubo mass relation, 317
Gell-Mann matrices, 44
Generators of Lorentz group, 498
Ghosts, 507
Ghosts, Feynman rules, 515
GIM mechanism, 376, 378, 400
GIM mechanism, leptons, 412
Global symmetries, and Yukawa interactions,

93
Glueballs, 71
Gluon, 44
Gluon emission, and gauge invariance, 218
Gluon self-couplings, Feynman rules, 176
Gluon-fermion coupling, Feynman rules, 177
Gluon-fermion couplings, 74
Gluons, 54, 74
Gluons, self-couplings, 74
Goldberger-Treiman relation, 364
Goldstone boson, 305
Goldstone’s Theorem, 306
Grand Unified Theories, 473, 476
Group theory, 487
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Gyroscopic ratio, of protons and neutrons, 323

Hadron-hadron collisions, 338
Hadronic heavy quark pair production, 341
Hadronic scattering, 320
Hadronization, 344
Hadrons, 54, 70, 75, 140
Hadrons, light, 290
Hamiltonian, 3
Hamiltonian, of a free system, 6
Hamiltonian, physical constraints on, 7
Heaviside function, 116, 162
Heavy particles, and nonrenormalizable

interactions, 234
Heavy quark effective theory, 326
Heavy quark pair production, hadronic, 341
Heavy quarks, bound states, 284
Helicity conservation, 136
Helicity suppression, 412
Helicity, and angular distributions of final

states, 136
Hierarchy problem, 440
Higgs boson decays, and longitudinal gauge

boson polarizations, 149
Higgs boson mass, 63, 73
Higgs boson, decays, 146
Higgs boson, decays into bosons, 148
Higgs boson, decays into fermions, 147
Higgs field, 60
Higgs mechanism, 42
Higgs self-couplings, 72
Higgs self-couplings, Feynman rules, 175
Higgs-fermion couplings, 72
Higgs-fermion couplings, Feynman rules, 176
Higgs-gauge boson couplings, 72
Higgs-gauge boson couplings, Feynman rules,

175
Higgsino, 445
Higgsstrahlung, 229, 430
Higher order corrections, 141
Higher order corrections, parametric

estimates, 141
Hilbert space, 3, 113
Hilbert space, and symmetries, 487
Hypercharge, 54

Inclusive reactions, 275
Incoming lines, Feynman rules, 172
Infinite momentum frame, 332
Initial state radiation, 222, 345
Initial state radiation, and PDF evolution, 345
Instanton, 462
Interaction Hamiltonian, 128
Interaction Hamiltonian, and temporal gauge

field components, 128
Interactions, 35
Interactions, W -fermion, 78
Interactions, Z-fermion, 82, 83
Interactions, Z-fermion coupling strengths, 84
Interactions, and gauge invariance, 37
Interactions, and vector particles, 37

Interactions, between W and Z bosons, 76
Interactions, charged current, 78
Interactions, electromagnetic, 83
Interactions, electroweak, 76
Interactions, electroweak cubic, 76
Interactions, electroweak quartic, 77
Interactions, gluon self, 74
Interactions, gluon-fermion, 74
Interactions, Higgs self, 72
Interactions, Higgs-fermion, 72
Interactions, Higgs-gauge boson, 72
Interactions, neutral current, 82, 83
Interactions, nonrenormalizable, 234
Interactions, strong, 75
Interactions: scalar, 35
Interactions: scalar-spinor, 36
Interference, 212
Interference and minus signs, 180
Internal lines, Feynman rules, 173
Internal symmetry, 32
Inverted hierarchy of neutrino masses, 405
Irreducible representation, 490
Isospin, 295

J/ψ particle, 284
Jets, 330
Jets, and collinear radiation, 344
Josephson effect, 253

KL decays, 73
Kinematics, 189
Kinematics, in deep inelastic scattering, 331
Klein-Gordon equation, 16
Kobayashi-Maskawa matrix, 78

Lab frame, 190
Lagrangian, 12
Lagrangian density, 12
Lagrangian terms, involving the Higgs boson,

60
Lagrangian, of a spin-0 field, 17
Lagrangian, of a spin-1 field, 26
Lagrangian, of a spin-1/2 field, 24
Lagrangian, of the standard model, 58
Lambda baryon, 302
Landau gauge, 174, 507
Landau pole, 456
Large extra dimensions, 442
Large logarithms, 218
Large mass expansion, 163, 232
Lattice QCD, 278
Left-handed spinor, 502
Left-right asymmetry, 200
Left-right asymmetry, on resonance, 207
LEP collider, 183, 198, 209, 229
LEP I experiment, 203
LEP II experiment, 430
Lepton number, 95
Lepton number, anomalies, 103
Leptons, 54, 75
Levi-Civita tensor, 132
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Lie algebra, 38, 489
Lie algebra, for the Lorentz group, 499
Lie groups, 488
Lifetime, of the µ− lepton, 157
Lifetime, of the τ− lepton, 159
Linear confinement, 283
Linear potential, and confinement, 283
Lineshape, 206
LMA oscillations, 404
Local symmetry, 487
Locality, 7, 8, 12
Loop corrections, 243
Loops, 243
Lorentz covariance, and gauge boson

propagators, 162
Lorentz group, 494
Lorentz group representations, 13, 19
Lorentz group, and anomalies, 102
Lorentz group, generators, 498
Lorentz group, Lie algebra, 499
Lorentz group, representations, 500
Lorentz group: reducible representations, 19
Lorentz invariance, 13, 162
Lorentz invariance, of time ordering operation,

117
Lorentz symmetry, 8
Lorentz transformation, orthochronous, 497
Lorentz transformation, proper, 497
Low energy expansion, 232
LSP (lightest supersymmetric particle), 448
LSP as dark matter candidate, 449
Luminosity, 198

Magnetic moment, of a proton, 323
Majorana mass, 399, 421
Majorana neutrino, 399
Majorana notation, 502, 503
Majorana spinor, 20
Majorana spinors, identities, 45
Mandelstam variables, 189, 210
Mandelstam variables, kinematically allowed

ranges, 192
Mass formula, for mesons, 313
Mass relations, for baryons, 317
Mass relations, Gell Mann–Okubo, 317
Mass shell, 202
Mass, A boson, 65
Mass, W boson, 64
Mass, Z boson, 65
Mass, fermions, 69
Mass, Higgs boson, 63, 73
Mass, Majorana, 399
Mass, neutrino, 70
Masses of the baryons, 300
Masses, of particles, 485
Matrix element, 117
Matrix element for Z0 decay, 128
Meson decays, 352
Meson decays, nonleptonic, 354
Meson mass formula, 313

Meson masses, and SU(3) flavor symmetry,
298

Meson masses, related by chiral symmetry
breaking, 313

Mesons, 71, 281, 298
Mesons, defined, 281
Metric convention, 9, 21
Metric convention, and Feynman rules, 522
Metric conventions, 518
Microcausality, 7
Minimal Supersymmetric Standard Model

(MSSM), 445
Minus signs, in interference between diagrams,

180
Mixing, between φ and ω mesons, 316
MNS matrix, 401
MRST collaboration, 349
MSW effect, 406
MSW oscillations, adiabatic, 409
MSW resonance, 409
mu Decays, 155
muon decay rate, computed value, 168
muon lifetime, 157
Muon number, 95
Muon-hadron production ratio R, 199
Møller scattering, 212
Møller wave operators, 114

Nanobarn, 198
Neutral K system, 73
Neutral current interactions, 82, 83, 128
Neutral current interactions, and Z0 decay,

128
Neutral currents, 237
Neutral currents, and Fermi theory, 237
Neutral pion decay, 364
Neutral pion decay, and broken axial

symmetry, 297
Neutrino beam oscillations, 404
Neutrino CP violation, 82
Neutrino mass, 70, 82
Neutrino mass, absent in the standard model,

70
Neutrino masses, 106, 427
Neutrino masses, Dirac, 415
Neutrino masses, experimental values, 404
Neutrino masses, upper and lower bounds, 406
Neutrino oscillations, 395, 402
Neutrino, right handed, 57, 70
Neutrino, sterile, 421
Neutrinoless double beta decay, 418
Neutrinos propagating through solar medium,

406
Neutrinos, pseudo-Dirac, 415
neutron, 302
Neutron decay, 362
Neutron electric dipole moment, 465
Noether current, 31
Noether current, and gauge couplings, 37
Noether’s theorem, 13, 31
Nonabelian symmetries, 38
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Nonleptonic meson decays, 354
Nonrenormalizable interactions, 234, 424
Nonrenormalizable operators, and the

standard model, 426
Normal hierarchy of neutrino masses, 405
Nucleon-pion scattering, 364
Numerical values, of couplings, 485

O(3,1), 495
Oblique electroweak corrections, 267
Omega baryon, 302
order parameter, 306
Orthochronous, 497
Oscillation length, 403
Outgoing lines, Feynman rules, 173

P symmetry, 73, 75, 77, 80, 81, 85, 460
P symmetry, and QCD bound states, 287
P symmetry, broken by Z and W couplings, 89
Parameters of the standard model, 61
Parametric estimates, 139, 156
Parity, 497
Parity, definition, 85
Particle data book, 284
Particle Data Group, 79
Particle Data Group, parameterization of

CKM matrix, 79
Particle masses, 485
Parton distribution functions (PDF’s), 335
Partons, 329
Pascos-Wolfenstein ratio, 388
Pauli matrices, 19, 58
PDF’s, 335
PDF’s: approximate scale independence, 345
PDF’s: scale dependence, 345
pentaquark, 281
Pentaquarks, 303
Perturbative expansion, breakdown for low

energy QCD, 278
Phase space, 138
Phase space integrals, three body, 165
Photon, 54
Photon emission, collinear, 219
Photon exchange, 197
Photons, as external states, 214
Pion decay constant, from decay rates, 353
Pion decay, neutral, 364
Pion scattering, 357
Pions, as pseudo-Goldstone bosons, 308
PMNS matrix, 263, 401
Poincaré algebra, 499
Poincare invariance, 8
Polarization vectors, 28
Polarizations, summed over, 215
Polarized Z0 boson decay rate, 136
Precision electroweak measurements, 267
Propagator, 161
Propagator, Feynman rules, 508
Propagators, near resonance, 203
Proper Lorentz transformation, 497
proton, 302

Proton, charge radius, 324
Proton, magnetic moment, 323
Pseudo-Dirac neutrinos, 415
Pseudo-Goldstone boson, 305
pseudo-Goldstone boson, 308
Pseudoscalar, 506
Pseudoscalar mesons, 299
Pseudovector mesons, 299

QCD, 43, 276
QCD bound states, quantum numbers, 285
QCD Lagrangian, 276
QCD vacuum, and topology, 462
QCD vacuum, spontaneously breaks chiral

symmetry, 304
QED, 276
QED Lagrangian, 276
QED, including hadrons, 321
Quadratic Casimir CF, 346
Quantum Chromodynamics (QCD), 275
Quantum electrodynamics, 39
Quantum numbers, of QCD bound states, 285
quark, 43
Quarkonia, 284
Quarkonium, 285
Quarks, 54
Quarks, valence and sea, 336
Quartic electroweak interactions, 77

R parity, 448
Rξ gauge, 174
Radiative corrections, 218
Radiative corrections, and the Z line shape,

222
Rapidity, 340
Reactor neutrino oscillations, 404
Redundant effective interactions, 482
Reflection positivity, 468
Regge theory, 321
Renormalizability, 9, 14, 424
Representation theory, 489
Representation, adjoint, 491
Representation, irreducible, 490
Representation, singlet or trivial, 490
Representations, and Lie algebra, 490
Representations, of the Lorentz group, 500
Resonance, Z, 206
Resonances, 203
Resonances, hadronic, 321
Rho parameter, 237
rho parameter, 243
Right handed neutrinos, 57, 105
Right-handed spinor, 502
Rotations, generator of, 499

S matrix, in terms of interaction Hamiltonian,
117

s-channel process, 195, 211
S-matrix, 111, 114
Scalar fields: canonical form, 17
Scalar fields: vacuum energy, 18
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Scalar particles, 16
Scalar representation, 500
Scalar self-interactions, 35
Scalar-spinor interactions, 36
Scattering process, s channel, 195
Scattering states, 112
Sea quarks, 336
Seesaw mechanism, 416, 428
Seesaw neutrino masses, 478
Self-energy corrections, 204
semi-leptonic decays, 352
Sigma baryon, 302
Sigma∗ baryon, 302
Singlet representation, 490
SLAC, 203
SLC experiment, 203
Slepton, 445
SO(10) grand unified models, 478
SO(3,1), 495
Soft photon emission, 221
Soft singularities, 347
Soft-Pion Scattering, 350
Solar neutrino oscillations, 404
Solar neutrinos, 396
Spectral degeneracies, and chiral symmetry,

297
Spectral relations, 33
Spin average, in initial state, 129
Spin dependent structure functions, 334
Spin-1 particles, 25
Spin-1 particles, massive, 25
Spin-1 particles, massless, 27
Spin-half particles, 19
Spin-Statistics Theorem, 14
Spinor, 501
Spinor fields, 19
Spinor, Dirac, 69
spinor, Majorana, 20
spinor, Weyl, 20
Spinorial indices, ordering in Feynman rules,

173
Spinors, Majorana versus Dirac, 55
Splitting functions, 348
Spontaneous breaking of chiral symmetry, 304
Spontaneous symmetry breaking, 40, 43
Spontaneously broken symmetry, 34
Squark, 445
Stability, 9, 14
Stability of neutrinos, 153
Stability of the electron, 153
standard model fields, covariant derivatives, 58
standard model gauge group, 54
standard model Lagrangian, 58, 60
standard model, continuous symmetries, 90
standard model, fermionic content, 56
standard model, parameters, 61
Step function, 116, 162
Step function, integral representation, 162
Sterile neutrino, 421
Sterile neutrino bounds, 416
Sterile neutrinos, 411

Strangeness, 286, 296
String tension, in QCD, 283
Strong CP problem, 460, 461
Strong interactions, 54, 74, 75
Strong interactions, and bound states, 75
Structure constants, 489
Structure functions, 333
Structure functions, in terms of PDF’s, 337
Structure functions, spin dependent, 334
SU(2) symmetry, custodial, 66
SU(3) Flavor, 298
SU(3)×SU(2)×U(1), 54
SU(5) grand unified model, 476
SU(N), representation theory, 492
Sum rule, Callan-Gross, 337
Supernova 1987A, 224
Superpotential, 446
Supersymmetric D term, 446
Supersymmetric F term, 446
Supersymmetry, 439, 443
Supersymmetry breaking, 449
Supersymmetry breaking A terms, 451
Supersymmetry, and gauge coupling

unification, 481
Symmetries, 487
Symmetries of the standard model, 90
Symmetries, accidental, 85, 242
Symmetries, and the standard model, 85
Symmetries, as a group, 488
Symmetries, C, P, and T, 73, 75, 77, 80, 81, 85
Symmetries, continuous global, 90
Symmetries, discrete, 85
Symmetry breaking vacuum, 41
Symmetry factor, of a Feynman diagram, 180
Symmetry factor, of a Feynman graph, 180
Symmetry transformation, 487
Symmetry transformation, and fields, 488
Symmetry, accidental, 68
Symmetry, CP, 460
Symmetry, local, 487
Symmetry, P, 460
Symmetry, spontaneously broken, 34
Symmetry: broken by the ground state, 33

T matrix, 117
T symmetry, 73, 75, 77, 80, 81, 85
t-channel process, 211
T-matrix element, 117
Tachyons, 41
Tachyons, absent about correct vacuum, 41
tau decay rate, computed value, 168
tau decay, branching ratios, 159
tau decays, 158
tau lifetime, 159
Tau number, 95
Technicolor models, 442
Technicolor models., 258
Tensor product, 491
Tensor product, of spinor fields, 504
Tensor, totally antisymmetric, 132
Theta vacua, 463
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Thompson scattering, 386
Three body phase space integrations, 165
Time dependent perturbation theory, 115
Time ordering operator, 116
Time reversal, 497
Time reversal, definition, 85
Top quark decay, 151
Top quark, decay width, 151
Top quark, virtual, 239
Topological susceptibility, 468
Topology, and QCD vacuum, 462
Total derivative, in the Lagrangian, 461
Trace theorems, 132
Translation invariance, 13
Trivial representation, 490
Triviality, 456
Triviality bounds, on Higgs mass, 74
Triviality problem, 456
Twist, 338
Two Higgs doublet models, 106

UA(1) anomaly, 293
UL(3)× UR(3) approximate symmetry, 292
UV (3) breaking, 295
U(1), representation theory, 491
U(3) chiral symmetry, 104
Uncrossed graphs, 213
Unitarity, 7, 12
Unitarity bounds, on Higgs mass, 74
Unitary gauge, 42, 62, 507
Unitary gauge, and Feynman rules, 174
Unphysical scalars, Feynman rules, 509
Upsilon particle, 284

Vacuum alignment, in the MSSM, 452
Vacuum energy: scalars, 18
Vacuum, symmetry breaking, 41
Valence quarks, 336
Vector particles, 25
Vector particles, massive, 25
Vector particles, massless, 27
Vector representation, 500
Vertex, Feynman rules involving ghosts, 515
Vertices, for unphysical scalars, 509
Virtual Higgs exchange, 238
Virtual particles, 153
Virtual top quark effects, 239

W boson decay, 143
W boson decay, interaction Hamiltonian, 143
W boson mass, 64
W boson mass, and renormalization, 252
W bosons, 54
W decay width, 143
W decay, branching fractions, 145
W lifetime, 145
W-fermion interactions, 78
Wave packets, 118
wave packets, 112
Weak interactions, 54
Weak mixing angle, 65

Weak universality, 81
Weinberg angle, 65
Wess-Zumino term, 366
Weyl notation, 503
Weyl spinor, 20, 502
Wick rotation, 523
Wolfenstein parameterization, 80

X boson, of grand unified theories, 478
x, Bjorken, 331
Xi baryon, 302
Xi gauges, 507
Xi∗ baryon, 302

Yukawa couplings, 36
Yukawa couplings, and global symmetries, 93
Yukawa couplings, from a superpotential, 446

Z boson decay, 127
Z boson pole, imaginary part, 204
Z boson, couplings to fermions, 137
Z bosons, 54
Z charges of the fermions, 84
Z decay rate, 135
Z decay, and hadronic final states, 140
Z lifetime, 138
Z pole line shape, 223
Z resonance, 206
Z width, 138
Z width, and higher order corrections, 141
Z width, parametric estimate, 139
Z-fermion coupling strengths, 84
Z-fermion interactions, 82, 83


