
Quantum Electrodynamics Assignment (Fall 2022 - Due Tue. Dec. 6)

1 Exact Results

The first group of problems involve proving some exact results for QED, whose lagrangian
density is given by L = L0 + Lint, where

L0 = −1

4
FµνF

µν − ψ(/∂ +m)ψ and Lint = iq ψ /Aψ , (1.1)

as would be obtained by substituting ∂µ → Dµ = ∂µ − iqAµ in L0. As usual /∂ := γµ∂µ and
/A := γµAµ and ψ := ψ†β = iψ†γ0.

The noninteracting field expansions appropriate to the interaction representation are

Aµ(x) =
∑
λ=±1

∫
dk√

(2π)32ωk

[
εµ(kλ) ak,λ e

ikx + ε∗µ(kλ) a
∗
k,λ e

−ikx] , (1.2)

and

ψ(x) =
∑
σ=± 1

2

∫
dp√

(2π)32Ep

[
u(p, σ) cpσ e

ipx + v(p, σ) c∗pσ e
−ipx] , (1.3)

where akλ commutes with cpσ, cpσ and their adjoints while cpσ anticommutes with cqζ , cqζ
and c∗qζ (and the same with c ↔ c) while

[akλ, a
∗
qζ ] = δλζ δ

3(k− q) and {cpσ, c∗qξ} = {cpσ, c∗qξ} = δσξ δ
3(p− q) , (1.4)

and the polarization vectors εµ(k, λ), u(p, σ) and v(p, σ) are as given in the lectures. The
polarization tensor satisfies kµεµ(k, λ) = nµεµ(k, λ) = 0 where nµ = (1, 0, 0, 0) points purely
in the time direction (in the frame where A0 = ∇ ·A = 0).

1.1 Propagators and the Miracle of Lorentz Invariance

1. Evaluate the photon’s Feynman propagator from scratch using the above field expan-
sion, and prove the result shown in class:

⟨0|T
[
Aµ(x)Aν(y)

]
|0⟩ = −i

∫
d4p

(2π)4
Sµν(p)
p2 − iδ

eip(x−y) (1.5)

where δ is a positive infinitesimal and p(x−y) := ηµνp
µ(x−y)ν = −p0(x−y)0+p·(x−y)

while

Sµν(p) :=
∑
λ=±

εµ(p, λ) ε
†
ν(p, λ)

= ηµν −
(nµpν + nνpµ)p0 + pµpν

p2
+
pλpλnµnν

p2
. (1.6)

2. Verify explicitly that given the interaction hamiltonian density

Hint(x, t) = −Jµ(x, t)Aµ(x, t) +
1

8π

∫
d3y

J0(x, t)J0(y, t)

|x− y|
(1.7)
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(where Jµ(x) is a classical current that satisfies ∂µJ
µ = 0), the Lorentz noncovariant

(J0)2 term cancels to second order in the S-matrix element

⟨0|S|0⟩ = 1− i

∫
d4x ⟨0|Hint(x)|0⟩ −

1

2

∫
d4xd4y ⟨0|T

[
Hint(x)Hint(y)

]
|0⟩+ · · · (1.8)

3. Evaluate the electron’s Feynman propagator from scratch using the above field ex-
pansion, and prove the result:

⟨0|T
[
ψ(x)ψ(y)

]
|0⟩ = −i

∫
d4p

(2π)4
S(p)

p2 +m2 − iδ
eip(x−y) (1.9)

where now
S(p) :=

∑
σ=± 1

2

u(p, σ)u(p, σ) = −i/p+m. (1.10)

This also involves proving that v(p, σ) = γ5u(p,−σ) satisfies∑
σ=± 1

2

v(p, σ) v(p, σ) = −i/p−m. (1.11)

1.2 Low’s Theorem

The relationship between Heisenberg-picture and Interaction-picture field operators is

OH(x, t) = Ω(t)OI(x, t) Ω
−1(t) where Ω(t) := eiHt e−iH0t (1.12)

where the Hamiltonian is split between an unperturbed and perturbed part: H = H0+Hint.
Exact scattering states |α, t⟩⟩ of the full system are given in terms of the corresponding
unperturbed state |α⟩ by

|α, t⟩⟩ = Ω(t) |α⟩ so, in particular |α⟩⟩in = Ω(−∞) |α⟩ and |α⟩⟩out = Ω(∞) |α⟩ . (1.13)

The evolution operator U(t, t′) := Ω−1(t)Ω(t′) satisfies the usual evolution equation

∂U(t, t′)

∂t
= −iV (t)U(t, t′) where V (t) := Ω−1(t)HintΩ(t) , (1.14)

and so is given perturbatively by

U(t, t′) =
∞∑
n=0

(−i)n

n!

∫ t

t′
dτ1 · · · dτn T

[
V (τ1) · · ·V (τn)

]
. (1.15)

1. Prove Low’s theorem, which states that Heisenberg-picture and interaction-picture
correlation functions are related by

out⟨⟨β|T
[
Oi1

H (x1) · · · Oin
H (xn)

]
|α⟩⟩in (1.16)

=
∞∑
N=0

(−i)N

N !

∫ ∞

−∞
dτ1 · · · dτN ⟨β|T

[
Oi1

I (x1) · · · Oin
I (xn)V (τ1) · · ·V (τN)

]
|α⟩ .

Page 2 of 10



Quantum Electrodynamics Assignment (Fall 2022 - Due Tue. Dec. 6)

This theorem allows one to make the connection between exact Heisenberg-picture cor-
relators and perturbative expressions in the interaction picture. The usual expression
for the S-matrix

out⟨⟨β|α⟩⟩in = ⟨β|S|α⟩ =
∞∑
N=0

(−i)N

N !

∫ ∞

−∞
dτ1 · · · dτN ⟨β|T

[
V (τ1) · · ·V (τN)

]
|α⟩ .

is a special case of this result. Recall in particular that the free-field expansions given
in (1.2) and (1.3) apply only to the interaction-picture field operators.

2. It is the Heisenberg-picture operators that satisfy[
P µ ,OH(x)

]
= i∂µOH(x) (1.17)

and not the interaction-picture operators (which are not translated in time by the full
hamiltonian H = P 0). Use this to prove

out⟨⟨β|T
[
Oi1

H (x1+x) · · · Oin
H (xn+x)

]
|α⟩⟩in = ei(p(α)−p(β))x

out⟨⟨β|T
[
Oi1

H (x1) · · · Oin
H (xn)

]
|α⟩⟩in ,

(1.18)
provided P µ|α⟩⟩in = pµ(α)|α⟩⟩in and P µ|β⟩⟩out = pµ(β)|β⟩⟩out. In particular, if the ground

state is translation invariant – i.e. P µ|0⟩⟩in = P µ|0⟩⟩out = 0 – then

out⟨⟨0|T
[
ψn(x)ψm(y)

]
|0⟩⟩in = out⟨⟨0|T

[
ψn(x− y)ψm(0)

]
|0⟩⟩in (1.19)

must be a function only of (x− y)µ.

3. Similarly, conserved charges Q commute with charged fields to give[
Q ,Oi

H(x)
]
= −qiOi

H(x) (1.20)

where qi is the charge of the field Oi
H. If Q|α⟩⟩in = Qα|α⟩⟩in and Q|β⟩⟩out = Qβ|β⟩⟩out

then show that

out⟨⟨β|T
[
Oi1

H (x1) · · · Oin
H (xn)

]
|α⟩⟩in ̸= 0 implies Qβ = Qα −

n∑
k=1

qik . (1.21)

1.3 QED Ward Identity

In QED consider the Heisenberg-picture correlator

F µ
mn(x, y, z) := out⟨⟨0|T

[
ψn(x) J

µ(z)ψm(y)
]
|0⟩⟩in (1.22)

where m and n are Dirac indices and Jµ = iqψγµψ is the electric current operator for a
fermion with charge q. Recall that charge conservation implies the Heisenberg evolution
of the operators ensures ∂Jµ(z)/∂zµ = 0 as an exact statement. Because of this only the
time-ordering step functions contribute when F µ

mn is differentiated with respect to zµ.
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1. Use the above observation and the current-field commutation relation – see eq. (1.20)[
J0(x, t) , ψn(y, t)

]
= −q δ3(x− y)ψn(y, t) , (1.23)

to show that

∂F µ
mn

∂zµ
= −qδ4(x− z)out⟨⟨0|T

[
ψn(x)ψm(y)

]
|0⟩⟩in

+qδ4(y − z)out⟨⟨0|T
[
ψn(x)ψm(y)

]
|0⟩⟩in . (1.24)

2. Prove that translation invariance of the vacuum implies F µ
nm(x, y, z) satisfies(

∂

∂xµ
+

∂

∂yµ
+

∂

∂zµ

)
F µ
nm(x, y, z) = 0 . (1.25)

3. In momentum space define the quantity Γµ(p′, p) from the relation∫
d4x d4y F µ

nm(x, y, 0) e
ipy−ip′x =: −iq Snk(p′) Γµkl(p

′, p)Slm(p) , (1.26)

where there is an implied sum on the repeated Dirac indices k, l and

−iSnk(p) :=
∫

d4x out⟨⟨0|T
[
ψn(x)ψk(0)

]
|0⟩⟩in e−ipx . (1.27)

Use (1.24) and (1.25) to derive the exact Dirac-matrix identity

(p− p′)µΓ
µ(p′, p) = i

[
S−1(p′)− S−1(p)

]
. (1.28)

This is called a Ward identity because it is a relation amongst correlation functions
that follows from current conservation (and so from a symmetry of the problem).

1.4 Symmetries and Ward Identities

Consider a generating functional for correlation functions for some operator O(x), defined
by

W [J ] =
∞∑
n=0

1

n!

∫
d4x1 · · · d4xnJ(x1) · · · J(xn) ⟨⟨0|T

[
O(x1) · · · O(xn)

]
|0⟩⟩ . (1.29)

This has the property that its functional derivatives with respect to J(x) give the correlation
functions for the Heisenberg-picture operator O(x), with[

δnW

δJ(x1) · · · δJ(xn)

]
J=0

= ⟨⟨0|T
[
O(x1) · · · O(xn)

]
|0⟩⟩ . (1.30)

Page 4 of 10



Quantum Electrodynamics Assignment (Fall 2022 - Due Tue. Dec. 6)

Suppose there is a transformation of the form J → Ĵ(J, θ) = J + θaKa(J)+ · · · , for some
arbitrary infinitesimal parameters θa, for which the generating functional is left unchanged.
This implies in particular that ∫

d4x
δW

δJ(x)
Ka = 0 (1.31)

is true for all J(x) and all a. Because this is an identity for all J it remains true when
multiply differentiated with respect to J . The result is a collection of relations amongst the
correlation functions called Ward identities. For instance differentiating once leads to

0 =

∫
d4x

[
δ2W

δJ(y)δJ(x)
Ka(x) +

δW

δJ(x)

δKa(x)

δJ(y)

]
=

∫
d4x

[
⟨⟨0|T

[
O(y) · · · O(x)

]
|0⟩⟩Ka(x) + ⟨⟨0|O(x)|0⟩⟩ δKa(x)

δJ(y)

]
(1.32)

and so on.

1. It is possible to define a generating functional, Γ[aµ, ψ, ψ], whose derivatives give 1-
particle irreducible correlation functions, which is invariant under gauge transforma-
tions of the form δaµ = ∂µζ, δψ = iqζψ and δψ = −iqζψ. Use this gauge invariance
to derive the Ward identity satisfied by the correlation function[

δ2Γ

δaµ(x)δaν(y)

]
a=ψ=0

. (1.33)

Similarly derive the Ward identity that relates the correlation functions[
δ2Γ

δψ(x)δψ(y)

]
a=ψ=0

and

[
δ3Γ

δψ(x)δψ(y)δaµ(z)

]
a=ψ=0

. (1.34)

How does this relate to (1.28)?

2 Perturbative Calculations

These problems involve more explicit perturbative calculations.

2.1 Dirac Identities

Consider the matrices defined in class

β =

(
0 I
I 0

)
, γ5 =

(
I 0
0 −I

)
and ϵ =

(
ε 0
0 ε

)
(2.1)

where I is the 2-by-2 unit matrix and ε = iσ2 is the 2-by-2 antisymmetric matrix (whose
upper right element is +1). The matrix ϵ appears when writing the charge-conjugation
matrix in terms of the other two C = γ5ϵβ. Notice β = β∗ = β† = βT = β−1 and
γ5 = γ∗5 = γ†5 = γT

5 = γ−1
5 while ϵ = ϵ∗ = −ϵ† = −ϵT = −ϵ−1. Both β and γ5 commute with
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ϵ while β and γ5 anticommute with one another (verify this!). The gamma matrices in this
representation are defined by

γ0 = −γ0 = iβ =

(
0 i
i 0

)
and γk =

(
0 −iσk
iσk 0

)
(2.2)

where σk are the usual Pauli matrices.

1. Prove the identities

{γµ , γν} = 2ηµν , C = −γ2 , γ5 = −iγ0γ1γ2γ3 = i

4!
ϵµνλργ

µγνγλγρ (2.3)

where our conventions are ηµν = diag(−,+,+,+) and ϵ0123 = +1 (and so ϵ0123 = −1).
Use these to prove

γLγµν = − i

2
ϵµνλργLγ

λρ and γRγµν = +
i

2
ϵµνλργRγ

λρ (2.4)

where γL := 1
2
(1 + γ5) and γR := 1

2
(1− γ5) and γµν :=

1
2
[γµ, γν ].

2. For the basis of Dirac matrices

M =
{
I, γ5, γµ, γ5γµ, γµν

}
(2.5)

compute the signs η, ζ and ξ that appear in the identities

MT = ξ ϵMϵ , M † = ζ βMβ , M∗ = ξζ ϵβMϵβ , γ5Mγ5 = ηM (2.6)

and show that they are given by the entries in the following table:

I γ5 γµ γ5γµ γµν
ξ − − − + +
ζ + − − − −
η + + − − +
ξη − − + − +
ξζ − + + − −
ξζη − + − + −

Table 1: The signs relevant to Dirac matrix identities

These identities are useful when computing the reality and symmetry properties of
fermion bilinears, such as when computing

(ψ1Mψ2)
∗ = (ψ†

1βMψ2)
∗ = ψ†

2M
†βψ1) = ψ2βM

†βψ1 = ζ(ψ2Mψ1) . (2.7)

3. Prove the following gamma-matrix trace identities

Tr (γµ1 · · · γµn) = Tr (γ5γ
µ1 · · · γµn) = 0 if n is odd (2.8)

as well as Tr (γ5) = Tr (γ5γ
µγν) = 0. Also

Tr I = 4 , Tr (γµγν) = 4ηµν , Tr (γµγνγλγρ) = 4(ηµνηλρ − ηµληνρ + ηµρηνλ) (2.9)

and
Tr (γ5γ

µγνγλγρ) = 4iϵµνλρ , (2.10)

with the convention (as above) that ϵ0123 = +1.
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2.2 The Feynman Parameter Trick

1. Prove the very useful identity

1

A1A2 · · ·An
= (n− 1)!

∫ 1

0

dx1

∫ x1

0

dx2 · · ·
∫ xn−2

0

dxn−1 (2.11)[
Anxn−1 + An−1(xn−2 − xn−1) + · · ·A2(x1 − x2) + A1(1− x1)

]−n
.

This contains the version used in class:

1

A1A2

=

∫ 1

0

dx

[A1(1− x) + A2x]2
. (2.12)

2.3 Compton Scattering

Consider the scattering process

e−(p, σ) + γ(k, λ) → e−(p′, σ′) + γ(k′, λ′) (2.13)

where we denote the electron energies by p0 = ε =
√
p2 +m2 and k0 = ω = |k| and similarly

for the final-state energies ε′ and ω′.
Suppose the S matrix element for this process turns out to be given by

S = ⟨p′, σ′;k′, λ′|S|p, σ;k, λ⟩ = −2πiδ4(p+ k − p′ − k′)M (2.14)

then the differential cross section is given in terms of M by

dσ =
(2π)4

u
|M|2δ4(p+ k − p′ − k′) d3k′ d3p′ (2.15)

where

u :=
|p · k|
εω

. (2.16)

1. In the rest frame of the initial electron show that energy-momentum conservation
implies

ω′ =
ω

1 + (ω/m)(1− cos θ)
(2.17)

where cos θ := k̂ · k̂′ is the angle between the incoming and outgoing photon direc-
tions. Show also that u = 1 and perform the integration over the outgoing electron
momentum to show that

dσ

dΩ
= (2π)4

(ω′)3(m+ ω − ω′)

mω
|M|2 , (2.18)

where d3k′ = (k′)2dk′dΩ and dΩ = sin θdθdϕ is the differential solid angle for the
direction of the outgoing photon in a frame where the initial photon is moving up the
positive z axis.
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2. Draw the two distinct Feynman graphs that contribute to this process at lowest order
in the electromagnetic coupling. Evaluate the graphs to show that

M =
q2

32π3
√
mε′ωω′

(ε′µ)
∗ενu

′

[
γµ

−i(/p+ /k) +m

−2mω
γν + γν

−i(/p′ − /k
′
) +m

2mω′ γµ

]
u (2.19)

where εν = ε(k, λ), ε′µ = ε(k′, λ′), u = u(p, σ) and u′ = u(p′, σ′).

If no spins or polarizations are measured we must sum over the final spins and average
over the initial (unknown) spins, and so must evaluate

M2 =
1

4

∑
λλ′σσ′

|M2| . (2.20)

Use (1.6), (1.10) and (1.11) to evaluate the spin sums and show that the unpolarized
cross section can be written in the initial electron’s rest frame as

dσ

dΩ
=

q4

32π2m2

1

[1 + (ω/m)(1− cos θ)]2

[
1 + cos2 θ +

(ω/m)2(1− cos θ)2

1 + (ω/m)(1− cos θ)

]
. (2.21)

This reduces (as it must) to the Thompson cross section for ω ≪ m and becomes
sharply peaked in the forward direction when ω ≫ m. For (ω/m)(1 − cos θ) ≫ 1 the
approximate ultra-relativistic form is

dσ

dΩ
≃ q4

32π2mω(1− cos θ)
. (2.22)

Although this seems singular as θ → 0 the above expansion breaks down in the collinear
regime where 1 − cos θ ∼ m/ω ≪ 1, and for smaller scattering angles than this goes
over to Thompson scattering again.

2.4 Mott Scattering

Mott scattering is the relativistic spin-half generalization of Rutherford scattering from a
Coulomb potential. Consider an electron scattering e−(p, σ) → e−(p′, σ′) from a fixed clas-
sical electrostatic field with A = 0 and

A0(x) =
Ze

4π|x|
. (2.23)

1. Compute the leading amplitude for scattering of an electron (with charge q = −e) from
such a potential using the interaction lagrangian density

Lint = −ieAµψγµψ , (2.24)

and show that the S-matrix element is given by

⟨p′, σ′|S|p, σ⟩ = i

∫
d4x⟨p′, σ′|Lint(x)|p, σ⟩ = −2πiδ(ε− ε′)T , (2.25)

with

T =
ie

(2π)32ε
u′γ0u

∫
d3xA0(x) ei(p−p′)·x =

Ze2

(2π)32ε

u′γ0u

|p− p′|2
, (2.26)
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2. Writing the differential cross section as

dσ =
(2π)4

v
|T |2δ(ε′ − ε) d3p′ (2.27)

show that the differential cross section (as a function of the final electron’s scattering
direction θ relative to the incoming electron direction) becomes

dσ

dΩ
=

2(Zα)2

|p′ − p|4
(
m2 + ε2 + |p|2 cos θ

)
, (2.28)

where α := e2/(4π) is the usual fine-structure constant, and so in the ultra-relativistic
limit ε ≃ |p| ≫ m becomes

dσ

dΩ
=

(
Zα

2ε

)2 cos2 θ
2

sin4 θ
2

. (2.29)

How does this result differ from Rutherford scattering? What is the physical reason
why they should differ?

2.5 Bremstrahlung and Infrared Divergences

Next, compute the rate for the scattered electron to emit a photon during Mott scattering
process, so e−(p, σ) → e−(p′, σ′) + γ(k, λ) in the presence of the classical Coulomb field
(2.23) (with Aclass = 0).

1. First draw the two relevant Feynman graphs for this process, and show that they imply
the Mott scattering matrix element (2.26) is modified by replacing u′γ0u with(

−ie ε∗µ√
(2π)32ω

)
u′

{
γµ

[
−i(/p′ + /k) +m

(p′ + k)2 +m2 − iδ

]
γ0 + γ0

[
−i(/p− /k) +m

(p− k)2 +m2 − iδ

]
γµ

}
u

(2.30)
where εµ = εµ(k, λ) and so on.

2. Modifying (2.27) to sum over the final-state photon momentum gives

dσ =
(2π)4

v
|T |2δ(ε′ + ω − ε) d3p′ d3k (2.31)

where ω := k0 = |k| is the final-state photon energy. Use this to show that the total
integrated cross section σ diverges once the d3k integration is performed, due to the
infrared region |k| → 0. Called the ‘infrared catastrophe’, this reflects the great ease
with which charged systems can radiate very soft photons.

3. The differential photon emission rate is suppressed by a factor of α = e2/4π relative to
the leading Mott cross section given in (2.28). But at this order one should also include
the modification to the amplitude for Mott scattering (without the emission of an extra
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photon) by the exchange of a photon between the initial and final electron. Show that
the scattering matrix element T for this is obtained from (2.26) by replacing u′γ0u by

u′γ0u+ ie2
∫

d4k

(2π)4
1

k2 − iδ

(
ηµν + kµαν + kναµ

)
(2.32)

×u′
{
γµ

[
−i(/p′ − /k) +m

(p′ − k)2 +m2 − iδ

]
γ0

[
−i(/p− /k) +m

(p− k)2 +m2 − iδ

]
γν

}
u

which drops the nµnν term of (1.6) because we work with the Path Integral formulation
where the interaction is given by Lint rather than Hint.

4. Show that the detailed form of αµ does not matter because the terms involving them
contribute zero to the amplitude T .

5. Show that the interference cross term between the u′γ0u term and the rest that arises
within |T |2 involves a single integration over kµ that also diverges in the infrared
(from the integration limit |k| → 0). Show that this divergence has a coefficient that
precisely cancels the divergence in photon emission if one were to add the rate for Mott
scattering to the rate for scattering accompanied by the the emission of one photon (as
would be appropriate if we work to a consistent order in powers of α and the emitted
photon’s energy is so small that it is not detected).
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