A

Appendix A Conventions and Units

Conventions and units should be one’s friend in physics, in that they should both make an
analysis more transparent and they should nudge people away from, rather than towards,
common mistakes. They are also often acquired without much thought as one grows up.

This section is meant to explain the ones used in this book. The focus here is to list
conventional choices for aficionados, with little effort made explaining the field theories
involved. A reader seeking more detailed (though still cursory) background information
should try their luck with Appendix B (for the quantum mechanics of scattering) and Ap-
pendix C (for quantum ficld theory).

A.1 Fundamental units
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It is common to use specific units adapted to specific problems so that numerical values are
not too far from one (such as using the Angstrom - or Rydberg - for atomic electrons, fm for
nuclear processes, astronomical units for the solar system or megaparsecs in cosmology).
Such choices are mostly not made here, since one of the points of this book is to emphasize
the broad utility of EFT methods many difterent areas in physics.

Instead, this book uses fundamental units, for which the fundamental constants 7, ¢ and
ks (Planck’s constant, the speed of light and Boltzmann’s constant) equal 1. For instance
¢ = 1 is ensured by measuring time and distances both in seconds (where a second of
distance means a light-second; the distance light travels in a second). Similarly, 7 = 1 if
(energy)™! and time are both measured in seconds — where an inverse-second of energy
means the amount 7/(1sec) = 6.58211 x 1071 eV — and so on.

In this book usually the basic unit is taken to be energy, given in eV or multiples thereof.
The utility of this choice is that the proton and neutron rest masses in these units are
(respectively) 0.938 GeV and 0.940 GeV (which is to say, the energy tied up in the rest
mass of a nucleon is just shy of 1 GeV). This is useful because once told that the mass
of the earth is My, ~ 3.35 x 10°! GeV you also know roughly how many nucleons are in
it, since the biggest contributor to an object’s mass usually comes from the mass of each
nucleon residing in its constituent nuclei.

Fundamental units have the very useful benefit of boiling equations down to relations
between physical quantities without cluttering them up with symbols purely to do with
units. This is a particularly good virtue when identifying which scales are relevant to any
given problem, as is central to the utility of EFT methods. Electromagnetic units are set by
using the proton charge e as the unit of charge rather than the Coulomb.



513

Fundamental units

Ordinary units may always be retrieved by putting in any missing factors of 7, c or k, as

1fm=~(02GeV)' ~3x 107> sec and

1/M, (= G, /hc)?

1/m,
1 fm
1/m,
ag (= 1/am,)
1A

1 nm
1 ym
1cm
1m

1 km
1 sec
1 min
1 hr

1 day
1yr
1pc

1 kpc
1 Mpc

Length and Time
8.1897 x 107 ¢%/eV
1.0658 x 107  ?/eV
5.06773 x 107 hic/eV
1.957 x 107° 2leV
2.6818x107*  ¢%/eV
5.06773 x 107*  hc/eV
5.06773 x 107 hic/eV
5.06773 Fic/eV
5.06773 x 10*  hc/eV
5.06773 x 10 hc/eV
5.06773 x 10°  hic/eV
1.51927 x 10 n/eV
9.11562 x 10  n/eV
5.46937 x 10" nhfeV
1.31265 x 10*°  nh/eV
4.795 x 10? h/eV
1.564 x 107 hic/eV
1.564 % 10%° fic/eV
1.564 x 107 fic/eV

required by dimensional analysis. Useful rules of thumb for this purpose are:

1K=~9x107eV.

1.6161 x 1073
2.1031 x 1071¢
10—15

3.8616 x 10713
5.2918 x 107!
10—10

107

1076

0.01

1

10°

2.99792 x 108
1.79875 x 1010
1.07925 x 10'2
2.59020 x 10"3
9.461 x 10"
3.08568 x 10'6
3.08568 x 10'9
3.08568 x 10?2

(A.1)

The conversions of other units into powers of eV and to powers of metres are given below.

mc/h
mc/h

mc/h
mc/h

8 B B B

m/c
m/c
m/c
m/c
m/c
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1eV =
1 keV =
1 MeV =
1 GeV
am,

me

mp

M, = (lic/G,)? =

M, = (hc/87G,)? =

Microscopic Energy and Mass

107°

107°

1073

1

3.7289 x 10°°
5.10999 x 1074
9.10939 x 10728
0.938272
1.67262 x 1072
1.83615 x 10°
1.22105 x 10"
2.17671 x 107>
1.30138 x 10"
2.43564 x 108
434191 x 107°
2.59588 x 108

GeV =
GeV =
GeV =
GeV =
GeV/? =
GeV/c* =

g
GeV/c? =

g

me

GeV/c? =

5.06773 x 10°
5.06773 x 10°
5.06773 x 10'2
5.06773 x 10'
1.8897 x 10'°
2.5896 x 10'2

4.75491 x 1013

6.1879 x 10%

1.23431 x 10*

fic/m
fic/m
fic/m
fic/m
hi/mc
fi/mc

fiymc

fifmc

hi/mc

Ordinary Units Expressed Microscopically

lg

1 kg

1 Joule = 1 kg m?/s?

lerg =1 gcm?/s?
=107

1 Newton = 1 kg m/s?

1 dyne = 1 g cm/s?
=107 N
1 Watt=11J/s

1Hz=1/s
1 Kelvin

5.60959 x 103
5.60959 x 10%
6.24151 x 10°
6.24151 x 102

1.23162 x 107°
1.23162 x 10'2
1.23162 x 1071
1.23162 x 107
4.10824 x 1071
4.10824 x 10°
6.5821 x 107%
8.61742 x 1074
8.61742 x 1073

GeV/c?
GeV/c?
GeV
GeV

GeV?/he
eV2/he
GeV?/hic
eV2/hc
GeV?/h
eV2/h
GeV/h
GeV /k,
eV/k,

2.84279 x 10%
2.84279 x 10%
3.16303 x 10%
3.16303 x 10'8

3.16303 x 10%
3.16303 x 102
1.05507 x 107
3.3356 x 107

436707 x 10%
1/11604.4

fifmc
fifmc
fic/m
fic/m

fic/m?>
fic/m?
hic? /m?
c/m

fic/mk,
eV/k,
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Electromagnetic Units

1 Coulomb = 6.24151x10'® e

1 Volt=1J/C = 1 eV/e = 5.06773x10°  hc/me
= 107 GeV/e

1 Farad = 1 C/V = 6.24151x10'¢ eV = 1.23162x 102 me?/hic

1 Ampere = 1 C/s = 4.10824 x 10° eVe/h = 2.08194x10'° ec/m

1 Ohm =1 V/A = 243413 x10™* h/e?

1 Mho = 1/Ohm = 4.10824 x 10° e/

1 Weber=1Vs = 151927 x 10" hje

1 Tesla = 1 Weber/m? = 59.1572 eVZ/hec* = 1.51927x10Y  fij/em?

1 Gauss = 107 Tesla = 5.91572x 107  eV%/liec? = 1.51927x 10" 7i/em?

¢ = 2nhfe = 6.28319 h/e = 4.13567x 10"  Weber

= 1/(2.418x10™) Weber

€ =8.854x 1072 F/m = 10.905 &2 [he

1o =47 x 1077 N/A? = 0.0917012 Ti/ce? o = 1/c2

@ = é*/(4neyhic) = 7.2974 x 1073 1/ = 137.036

In these tables m, denotes the electron mass, m,, is the proton mass, « is the electromag-
netic fine-structure constant (evaluated at low energies, u ~ m,).

A.2 Conventions
|

Like religion and politics, conventions are a subject normally avoided in polite company
for fear of provoking strong words or fisticuffs. Any practicing physicist should usually
adopt a set of conventions and stick to them, and (as is the case for many) the ones used
here are largely the ones I learned as a student. (Because of this they usually agree with
those used in Steven Weinberg’s many textbooks.) This section explains my rationale for
the main choices made.

A.2.1 Geometrical conventions

The conventions for vectors are such that Greek indices represent spacetime coordinates
in 3+1 dimensions, with x* = {x%, x', x2, ¥’} = {1, x, v, z} a contravariant vector built from
Cartesian coordinates. Spatial indices are denoted by latin letters, such as x* = {x,y,z}
or X = {x,y,z}, with letters chosen early or later in the alphabet in a way that distin-
guishes them from any other indices present (such as those describing internal symmetries,
or space-time spinors, efc.).

The Einstein summation convention is used throughout the book, unless explicitly stated
otherwise. In this convention any repeated appearance of an index represents a summation
of that index over its entire range. So a*a, = da’ay + a'a; + d’ay + a’as while d'a; =
a‘ay + a*a» + d®as, and so on.
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Metric conventions

The spacetime metric is denoted g,,(x) and defines the invariant line-element by ds* =
&uw(x)dx* dx”, that gives the square of the distance ds between two infinitesimally sepa-
rated points: x* and x* + dx*. The signature of the metric is (— + ++), so the Minkowski
metric that describes the flat space of special relativity in Cartesian coordinates is given
explicitly by

ds? = 17, d dx” = =d* + 6;;dx’ do/ = —dP? + dx® + dy? + d2?. (A2)

This is one of the choices that generates the most heat when discussed, since half the world
learns this choice (often called the ‘east-coast’ or ‘mostly plus’ or ‘right’ metric) while the
other half adopts the opposite sign for 17, (called the ‘west-coast’ or ‘mostly minus’ or
‘wrong’ metric). Normally much heat (and not much light) is spent on whether it is more
sensible for time intervals or space intervals to be negative. With (A.2) time-like vectors
have negative length, while vectors in the three space-like directions have positive length.

A more compelling reason for using the convention (A.2) comes once Wick rotations
are made to Euclidean space, such as often is done when discussing thermal systems (for
which temperature can often be conveniently regarded as periodicity in imaginary time —
see e.g. §A.2.2). In this case 7 = it and so d> = —dr?. With the above choice the metric
becomes positive definite, as do the lengths of all vectors, like a® := Ny a'a”. With the
‘mostly-minus’ metric convention all such squares become negative when Euclideanized
(and when quantities like a® are negative it can be a nightmare finding sign mistakes). As
mentioned earlier, your conventions should be your friend, and should nudge you towards
making fewer errors rather than more errors.

Since notation is part of language, part of the thinking behind metric conventions is also
the practice of the community with which one wishes to communicate. Broadly speak-
ing most relativists, cosmologists and string theorists use the (— + ++) metric used here,
while particle physicists are more split, though with a majority of phenomenologists using
mostly-minus conventions.

With the above metric choice the action for scalars and gauge bosons (see next Ap-
pendix) have negative coefficients, since this is required to have positive kinetic energies.
That is

1, 1
¢= =S 1"0,00,0 = 5[00) - (Vo7 (A3)
while
1 L1
0= B = 2 (B2 - BY). (A4)

Curvature conventions

A natural convention is to define the curvature so that the same sign also applies to the
action for the metric in General relativity, which is given — see, for example, (10.1) — by

10 R
=- . A5
V=2 161G, (&.5)
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This is ensured if one adopts the curvature conventions R := g'”R,, with Ricci tensor
defined by R, := R*,,, and Riemann curvature tensor given by

R\ = 0,0 + T = (p o ). (A.6)
Here
1
Ty = 58105801 + 018ay = Bagui] (A7)

is the Christoffel symbol (of the second kind) built from derivatives of the metric, and its
inverse g defined by g"”g,, = ¢).

The above definitions are the same as used in the well-known book [400], and are also
almost the same as a very popular choice (often called the ‘MTW’ — or ‘geometrical’ —
choice, with MTW representing the authors Misner, Thorne and Wheeler, of an influential
relativity textbook [399]). ‘Almost the same’ here means the only difference relative to
MTW conventions is the overall sign of the definition (A.6). The motivation for the MTW
choice is that it gives a positive curvature for spheres in euclidean space (and negative
curvatures to hyperbolae), though at the expense of introducing an unusual gravity-specific
sign in the action.

Levi-Civita conventions

Finally, another useful geometrical tensor (in four spacetime dimensions) is the four-index
Levi-Civita completely antisymmetric tensor €,,,,. In flat space this is defined to be com-
pletely antisymmetric under the interchange of any two indices (and so to vanish whenever
two indices take the same values); to have elements =1 when all indices are different. The
convention used here takes €”'?* = +1 and then all other components are dictated by the
antisymmetry condition.

On curved space it is worth working with a vierbein (or tetrad): defined as a basis of
four vector fields, e“,(x), with a = 0,1,2,3. The basis is chosen to be orthonormal and
complete in the sense that

g/lvea”ebv = U“b and Nab ea”ebv = 8uv> (A.8)
with the Einstein summation convention in full force, and where n® is the signature-(— +
++) Minkowski tensor, and g is the inverse of the spacetime metric g, s0 g""g,1 = 6’;.
Evidently the matrix e, is morally the square root of the metric g, .

The above orthogonality and completeness relations allow the definition of the inverse
e, defined to satisfy e *e” = 62 and e,#e?, = &,. Any tensor can then be described by its
world-index components, like 7, or its tangent-frame components, like Ty, = e,/ e;" T}y,
and so on. The basis vectors in the vierbein are not unique, with the freedom to do local
Lorentz transformations, e?,, — A9peb « where the position-dependent matrices A“; satisfy
the Lorentz-group definition: 7, A“,A°; = npq. These definitions ensure it is consistent
to raise and lower indices with either 7., or g,, (or their inverses) in arbitrary order, so
T = e””e”vT”V = r]‘”n”dTCd and so on.

With these definitions in mind the Minkowski flat-space conventions for the Levi-Civita
tensor apply to the tangent-frame components. That is, € = +1 whena = 0, b = 1,
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c=2andd = 3, and so €;.¢ = —1 for the same choices for a, b, c and d. The value for all
other choices of indices is then determined by complete antisymmetry under permutations
of any pair of indices. With this choice then the world-index versions are defined by

A

e = e ley e e L e, (A.9)

and the also completely antisymmetric

€uvip = eapebveclledpeabcd = guagvﬁg/wgpgeaﬁo-{ P (A.10)

which satisfy e®% = det[e ] = detl/z[—g‘”] = det'l/z[—gw] whenpu =0,v=1,1=2
and p = 3. Itis conventional to introduce the notation g := det[g,, ], which is negative given
the Lorentzian signature shared by g,, and 1,;. In terms of this ¢, = —det[e?,] = —/—¢
when pu =0,v=1,1=2and p = 3, with all other entries defined by antisymmetry.

As eq. (A.9) makes clear, the quantity /¥ transforms as a rank-4 contravariant tensor
under coordinate transformations (or diffeomorphisms) and is invariant under local Lorentz
transformations, since the tangent-frame quantity €®**? transforms as a scalar under dif-
feomorphisms (and is a rank-4 contravariant tensor under local Lorentz transformations).
One sometimes encounters in the literature (but never elsewhere in this book) a related
tensor, "% := /=g €% whose components equal +1 when all indices are different
(or its covariant version &, := €3,/ Y/—g), whose nonzero components are also +1.
Although these quantities have simple components they transform differently under difteo-
morphisms, transforming as a tensor density (of weight i%) due to the additional factor of
y/—g that is present.

Useful identities use the fact that two Levi-Civitas make a metric, since both are invariant
tensors under proper Lorentz transformations (more about which below) while Levi-Civita
changes sign under parity and time-reversal (and the metric does not). More precisely,

E”V/{pfaﬁo-{ = —6l‘f rf 09 6f, + (23 other permutations of @, 8, o~ and )
Guap€ P = ~(5) 867 + 8, 07 5 + 65 67 8y = 8, 6% 67 = 55 3 0% - 55 67 )
Eurap€™V = ~2(8% &) - &) 6%) (A.11)
€™V = =3168

eumpe‘”ﬂp =4,
The right-hand sides of these identities are the most general possible tensors built only out
of the Kronecker delta and the metric with the same symmetries as the left-hand side. The

numerical coefficients are most easily determined by evaluating both sides using explicit
values for the open indices.

A.2.2 Finite temperature and Euclidean signature

It is often useful to work with a Euclidean-signature metric, for which all of the eigenvalues
of g,,, are positive — also called the (++ ++) metric. For instance the metric in rectangular
coordinates for 4D flat Euclidean space is

ds? = g dX™ dx" = (dx")? + (dx)? + (dx®)? + (dxh)?. (A.12)
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One of the great virtues of using a (— + ++) metric in Lorentzian signature is that the

positive Euclidean metric is obtained simply by replacing x° = t — —ir, where 7, = x* is
the corresponding Euclidean coordinate. The choice of sign in this transformation ensures

that terms in the action transform as
exp{% f drd’x [(9¢)” - (V¢)2]} - exp {—% f dr,d’x [(9.,¢)" + (V¢)2]} (A.13)

and so the oscillatory factor ¢'® in the path integral suppresses large gradients.

Equilibrium calculations at finite temperature provide a concrete situation where Eu-
clidean methods are particularly useful. They are useful because of the resemblance be-
tween the thermal density matrix, p o e PP = ¢ HIT and the time-evolution operator,
U(t,0) = exp[—iHt]. This resemblance makes it look as if a thermal density matrix en-
ters into calculations in the same way as would the time-evolution operator for a shift in
imaginary time through a distance At = —iAt, = —if and so

exp|—iHAt| = exp|~HAr,| = exp|-pH]|. (A.14)
Furthermore, in this language thermal averages, like the partition function

Z=Tr[e#] = (N|e?|N), (A.15)
N

correspond to an evolution of a state |N) through a time interval —i and then identifying
the state obtained with the initial state (and summing). This makes plausible (and can
be turned into a proof) that thermal expectation values can be rewritten in terms of field
theories in a Euclidean-signature space for which the Euclidean time direction is a circle
with circumference £.

Once time becomes a circular direction boundary conditions must be imposed on the
fields in this direction. Standard thermal behaviour is reproduced if integer-spin bosons are
chosen to be periodic, ¢(7, + B) = ¢(7;), and half-integral spin fermions are chosen to be
anti-periodic, Y(7, + 8) = =y (T;).

A.2.3 Dirac conventions

For fermions the metric conventions drive related conventional choices for the Dirac ma-
trices, y*, since essentially everyone agrees these should be defined to satisfy the algebra
{y",¥"} = 2n* (in Minkowski space). In curved spaces one instead demands

Y =2, (A.16)

in the tangent frame (defined by the tetrad e, of the previous section) and then converts
to world indices using y* := e, y*. With these definitions the world-index Dirac matrices
satisfy the generally covariant Clifford algebra

' y" = 2g" (A.17)

where g is the inverse metric.
In Minkowski space (or in the tangent frame of a curved space) the use of the (— + ++)
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metric implies (y°)* = —1 while (y')*> = +1 fori = x, y, z. Because this makes y° imaginary
(when diagonal) it is useful to define 8 := iy? so that 8% = 1.
A convenient choice of basis for the Dirac matrices (which diagonalizes ys = —iy%y!y?y?)

which satisfies (A.16) is given by

0 i 0 -io
= — 0 = = k
Yo=Y ( {0 ) ) Yk ( i 0 ) (A.18)

where o, are the usual 2 x 2 Pauli matrices for k = 1,2, 3. In this basis

0 I I 0
,8=(I 0) and 75=(0 _1), (A.19)

where [ is the 2 X 2 unit matrix.

The Lorentz generators in this representation are given by J,, = —}‘['y,,,yv], and so
defining rotations, J%, and boosts, Ki, by Jox = Ki and J;; = € x Ji allows these genera-
tors to be written explicitly as

_l (o 0 _i =0 0
jk—z( 0 (Tk), (Kk—z( 0 Uk). (A.20)

Because these are block-diagonal they show that [ys, 7,,] = 0, and so the 4-dimensional
spinor representation is reducible: the two 2-dimensional eigenspaces of s each furnish
separate representations of the Lorentz group. Furthermore, although these two represen-
tations agree on their representation of the 7 (both are spin-half), their representations
of the K are conjugates of one another in the precise sense that the Pauli-matrix identity
O} = =000 implies

(I(k:t 2027(]; g2, (A.21)

where the sign in the subscript denotes the eigenvalue of ys.
Using this representation for Lorentz boosts allows explicit construction of the spinors
u(p, o) and v(p, o) appearing in the field expansion of (C.30), reproduced again here:

[u(p, &) cpo €7 + ¥(p, ) T, 7] (A.22)

Y(x) = f
UZ:‘, \Q2r )32E
where E, = +/p? + m? and m is the particle mass.

These spinors satisfy! (if + m)u = (if — m)v = 0, where as usual the slash denotes
contraction with a 4-vector, as iny := p,y". In the rest frame these become the conditions
Bu=uandBv=—-v. Boosting Su = u to a general frame then gives

L( W—Uf)\/Ep—m 0 )()((0'))
N 0 NE, +m+0-pE,—m )\ x(o) |’

(A.23)

u(p, o) =

! This follows purely from the consistency of the Poincaré transformation properties of ¥ and ape, but can
equivalently be regarded as a consequence of the field equation (¢ + m)'V = 0.
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where p = p/|p|. Here y (o) is a 2-component spinor encoding the spin of the particle in its
rest frame. If defined as eigenstates of 73 these become

1
X(0'=+1/2)=( 0 ) and )(((r=—1/2)=( (l) ) . (A.24)
The spinor v is found by a similar exercise, or by the action of charge conjugation (see
below). A short calculation shows that these spinors satisfy the useful completeness rela-
tions

> up,o)up, o) = —i+m and > v(p,W(p, o) = =i —m, (A.25)

=+l =1l
o=} o=%3

whose right-hand sides reduce in the rest frame to m(B + 1), projecting onto the appropriate
eigenspace of S.

Weyl and Majorana spinors

There are two natural ways to reduce the 4-dimensional Dirac spinor to two components
in a Lorentz-invariant way. Since left-handed spinors satisfy ysy, = , and right-handed
spinors satisfy ysy, = =i, a general Dirac spinor can be written in this basis as

b d :( v ) . (A.26)
Yr
The conditions ¢, = 0 or ¥, = 0 are clearly Lorentz-invariant. Dirac spinors satisfying one
of these conditions are called (left- or right-handed) Weyl spinors.
The other Lorentz-invariant way to constrain a Dirac spinor is to demand that ¢, be the
complex conjugate of v, — up to multiplication by o, as in condition (A.21). A spinor
satisfying this type of reality condition is called a Majorana spinor,

_ v _ .
¥, _( e )_ cv:. (A.27)

0 . . . . o
1 o ) is the real 2 x 2 antisymmetric matrix. The matrix C is called
the charge-conjugation matrix, and is given explicitly in this basis by

where € = iop = (

0 & 2
= = — . A2
¢ ( - 0 ) v (A.28)

A final convention involves the definition of the Dirac conjugate, which here is given by
Y=g =iyho. (A.29)

(Keep in mind the factor of i here when comparing with conventions using the opposite
signature for the metric.) When applied to Majorana spinors (A.27), becomes

¥, =Y B =, CB =Y, vse, (A.30)

where the superscript ‘7’ denotes the transpose in spinor space, in the same way that “f’
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denotes hermitian conjugation in this space. The matrix e defined here is called the time-
reversal matrix, given explicitly in this basis by

e 0
E:(o 8), (A.31)

in terms of which C = ysef.

The matrices 3, € and 5 provide very useful set inasmuch as they characterize a spinor’s
transformation properties under parity, time-reversal and charge conjugation (more about
the definition of these is given in §C.4.3 below). Chasing through the definitions shows
that these symmetries get realized on Dirac spinors as follows:

PYX) P =n,BY(x,)
CY¥wC'=n.C¥ (%) (A.32)
TY@)T " =ne¥(x),

where 1, 7 and 1, are arbitrary phases while X, := P“,x” and x; := T#,x” are the parity
and time-reversal transforms of the point x* (with the matrices P#, and T#, defined in
eq. (C.64)). In particular, an individual Majorana spinor represents a spin-half particle that
is its own antiparticle (in much the same way that a real scalar represents a spin-zero
particle that is its own antiparticle).

Spinor bilinears

Since local lagrangian densities are scalars they are built from combinations of fermion
bilinears of the form @lM‘Pz for two fields W and V5. It is useful to expand the arbitrary
4 x 4 matrix M in terms of a standard basis that transforms covariantly under Lorentz
transformations. This basis is conveniently chosen to be the sixteen matrices

1 ,
1, vy, ¥, vysy" and 7’”=§[7”,7‘]- (A.33)

These satisfy useful symmetry and hermiticity relations together with the parity and time-
reversal matrices 8 and e. In addition to ys =y = yg, B=p =pland—e =€ = ¢!
one has the identities

=€,

M =&eMe), M'=(BMB) M =&l(BMeB) and M =nlysMys), (A.34)

with the signs &, £ and 7 given for each member of the basis (A.33) in Table A.1.

These identities are useful in that they dictate the reality and symmetry properties of
bilinears built from Majorana fermions. That is, if ¥'; and ¥, both satisfy condition (A.27),
then

VMY, = AW,MY)) and W MY, = y(V MP,)", (A.35)

with signs A and y also given in Table A.1.
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Table A.1 The signs appearing in
(A.34) and (A.35) for M one of the

basis (A.33) of Dirac matrices.

'3 = = 4 4 =
Z o= = = =
7 Fo= 3 = 3
& -+ - -4
A Fo= = 3 3
X FF 3 = =

Standard-Model fermions

It is often useful to use real fields when writing down the most general effective couplings,
and for spin-half fields this means using Majorana spinors. This section develops the no-
tation for writing a generation of Standard Model fermions in terms of Majorana spinors,
following [194].

The types of spin-half 2-component Weyl fermions in a Standard Model generation are

(”) (V) e, de. e (A.36)
d, e,

A 4-component Majorana field for each right-handed particle is then defined by
v:U=uy, viD=d, and 7vyE=e;. (A.37)
The left-handed components of these spinors are simply given by the conjugate fields, so
vU=u =¢cu,, yD=d =ed;, and yE=¢ =ce,, (A.38)

with the matrix ¢ defined below eq. (A.27).
The same construction applies to the SU,(2) doublets, starting with the definitions

yLQ=( ZL ) and yLL=( Ve ) (A.39)

L

and so the right-handed components become

C

Uy v
7.0 _( & ) and 7RL—( : ) (A.40)

where d = —ed; and so on.

A.2.4 Dimensional Regularization

Dimensional regularization is usually the regularization of choice for practical calculations,
both because of its comparative simplicity and because it treats symmetries relatively be-



524

Conventions and Units

nignly. This section collects some of the useful formulae associated with this regularization
used in the main text.

The fundamental formula used in the main text involves a single loop integral of the
form

J(q) =

4 2\A
d'p [ ) ] (A.41)

Qo [(p* +g»P

where p? = pup*" and ¢* is a Lorentz-invariant function of q,q", and possible low-energy
masses. The squares of all 4-momenta are taken in Lorentzian signature, so J(g) is a
Lorentz-invariant function of ¢*. At face value this integral diverges in the ultraviolet for
2A +4 > 2B, and the goal is to define the integral so as to be able sensibly to evaluate
physical quantities before the divergence is ultimately eliminated by absorbing it into the
value of a bare parameter when renormalizing.

The denominator of the integrand usually has an implicit ie factor that tells how to
navigate around any poles in the energy integrations, and the result is the same as what is
obtained from Wick rotating the energy to imaginary values, using? p° = ip*, so p“p, =
—(p"? + p? = (pH? + p? = 0, while d*p = id*p,, where d*p, := dp*d’p is the Euclidean
integration measure. The rotation occurs because p* is integrated through real values rather
than imaginary ones. Once this is done the angular integration over the direction of p”* can
be done by inspection, leaving only a divergent one-dimensional integral to be regularized.

The idea of dimensional regularization is to consider the same expression in D dimen-
sions,

_ deE P2A
L(g) = f @n)P [(p2 +q2>8] ’ (A2

with the desired answer formally obtained by J = limp_,4 I,,. The virtue of introducing D
as a variable is that the integral converges in the ultraviolet for D < 2(B—A), with the finite
result obtained by explicit integration being

JA+D-2) /2]

Sp- A-B+Dj2 [
1(q) = [2(21)ﬂ)1D] (4)) fo @ |

AL r(A+2)r(B-a-5%) ( z)A—B+D/2
~|ener(2) I'(B)

, (A.43)

where S, is the area of the n-dimensional unit sphere and I'(z) is Euler’s Gamma function,
defined by analytically continuing the defining relation I'(z + 1) = zI'(z) to the complex
plane.

The last equality here extends the definition of 7, to any complex D except for the the
poles of I' (A + %) r (B —-A- 1—2)), which occur whenever the argument of a I'-function is a
non-positive integer (and so includes the case of real interest where D = 4). The regular-
ization is performed by evaluating the result at D = 4 — 2¢ for 0 < € < 1, with the limit
€ — 0 take after renormalization has removed the divergence. The incipient divergence in

2 The sign here is chosen by the requirement that the rotation from the real to the imaginary axis avoids the
poles at p* = /p? +m? — is.
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this limit appears as a pole, arising from asymptotic formulae for the Gamma function like
1
I'[e] = Pt +O(e), (A.44)

where the Euler-Mascheroni constant, v, is defined by the limit

n—oo

1
y := lim [Z T In n] ~ 0.577215664901532860606512090082402431042.... (A.45)
k=1

Poles near negative integers are found by repeatedly using ['(z + 1) = zI'(z). For instance,
choosing z = —1 + € implies
I'[e] 1

M-l+el= = —=——+@-1+0), (A.46)

and so on.

Renormalization schemes

The pole in this expression expresses the divergence that the integral possesses when D =
4, which (if ultraviolet® in origin) is usually absorbed into the renormalization of a bare
coupling. This is possible because the full expression for a physical quantity depends on
both this bare coupling and the loop integral. Although it is unambiguous to say that the
bare coupling cancels the divergent part of a loop integral, there is an ambiguity associated
with how much of the finite parts of a loop are also subtracted in the same way. A precise
statement about how much of the finite part to absorb when cancelling divergences defines
what is called the renormalization ‘scheme’. There is nothing unique about any scheme,
with different choices simply corresponding to different ways for precisely defining the
meaning of the coupling in question.

To see how this works in practice, consider the divergences associated with the vac-
uum polarization of the electromagnetic field. In quantum electrodynamics the Fourier
transform of the propagator, (T'A,(x)A,(y)), for non-interacting photons is (in a Lorentz-
covariant gauge)

() _ PuPv
Ayv (p) - ] s

[Tlpv +C, o (A.47)

p?—ie
where ¢ is a small positive infinitesimal (nof the € from D = 4 — 2¢) and C, is a quantity
whose precise value depends on the gauge being used (e.g. with C, = 0 in Feynman gauge
or C, = —1 in Landau gauge). The precise form of C, is not important since it does not
appear in any physical predictions. This propagator has a pole at p> = 0 that defines the
photon’s energy-momentum dispersion relation: &, = p” = |p|. The freedom to rescale
fields, A, — AA,, is used when writing (A.47) to ensure the 7,, term has unit residue at
this pole (this is an automatic consequence of canonical normalization).

Once interactions are included the propagator does not remain as simple as in (A.47),

3 Poles as D — 4 can also arise due to infra-red divergences, and these should not be renormalized (as may be
seen from the discussion following Eq. (12.19) in the main text).
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but it turns out that Lorentz-covariance and gauge invariance require that its most general
form must be

PuDv PuPv
Aw(p) = ”]+q“

1
N v I1 ?
(ﬁﬂﬂbﬂWHh i P
My ~ PuPv

= CA s
ool -]

(A.48)

where the function, I1(p?), is known as the vacuum polarization (and the second line de-
fines the quantity C,, whose gauge-dependent value still does not matter for physical pre-
dictions).

Although TI(p?) vanishes for non-interacting photons, it is nonzero once couplings to
charged particles are included. If TI(p?) were also to have a pole at p> = 0, such as if
II(p?) = A/p*>+B+- - -, then the propagator’s pole gets moved to p> = A (which — provided
A is negative — would imply that the interactions give the photon a nonzero mass). So long
as [1(p?) is less singular than this near p> = 0 the pole in A, survives, indicating that no
mass gets developed.

In quantum electrodynamics (QED) — the theory of interacting electrons and photons —
TI(p?) is obtained by evaluating 1-particle irreducible graphs with two external photon legs
(see Fig. 7.4). The absence of reducible photon lines in these graphs precludes them from
introducing a pole and this ensures that loops of virtual electrons do not shift the photon
mass. The one-loop vacuum polarization graph with an electron in the loop contributes

2 1 2 .
)1 top = = o F(Z—Q)fo du u(l—u)[m*l’—zf(l”)

2
~ (4mPP 2 u

(D-4)2
] (A.49)

2 m? + pzu(l —u)

e ! 1
= ﬁfo duu(l — “){—(D/z)—z +y+ln[—4w2 ]+()(D—4)} s

once regularized in dimensional regularization. Here —e is the electron charge and m is the
electron mass, and g is an arbitrary scale introduced by replacing > — e u*~P so that e
remains dimensionless in D spacetime dimensions.

Although this expression has no pole at p? = 0, neither does it vanish there since

2

I1(0) 1-100p = +y+ ln( " ) +0(D - 4)] . (A.50)

e’ 1
1272 | (DJ2) =2 A
Consequently the propagator’s residue at p> = 0 is no longer unity. To fix this the field must
be rescaled once more — that is to say: ‘renormalized’ — to ensure unit residue, by taking
A, — \Z3 A,,, after which the propagator rescales to ALOV)(p) — 73 Aff)v)( p). In perturbation
theory writing Z3 = 1 + 6Z, with 6Z ~ O(e?), then shows that the renormalized vacuum
polarization becomes

(P en = TP 12t00p — (Z3 = 1).. (A.51)

Now comes the main point regarding convenient renormalization schemes. The phys-
ical renormalization choice (or ‘on-shell’ scheme) for Z3 requires I1(0)e, = O since this
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guarantees unit residue at the propagator’s pole at p*> = 0. This gives

&2

1272 [(D/Q)—Z

after which the limit D — 4 can be taken to give

m2

+7y+1In (—) +O(D—4)] , (A.52)

hys
Zé) S I H(O)l—loop = 471_#2

2 pl
)™ = < | duw(l —wn |1+
22 0
But if the only goal is to subtract off divergences, the minimalist choice — called the
minimal subtraction or MS scheme — merely subtracts the pole at D = 4, so

2 —
W] : (A53)

MS N &2 1
Z3 —l—@ D_al’ (A54)

and so (again taking D — 4)

2 2
e m
(P e = == |7+ 1n(—2)

+TI(p2)Ps A.55
ore pr (P (A.55)

A slightly more convenient and equally minimal choice [35, 36, 37], called the modified
minimal subtraction (or MS) scheme, subtracts the universal factors y and In 4 as well as
the divergent pole, leading to

J— 2 1
M1l | iy @ A.
) W[(D/z)_zw n( n)], (A.56)
and so
(p*)Ms = 2 (m IS (A.57)
ren 127‘_2 #2 ren

Although these last two renormalization schemes do not use canonically normalized
fields, they trade this against the advantage of simplicity for other types of calculations. In
particular they allow more simple direct integration of the renormalization-group evolution
of couplings with scale and so simplify the resummation of leading logarithms (such as
described in the main text in §7.2.1).



Appendix B Momentum eigenstates

and scattering

This appendix collects (often only with telegraphic derivation) some useful relations for
computing scattering and decay rates. Since some subtleties of continuum normalization
for momenta are dealt with by appealing to discrete normalization, this discussion starts
with a summary of conventions regarding momentum eigenstates.

B.1 Momentum eigenstates

528

There are three different conventions often used: discrete normalization, continuum nor-
malization, and relativistic continuum normalization. All three types arise in this book, so
this section furnishes a brief reminder of how to convert from one to another. For simplicity
this is done here for one spatial dimension, though identical arguments also work in other
choices for the number of dimensions.

Discrete normalization corresponds to situations where momentum takes a denumerably
infinite set of values, such as occurs if spatial dimensions have finite length, L say, perhaps
satisfying periodic boundary conditions so fields satisfy ¥(x + L) = (x) for any x. For
momentum eigenstates, y(x) oc exp[ipx], this condition implies p = 2zn/L for integer n,
making p denumerable as required. Normalization and completeness relations for states
then take the usual quantum form, such as

(Pla) =6y and Y IpNpl=1, (B.1)
P

where the sum over p is really a sum over the integer n. Here the ‘rounded ket notation,
| p), is used to distinguish states normalized this way from non-denumerable situations
normalized in the continuum.

Inserting a complete set of position eigenstates and using the wavefunction (x| p) o e'P*
shows that the orthonormality condition of (B.1) becomes

L
o) = fo dx (P10 (x1q) = Sy (B.2)

and so (x| p) = L~V2¢P*. This normalization then implies completeness takes the usual
form

)

1 .
xly = Yl pplyy = 7 ) I = 5-y). (B.3)
P

n=—o0o
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Continuum normalization

Continuum-normalized states |p) are obtained from discrete-normalized states in the infinite-
volume limit L — co. In this limit the spacing, 27/L, between adjacent levels goes to zero
so the denumerable label p goes over to a continuum one. For L very large but still finite
there are dN = dp/(2n/L) states in a small continuous interval dp, and so the density of
states is dN/dp = L/(2r). Therefore any sum over p goes over to an integral according to

the rule
dN d

> F(p) = f dp F(p) 3~ =L f L Fp). (B.4)

P P d

Using this conversion, for very large L the completeness relation for [p) becomes
dp

1= =L | — = |d . B.5
Zp) )P f 5, Il f P Ip)Xp] (B.5)

where the last equality suggests the definition of the continuum-normalized state

P) = 5= Ip). (B.6)
JT

Multiplying (B.5) through on the right by |g) shows that consistency requires the continuum
state must satisfy the normalization condition

plg)=0(p—q, (B.7

which can also be inferred directly from the definitions using

L . L
<p|q>=5?(plq)=ngl;Eo,,q. (B.8)

The right-hand side of this expression is zero if p # g and if p = ¢ it goes to infinity as
L — oo. This suggests it is a Dirac delta function, 6(p — ¢), up to normalization. To get the
normalization notice that the integral over p of (B.8) in this limit is given by

2
fdp<p|q>=f”2<p|q>=2<p|q>=1, (B.9)
p p

and so the right-hand side of (B.8) goes to d(p — ¢) as L — oo, as claimed.
A useful relation when converting between discrete and continuum normalizations is

Yiet=2E 3 5 vl > [ ap e, (B.10)
» »

showing that completeness sums are the same, regardless of whether momenta are normal-
ized discretely or in the continuum. Often these kinds of sums arise weighted by quantities
like an initial probability distribution for P(p), and when this is so P(p) goes over in the
continuum limit to a phase-space distribution, f(p), as follows. If P(p) is the probability of
having any one value for p, and varies slowly enough to be regarded as being constant in a
short interval dp, then the density of probability, dP(p), for finding the particle in dp is:

dN L
dP(p) = P P(p)dp = — P(p)dp. (B.11)
p 2n
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and so the differential probability per-unit-spatial-volume of finding the particle in this
momentum region (i.e. the phase-space probability density) becomes

) _ 1 (‘W’)_@

=—|—]= . B.12
2n L \dp 2n ( )

The 27 in the left-hand side’s denominator is conventional, and ensures that for a thermal
distribution (say) for which the position-space probability density is
dp 1
p= j‘% T’ (B.13)

E/T

one has f(p) = (e’ + 1)"! with no additional factors of 27. In the L — oo limit one

therefore has

> PP PPl - f dp f(p)IpXpl. (B.14)
p

For three spatial dimensions identical arguments show that the density of states is dN/d*p
V/(@2n)* where V := L3 is the system’s large spatial volume. This means discrete sums go
over into 3D integrals according to

&p dp.dp,dp,
;_’(Vfan)fq’fW’ 1

so if [p) = [V/(27)*]1"/?|p) then as V — oo the completeness formula (B.10) becomes

1=>"Ip)pl - f &p IpXp. (B.16)
p

while orthogonality goes over to

Plg) =8P - q@) = 6(p: — q) 5(py — 4,) (P, — q2). (B.17)

A sum weighted by an initial probability distribution similarly goes over to

> P@)Ip)pl - f &*p f@) IpXP|. (B.18)
P

Covariant normalization

An additional normalization change is often made for relativistic theories, since for these it
can be inconvenient that |p) satisfies a Lorentz non-invariant condition like (B.7) and (B.9).
In particular, (B.9) implies (p|g) transform inversely to the way the measure dp transforms.

It happens, however, that the combination dp/E), is invariant, if £, = +/ p? + m? is the
energy associated with a given momentum p. This makes it useful to define the covari-
antly normalized state |p ), := 2E,, |p), which satisfies a Lorentz-invariant completeness
condition

dp B B
fEm), ,<p|—fdp PYpl =1, (B.19)
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and orthogonality relation

Aplq) = \JA4E,E (plq) =2E,6(p —q) = 2E;6(p — q) . (B.20)

For three spatial dimensions the relativistic normalization is again defined by [p), :=
V2E(p) |p), which satisfies a Lorentz-invariant completeness condition

&p
 (pl=[d =1, B.21
fZE(p) p)r APl fplpxpl (B.21)

and orthogonality relation

Apla) =2EP)&*(p-q =2E@Q 5 (p-q). (B.22)

B.2 Basics of scattering theory
|

Scattering describes interactions for which the particles involved start off as widely sepa-
rated wave-packets, then approach one another and interact briefly as their wave-packets
overlap, and then separate to great distances again. Theoretical simplicity arises because
many details are not required, with only the total change in energy and momentum due to
the scattering being measured (rather than, say, their detailed trajectories for all times).

In principle, in quantum mechanics a particle moving in an initial (or final) wave-packet
cannot be exact momentum (or energy) eigenstates because the uncertainty principle en-
sures that such eigenstates are not localized in space or time at all. It is nonetheless often
possible to approximate the real states using a class of energy eigenstate, since scattering
results are often largely insensitive to the details of the wave packets describing the initial
states. The idealized energy eigenstates used for this purpose (described below) are called
scattering states.

The goal is to compute scattering perturbatively in the interaction that dominates when
the scattering wave-packets overlap. To this end suppose the complete Hamiltonian, H,
can be written H = Hy + V, where H describes the evolution of the initial and final wave
packets before and after the scattering. A key assumption is that the full set of energy eigen-
values for H contains (but need not be identical with) the spectrum of energy eigenstates
for Hy. For instance, eigenstates of both H and H, can be labelled by their asymptotic mo-
mentum in the remote past, or the remote future. States in the spectrum of H but not in Hy
might include bound states whose existence relies on the presence of the interaction V.

Denote the energy eigenstates of Hy by |a), with @ collectively denoting all of the labels
required to describe single- and many-particle states and Hyle) = E,|@). A wave packet of
such states can be schematically written

[¢r) = f da f(a)la) (B.23)

where f(«) defines a normalizable packet. The label « is treated as continuous because it
contains continuum-normalized momentum states (possibly among other labels). Because
the spectrum of Hj lies within the spectrum of H the same labels, @, and energies, E,,
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also describe some of the eigenstates of the full system, H|a)) = E,|@) (where — in this
Appendix only — a double ket |(- - - ))) denotes an eigenstate of H).

In the Schrédinger picture the burden of time evolution is carried by the state of the
system, and for scattering the time evolution of states prepared in appropriate wave packets,
|¢r), have essentially the same evolution in the remote past and the remote future when
evolved by either H or H, (because the particle wave-packets no longer overlap). That is,
at very late times there is a state of the full system for which

: —iHt 1 —iHyt
}gl;e Do = }gl;e [¢r), (B.24)

and a similar state, | ¢);, — in general different than | ¢ /), if scattering actually occurs —
whose evolution under H agrees with the evolution of a packet | ¢ ;) under Hy in the remote
past:

. —iHt = 1 —iHot
tlérpTe [ &5 Mi }(nge [ s (B.25)

Taking the limiting case of appropriately peaked wave packets, f(«), allows the definition
of idealized ‘in” and ‘out’ scattering eigenstates of the full Hamiltonian, |@)),;, that satisfy

lime ™a), = lime ™|a)y and lim e jaY; = lim e |a). (B.26)
>T t>T t<-T t<-T

Scattering asks only for transition amplitudes between states that evolve like an eigen-
state of Hj in the remote past to similar states that evolve like eigenstates of Hy in the
remote future. Any such a scattering amplitude can be reconstructed from the matrix of all
possible amplitudes between scattering energy eigenstates,

Spa 1= o kBl . (B.27)

This quantity is called the S-matrix. The scattering operator, S, is defined as that operator
whose matrix elements between H eigenstates, |a), reproduce the amplitudes (B.27):

BISla) := S pa - (B.28)
Formally S can be computed in terms of the Mgller wave operators
Q) = e (B.29)
because

l@)o =limQ@]@)  and @) = lim Q(1)]a). (B.30)

The operators Q* = lim,,., Q(r) are isometric operators, but strictly speaking are not
unitary in the presence of ‘bound states’ that are contained in the spectrum of H but not in
the spectrum of Hy. The S -matrix is then given by

S=lim lim Q' (OHQF) = QY Q" (B.31)
t—o0 t'——00

in which the limit # — Fco must be defined with some care (which is where the appropri-
ately normalized wave packets come in).
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B.2.1 Time-dependent perturbation theory

An approximate expression for S in powers of V = H — Hj can be obtained using stan-
dard steps of time-dependent perturbation theory. To this end notice that Q*(¢) Q") =
iHot e=iH(t=1) o= gatisfies the differential equation

e De

d . e

iz Q0] = e (H — Hy) e HI=1) 70" = () (1) Q) , (B.32)
where this last equality defines the interaction picture operator V() := efo’V e7i0’ | This
can be solved iteratively, leading to the following expression for S = Ilem Q(H(1):

t/ »—co

s=yr [Can [Cane [anveove v

n:o —00 -0 00
DI BT B SR (B.33)
n=0 ! - -

which uses V() = f d*x $(x) and introduces the time-ordering operation T[0;(1)0,(t")] =
O —1)01(1)02() + O — 1)O1(")0, (¢) (where O denotes a step function).

Using momentum eigenstates, for which (B|0(x)|a) = ei(p"_”ﬁ)'“”(BIO(O)Ia), the S -matrix
can therefore be written

Spa = 0pa — iMpa20)*6* (s — Pa) (B.34)

with
Mpo = B19/(0)]a) - % fd4x<ﬁ|T [9:(09,O)]]a) +--- . (B.35)

B.2.2 Transition rates

The expressions for the S-matrix are proportional to an energy-conserving (and often
momentum-conserving) delta function when expressed in terms of energy eigenstates rather
than wave packets. This means that the square of S-matrix elements — what should be the
transition probabilities — are proportional to [§(E)]* = 6(E) §(0) and so must diverge. Phys-
ically, this divergence arises because energy eigenstates are an idealization of the wave
packets that scattering really involves. The convenience of using scattering energy eigen-
states to compute the S-matrix has as its price the necessity to more carefully sort out the
relationship between physical quantities and S -matrix elements.

Going back to the wave-packet description, |¢,); = f da f(@)|e));, the probability of
finding the system in the final state labeled by 8 becomes

Py(B) = lo(BigMil* = f dada’ f* (@) f(@) ofBladi i€a/|B)o - (B.36)

In practice, the packet f(«) is peaked about some value @ with a width about this value that
is small compared with experimental resolutions but not so small as to run into trouble from
the uncertainty relations. It is also usually true that S g, does not have a strong dependence
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on « in the regime over which f(@) has its support. Concretely, the energy width of a
wave packet is usually small compared with the energy dependence of the scattering cross
section. (If this were not true the experiment would do a poor job measuring the S -matrix.)

Under these circumstances — and assuming f3 is distinguishable from all of the @ in the
support of f(a), s0 Sg, = —iMﬁa(Zn)464(p5 — po) — then (B.36) factorizes,

PiB) ~ Ml f [da] [de’] £*(@')f (@) (B37)

where da 27)*6*(po — pp) = [da], and similarly for [de’]. The delta functions enforcing
energy-momentum conservation are no longer a problem because they are used to perform
part of the integration over « and o’.

The finite-volume/finite-time trick

What is important about (B.37) is its factorization of reaction probabilities into an inter-
action part, IMﬁalz, and a part involving precisely how the initial wave-packet is set up.
Given this factorization, it would be useful to identify the interaction part as efficiently as
possible without having to set up the wave-packets in detail each time.

A trick for doing so is to directly compute S g, with the system imagined to be inside
a box with large but finite volume V, and allowing the interactions to last only over a
large but finite time interval, 7. When this is true probabilities can be computed as in
ordinary quantum mechanics by squaring the relevant transition amplitude, and the result’s
dependence on V and T can then be studied to identify what remains physical in the limit
V,T — oco. Once such a quantity is identified, the temporary theoretical contrivance of the
box and interval can be dropped.

Conventions for discrete and continuum normalizations for momentum eigenstates are
summarized in §B.1. Following the discussion there, states using discrete normalization
for momenta, (p|q) = Jdpq, are denoted | @), those using nonrelativistic continuum normal-
ization, (p|lq) = &*(p — q), are denoted | ), while those using relativistic normalization,
Apla), = 2E, 53 (p — q), are denoted | @),

For a state involving N,, particles in a large but finite box of volume, V, these states have
the relative normalization

2EY |
m] la],

Vv

758 (B.38)

Nof2
|a>=[ ] la] and |a), =
where (2E)V+/2 is shorthand for the product ]—[fi’l V2E;. The corresponding S-matrix ele-
ments, S;zm = (BIS|a), SSLSC = (B|S| @) and Sgi = {B|S| @), are therefore related by
Vv
SCOH‘ —
PBa [(271’)3

(No+Np)/2 Z ey 1 Nat+Np)/2
! Sdisc and Srel _ 2EV
Ba Pa ™ ()3

Sge. (B.39)

For translationally invariant theories the S -matrix in each case differs from unity by

S po = Spa = iMpa(270)* 63,7 (Dp — Pa) (B.40)
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where the finite-volume delta functions arise when evaluating in the form,

QnY*' 88,1 (Po — pp) = f d*x elrep (B.41)
vr

with the spatial integration over the volume, V, and the time integration runs from —7°/2

to +7/2. As VT — oo the quantity 67 goes to the standard delta-function that enforces

energy-momentum conservation.

Now comes the main point. Transition probabilities involve |S4,|* and so necessarily
also contain a factor of 6fVT(O). But direct evaluation of (B.41) shows that for finite 7 and
V this factor is (27)*647(0) = VT. The 547(0) divergence in |S ,;GI2 is thereby seen to have
a physical origin. In a system invariant under translations in space and time (i.e. precisely
those that generate energy-momentum conserving delta functions), the instantaneous tran-
sition probability is the same everywhere and at every instant, making the total rate scale
with the volume and time interval over which the initial wave-packets overlap. But this
volume and time interval are infinite if the states involved are chosen for convenience to be
momentum and energy eigenstates.

This diagnosis suggests a remedy:' it is the transition rate per unit volume per unit
time that is well-behaved as V,T — oo, so this is what should be computed in the con-
tinuum limit. Suppose the initial particles have some probability, P(«), to be in a partic-
ular region of phase space containing Aa states and small enough that P(«) is approx-
imately constant within it. Using discrete normalization the total transition probability
for scattering from A« to a similar small region of final-state particles, A, is then sim-
ply Pl — B) = |SESC|2P(Q)AQ'A[3. Since the density of states in momentum space is

V/(27)*, the total number of states in an interval d3 = H?fl d?p; for an Np-particle state
is AB = [V/(27)*1" dB, and similarly for Aa. The differential transition rate per-unit-time
then becomes

Sdisc 2
dl(@ — p) = dSD(QT_) B _ | B; | P(e) AaAB

= M cont |2 l ~(Na+Ny) Y (Ng+N,,)
= T llSﬁa | ((271.)3 ) (271__)3 da dﬁ
= (Vf(a) | zgnqz (27T)4(§fVT(Pﬁ—pa) da d/j (B42)
= V(@) MG 'S (pyp) divdp

= V(@) IMs* 2m)* 63 (pp—pa) dé, B, ,

{04

where the replacement P(a) — f(«) follows the argument leading to (B.14) — where

fly =[] i@, (B.43)

Jjea
is the joint phase-space probability density of initial particles, assumed to be independent

' §16.4 provides a more sophisticated version of this same remedy, at least for the growth with T'. See also the
discussion leading to (16.120).
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of one another. The new notation is

N .V d*p; N e RO d*p;
da:= ]J;[ amp» 44 D QnP2E;’ b ]J;[ o P l]:ﬁl QnP2E;’
(B.44)
and MB = 2u)dNatND2 M, Mﬁa is a natural quantity to define because the factor of
(27)*"? for each particle cancels the (27)~3/? appearing in the expansion of all fields in
terms of creation and annihilation operators — see for instance egs. (C.28), (C.30), (C.33)

or (C.39) — since these appear systematically when evaluating matrix elements like those
appearing in (B.35).

Fermi’s Golden Rule

The special case where only the leading term of the transition amplitude of (B.35) domi-
nates the rate of (B.42) leads to the very useful formula

dl(a — B) = V(@) (BIHO)a)* (2n)* 64 (ps—pe) da dB (B.45)

known as Fermi’s Golden Rule.

Decays: N, =1

Expression (B.42) can be directly used — right out of the box, so to speak — in the special
case N, = I, since in this case Vf(a)dd = Vf(p)d>p/(2r)® is the probability of the
initial particle being in the initial momentum region d*p, making the limit V,7 — oo a
trivial one. The resulting expression for the decay rate of a single particle then is

dl'(@ - B) = | M Pr) ' (pa = pg) dB (B.46)

This result is not quite Lorentz-invariant, because of the 1/(2E,) in front. This factor is
just what is needed to provide the time-dilation of a fast-moving particle’s decay lifetime.

Scattering: N, > 2

More generally, for N, > 2 the scattering rate per-unit-volume in the large-volume, late-
time limit for initially uncorrelated particles is

SB[ awo

kea

[1_[ fiPO) S5 on )ng

which (reasonably) is proportional to the phase-space density of each particle in the initial
state. The second line makes the Lorentz-transformation properties of this rate manifest.
Using again that Vf(a)d& = Vf(p)d?p/(2r)’ is the probability of an initial particle

M 2764 (ps—pa) [_] (B.47)

@n )3 (27r)3

IMrel| (27T)454(p/f pa)l—[ 2n )32E
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being in the initial momentum region d*p, expression (B.47) states that the interaction rate
per particle, for particle ‘B’ (for ‘beam’), is

dl'la — B)
dr, = 2n) ——— B.48
» = (2m) Vi P, (B.43)
&pr el 2 4
Mg > 2n)ts?
-5 ]_[fk(po SoaE, | Ml 0n'! (- pc,)]_[ o )32E
l<=B
Two-body scattering: N,
In the special case of two-particle scattering, N, = 2, the product over initial particles just
involves the ‘other’ (non-beam) particle, denoted ‘T’ (for ‘target’):
fr(Pr) d &pr 12 44
= /\/(re 2m)"8 B.49
v = e |3E.E | W o' (- pa>]_[ (WZE (B.49)

and so depends explicitly on the density of target particles. It is conventional to normalize
out the target-dependent factors and define the cross section by do- = dI',/F where F satis-
fies two conditions. First, the Lorentz-transformation properties of F' are fixed by requiring
do to be Lorentz invariant. Inspection of (B.49) shows this implies

| fr)\ Fdp,
"\ @n)3 ) 4E,E,”’

(B.50)

where ¥ is a Lorentz invariant quantity. Second, F should evaluate to the particle flux (as
seen by the beam particle), dn, vy, when evaluated in the target-particle rest frame. Here
dn, = f, & p,/(27) is the target’s ordinary-space particle density and v is the (Lorentz-
invariant) relative velocity of the initial two particles,

m2 m?

T B.51
(ps - r)? ®>1)

Vrel = 1-

where ply and p/ are the 4-momenta of the two initial particles. The resulting two-body
cross section becomes
Aqrel |2

do(a@ - B) = ﬁa (271)454(17“ Dg) l_[ m (B.52)

with ¥ := (_4PB . pr)vrel =4 \/ (pB . pT)2 - mlzf m% :
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Appendix C Quantum Field Theory: a

Cartoon

Quantum field theory (QFT) plays a central role in most areas of theoretical physics, but
this is not really a deep statement. At one level quantum field theory is merely ordinary
quantum mechanics applied to processes that change the total number of particles present,
and this makes it particularly useful for relativistic systems since fundamental principles
(the consistency of quantum mechanics and special relativity) forbid relativistic interac-
tions from ever leaving the total number of particles unchanged.

But the utility of QFT methods are not restricted to processes that change the total num-
ber of particles. It is also useful when framing quantum systems with a fixed number of
particles, largely because its main feature — the language of creation and annihilation op-
erators — lends itself to efficiently expressing natural laws in such a way that ensures the
validity of a few fundamental principles right from the start. The principles that get baked
in in this way include ‘unitarity’ (which is to say, conservation of probability in quantum
evolution) and ‘cluster decomposition’ (which means the factorization of probabilities for
independent events when these events are causally separated from one another in space-
time).

Although this book is not meant as a textbook on quantum field theory, QFT tools are
nonetheless often used within these pages. Consequently this Appendix is offered, both
as a quick refresher on some elements of quantum theory of fields, as well as a way to
collect together some of the main useful formulae used elsewhere. Although this summary
possibly provides a useful reminder for those already with some QFT background, it likely
has insufficient detail to teach the subject to a complete newbie.

C.1 Creation and annihilation operators

538

The goal in quantum field theory is to set up a quantum mechanical framework in which
the total number of particles can change. The first step when doing so is to identify the
Hilbert space within which quantum operators act.

In elementary single-particle quantum mechanics a basis of states, |i), for the single-
particle Hilbert space, H; = {[i)}, can be chosen consisting of eigenstates of the complete
set of commuting observables that label single-particle states. In concrete examples these
labels are often chosen to be momentum and any internal quantum numbers, like total spin,
s, and its third component, o so |i) = |p, s, 0, - -+ ).

Ordinary quantum mechanics involving N particles similarly involves a Hilbert space,
Hy = {li1,i2,- - iy)}, built as products of N copies of the single-particle basis states. For
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bosons these states are defined to be completely symmetric in the interchange of any two
pairs of labels for identical particles, while the states are antisymmetric under this inter-
change for fermions. For example, for a two-particle state

lir, io) = *lip, i1) (C.1

where the upper (lower) sign corresponds to the particles being bosons (fermions).

The Hilbert space for quantum field theory, H, combines the Hilbert spaces Hy, H; and
H, and so on, up to H, and beyond, with N arbitrarily large. Here H, = {|0)} is the one-
dimensional space spanned by the zero-particle state, |0), while H, for N > 1 is defined as
above. A Hilbert space constructed in this way is called a Fock space.

When dealing with different kinds of particles it is useful to label states using the
occupation-number representation. Instead of listing the single-particle labels for all parti-
cles in the state, this representation lists the number of independent particle labels, together
with the number of particles present in the state that carry these labels. For instance, in the
occupation-number representation a state containing two particles with momentum p, is de-
noted [p®) rather than |p, p). For general labels ‘/’, the occupation-number representation
for a five-particle state contining two particles having single-particle quantum number i,
and three particles with quantum number i; is similarly |i(12) s i(23> Y rather than |iy, i1, i>, i2, I2).

A very convenient basis of operators acting within the Fock space of quantum field the-
ory is given by creation and annihilation operators in the following way. The annihilation
operator, q; is defined as the operator that removes a particle with quantum number 7 from
a given state. If the state on which a; acts does not contain the particle in question then the
operator is defined to give zero. That is,

a;{0) =0, ail j) = 6410) . alj ky = 6i,lk) + (=)76il i , (C2)

and so on, where the sign (=)" is —1 if both particles ‘i’ and ‘> are fermions and is +1
otherwise.

This definition implies that the Hermitian conjugate, a, is a creation operator for the
same particle type, that satisfies

a; 0y = i), al) =1ij), (C3)

and so on. Together with the normalization convention (i|j) = ¢;;, these definitions imply
the following properties. For bosons |i, j) = |j, i), and so

[a,-, aj] = [a?, aj-] =0 and [a,—, aj-] = 0jj. (C.4)
For fermions [i, j) = —|j, i), and so
{aj, 05} ={aj, a3} =0 and {a;, 0} =0, (C.5)

in which [A, B] = AB — BA and {A, B} = AB + BA, as usual.
In the occupation-number representation the above rules are captured by

r

. (n, . (nj=1) (n,
Clill(ln]),"' ,lﬁn)> = Zsijdiii \/n_jll(lnl),"' ,ljn] sttt ,15” )>- (C6)
=
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where s;; = (=) ¥i-0 and

@i, iy = ({ O D )y i o ) for any

= \fmi; + 1 si |l'(1nl),"' ,i;n[Jrl), e iy ifi=i;. (C.7)

In particular a}q; counts the number of particles with quantum number ‘°, because the
previous two formulae imply

r
a;;ai”(lm), ce l'gﬂr)> — (Z 5iijnj) |i(1n1), . l‘in,—)) . (C.8)
J=1

What is important about the creation and annihilation operators is that they make a very
convenient basis, in terms of which any operator acting on 7, can be expanded:!

0 =400+ D [Aoa(D) ai + Aro(i) o]

+ 3" (02l ) i + A1 Dajaj + Asgli, j) afaj|+-+- . (C.9)
ij
To see that this is so it suffices to argue that the coefficient functions {Ag, A1 0(i), Ao.1(?), . . .}
can be solved for in terms of the matrix elements: (¥/|O| ¢), for all choices for (| and | ¢).
(This can be shown by induction, starting with (0|0J0) = Aoy (because q;|0) = (Oa; = 0)
and continuing with (j|0|0) = A; o()), (0|O|j) = Ao 1(j) and so on.)

A system’s hamiltonian is an important special case of an operator that can be expanded
in this way, and part of the reason creation and annihilation operators are so useful is that
this particular expansion is usually an efficient one. For instance, non-interacting particles
are ones for which the energy cost of adding N particles is just N times the energy of
adding one particle (i.e. there is no interaction energy). With (C.8) in mind the hamiltonian
for a collection of non-interacting particles is therefore

Hiee = Eg + ) &r0a, (C.10)
where the single-particle labels ‘i’ appearing in the sum are a complete set of mutually
commuting labels for single-particle energy eigenstates.

As is easily verified by explicit evaluation, the hamiltonian Hg.. has the occupation-
number states as eigenfunctions, with eigenvalues given by

Higeeld™, -+ i)y = [Eo +> n,»sj] i, i) (C.11)
J

This reveals Ey to be the energy of the zero-particle state (or vacuum), |0), while &; is the
energy associated with the addition of a single particle having quantum number ‘i’. For
momentum eigenstates (using standard non-relativistic normalization) this expression for

! Notice that all instances of a* here stand to the left of all instances of a in this expression; something that can
be arranged without loss of generality by changing, if needed, the order of operators using the commutation
relations (C.4) or (C.5) (a process called ‘normal ordering’).
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Hee becomes

Hpyee = Ep + Z deP Ek(P) a;,kapﬂk B (Clz)
k

where k represents all non-momentum single-particle labels (like spin or particle type) and
ex(p) is the single-particle dispersion relation (i.e. single-particle energy as a function of
momentum). In the special case of relativistic systems Lorentz covariance requires p and

p° = &(p) must be components of a single 4-momentum vector, p*, so & (p) = /p* + mi

where my is the corresponding particle’s rest mass.

Interactions have similar representations. For instance a term in Hij,; describing the emis-
sion or absorption of a photon by a charged particle, f(p, o) + y(k. 1) — f(q, ), could be
written

DY f Epdqdk [hig(p.q.K) 6, g i +he ] Sp-q-k),  (C.I3)
Aol
where ‘h.c.” denotes the hermitian conjugate, while ¢, denotes the annihilation operator
for a charged particle with momentum p and spin component o, while ay, is the same for
the photon of momentum k and helicity A.
The above expression can mediate processes like photon absorption (or, from the ‘h.c.’
term, emission) because it gives a nonzero matrix element

(P, oHindlq, £k, A = haos (.4, P) 6°(p — q — k), (C.14)

which, when used in expressions like Fermi’s golden rule (B.45), can contribute a nonzero
transition rate. Eq. (C.14) evaluates the matrix element using (continuum-normalized ver-
sion of) expressions (C.6) and (C.7) defining the action of creation and annihilation opera-
tors.

C.2 Nonrelativistic free fields
|

An important condition satisfied by most physical systems is cluster decomposition: the
factorization of probabilities for events that are widely separated in space at a given time.”
A physical property demanded of H is that this clustering property should be preserved by
time evolution.

What is convenient about the creation- and annihilation-operator formalism is that the
requirements of cluster decomposition are automatically satisfied if the (possibly com-
plex) coefficient functions in H —like /,,¢(p, q,K) in (C.13), for example — are sufficiently
smooth functions of their momentum arguments (e.g. admitting a Taylor expansion in pow-
ers of momenta) once the delta-function is extracted that enforces momentum conservation

2 This property assumes the system to have started without initial correlations between the particles involved in
these events. For relativistic systems the requirement of ‘large’ spatial separation means events that are suffi-
ciently outside each other’s light cones (large spacelike separations). For thermal fluids cluster decomposition
is included in the condition of local equilibrium.
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(if this is conserved). These are the momentum-space ways of saying that in position space
the hamiltonian is local:

H= f dExH(x), (C.15)

for some hamiltonian density $H(x). Locality is related to cluster decomposition because
the time-evolution operator, U(t, ty) = exp[-1H(f — #y)], should schematically be a product
over positions (and so should preserve factorization of amplitudes for spatially separated
events) when H is a sum over positions.

This suggests that interactions should often simplify when expressed in position space,
using the Fourier-transforms of the creation and annihilation operators. For spinless parti-
cles this leads to defining position-space fields, ®(x), of the form

@ .
D(x) := f ﬁ ap P (C.16)

Such a position-space quantum field can similarly be defined for the destruction operator
of each separate type of particle. This last equation is written in Schrodinger representa-
tion (for which operators do not evolve in time), but it is often more usefully written in
the Interaction representation (for which the operators evolve in time using the free field
equations). In interaction picture (C.16) becomes

(D(X l) - d3p aQ —iE,t+ip-x (C 17)
L) = —(ZJT)3/2 p€ N .

where E, is the single-particle energy.

The point of expressing H in terms of ®(x) and ®*(x) rather than a,, and Opor is that
the condition of cluster-decomposition — i.e. smoothness of coefficients like /..,(p, q, K)
in (C.13) — is ensured by the locality requirement, (C.15), where $(x) is built from sums
of local monomials of ®(x), ®*(x) and their derivatives, all evaluated at the same spatial
point.

For example, rather than using (C.12) for a system of non-interacting spinless particles
with dispersion relation &(p) = p?/2m, its Hamiltonian could equally well be written

H = L fd3x VO (x) - VD(x). (C.18)
2m

Because this hamiltonian is invariant under rephasing, ®(x) — ¢'“®(x), Noether’s theorem
implies that it necessarily commutes with total particle number, measured by the operator

N = fd3x cD*(x)cD(x)zfd3p O . (C.19)

Sometimes momentum is not a good single-particle label for energy eigenstates, such
as for particles that interact with an external potential, V(x). For example, a system of
such particles interacting only with the potential (which do not mutually interact with one
another) can be written

H= f d’x [ﬁ VO* (x) - VO(x) + V(x) CD*(X)CD(X)] . (C.20)
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As is easy to verify the hamiltonian of eq. (C.20) can be written in the diagonal form (C.11)
by generalizing (C.16) to
D) = Y @), 21

1

where the mode-function ¢;(x) is defined as an eigenstate satisfying the single-particle
Schrodinger equation,

1
[—— v+ V(X)] %i(%) = gipi(x) . (C.22)
2m
Using (C.21) and (C.22) in (C.20) then puts it into diagonal form
H=Y aue. (C.23)

An example of a system for which interactions are not local, and so do not cluster, is the
case where particles interact through long-range forces, such as in

H= f d%[ﬁ VO (x) - VO(x) + f &y Ux —y) 0" (x) D(x) D*(y) D(y)| . (C.24)

Examples like this are not normally regarded as counter-examples of the requirement that
physical systems cluster, since the long-range interaction U(x — y) usually arises once a
massless (or very light) degree of freedom is integrated out. A famous example is the
generation of the Coulomb potential once electromagnetic interactions are integrated out.
In all such cases, however, the Wilson action for the relevant effective theory (from which
massless or light particles are not integrated out) is local, and so does cluster.

C.2.1 Nonrelativistic fields with spin

Position-space fields can also incorporate spin, by requiring them to transform under ro-
tations, such as by using a spinor field, a vector field or some other finite-dimensional
representation of the rotation group. Generalizing (C.16) to a field ¥, transforming in one
such a representation leads to

S d3p ip-x
Yo%) = ) f G )t P, (C.25)

where the sum is over the 3rd-component-of-spin quantum number, o, of the particle state
(assumed to have spin s). Here the ‘polarization tensor’ u,(o") is the Clebsch-Gordan coeffi-
cient required to ensure consistency between the assumed transformation properties under
rotations of the field and of the particle states.

For spin-half particles s = % and ¥, (with @ = 1,2) can be a two-component spinor,
which under rotations with infinitesimal parameter * transform as 6% = %wka'k ¥ (in
addition to its action on Xx), where o7 are the usual 2 X 2 Pauli matrices. In this case the

spin sum runs over o = :t%, with

u(+1/2) =( (1) ) and u(=1/2) =( (l) ) . (C.26)
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A spin-one particle has s = 1 and can similarly be represented by a vector field, Vi, with
k = x,y,z. In this case rotations act as §V}, = €,'V™ (in addition to their action on x),
and o = 0, 1. In this case u;(o) becomes the polarization vector appropriate for each of
the three choices for o-. For instance for a particle with momentum parallel to the z axis,
p = e., one finds u(0) = e, and u(+1) = %(ex +iey), SO

1 d3 .
Vo= ) [ ok s e, €27
o=-1

C.3 Relativistic free fields
]

A similar story goes through for position-space fields in relativistic theories, but with two
important differences. The simplest difference simply recognizes that the ficlds must trans-
form in finite-dimensional representations of the Lorentz group rather than just rotations.
The more subtle difference is that all position-space ficlds must come with both destruction
and creation parts, in a way that is elaborated below.

It is this second condition that underlies many of the profound consequences — like
the existence of antiparticles, the spin-statistics theorem, the CPT theorem and crossing
symmetry — of combining quantum mechanics with special relativity. Although it goes
beyond this summary to derive these consequences in detail, both types of differences are
illustrated in the low-spin examples below.

C.3.1 Relativistic spin-0 fields

Scalar fields can be used for spin-zero particles® and in this case the expansion in terms of
creation and annihilation operators generalizes the nonrelativistic result (C.17) to
3
f _Ir [ap €7 + a5 7] (C.28)
\(@2n)32E,

where p - x is short for p,x* = —E,t+p-X where E, = +/p? + m? is the relativistic particle
energy and m its rest mass. This expression normalizes momentum eigenstates in the same
way as does (C.17) — i.e. using the non-relativistic normalization (p|q) = §°(p — q) where
Ip) = apl0) — and so the factor of \/E_p in the denominator is precisely what is required
to make the left-hand side transform as a Lorentz scalar. (If a;IO) = |p), were instead
normalized covariantly, as in (B.20), then the measure appearing in (C.28) would be the
Lorentz-invariant combination d3 p/E,, as expected.)

It is the term involving @, that is the new ‘creation part’ of the field alluded to above.
Here @, is the destruction operator for the antiparticle for the particle destroyed by ap,

$(x)

3 The choice of field representation is not unique for any given spin, with the general condition known since
the 1960s [472, 51, 473, 14]. Different choices of representation typically do not define physically different
theories. For instance a 4-vector field — instead of a scalar field — can represent a spinless particle, but the
4-vector in this case is simply the gradient of the scalar: V, = d,,¢.
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whose properties are dictated by the requirement that the commutator [¢(x), ¢(y)] vanish
for all spacelike separations, (x — y)? > 0. If this commutator would not vanish, then
neither would the same commutator built using the hamiltonian density, [H(x), H(y)], and
if this does not vanish then the time-orderings of H appearing in the S-matrix (see §B.2)
become problematic given that different observers can disagree on the time-ordering of x°
and y° for spacelike-separated points.

In particular, this condition requires that the antiparticle have precisely the same mass
as does the particle, and it must carry precisely the opposite charge for any symmetry that
multiplies the field ¢(x) by a phase: ¢(x) — €'“@(x). A particle can be its own antiparticle if
ap is used instead of @, in (C.28). But ¢(x) is then real, and so particle and antiparticle can
only be the same in they carry no additive conserved charges. (The photon is an example
of a particle of this type that is the same as its antiparticle.)

Cluster decomposition is ensured if local interactions are built as before from powers
of fields and their derivatives at a single point, and for relativistic systems this is more
conveniently done using the action, S = f d*x €, than with the Hamiltonian, H = f dx9,
because the action is Lorentz invariant while the energy is not. For free charged fields
this action is quadratic and the ficlds can always be defined in such a way that the action
becomes

S free

spin 0 == fd4x [6u¢* a,u¢ + m2¢*¢] s (C29)

where m is the rest mass appearing in the dispersion relation: &(p) = E, = +/p? + m?.
The fields in this action — and in (C.28) — are chosen to be ‘canonical’ inasmuch as
the canonical equal-time commutation relation, [T1(x, £), ¢(y, f)] = —id>(x — y), agrees with
the creation/annihilation algebra [a, afl] =& (p—q) when IT = 6S /6(0,¢) is the canoni-
cal momentum. (The numerical factors in (C.28) are also chosen to ensure that canonical
commutation relations agree with the ap, a;, algebra.) Unlike in non-relativistic systems,
relativity makes it necessary to quantize spinless particles using bose statistics — a con-
sequence of the spin-statistics theorem: all integer-spin particles must be bosons and all
half-odd spin particles must be fermions.

Interactions are similarly built using non-quadratic (but local) terms in ¢ and its deriva-
tives. It is the requirement that all interactions be built from ¢(x) oc a + a* that implies that
relativistic interactions never preserve particle number, in contrast with the interactions
written above for the non-relativistic case.

C.3.2 Relativistic spin-1/2 fields

Spin-half particles are represented using Lorentz-spinor fields, ¢,(x), which are taken
to be distinct from their antiparticles and so represented by 4-component Dirac spinors
(a=1,---,4; see the discussion above eq. (A.27) (or Appendix §A.2.3) for the distinction
between these and Majorana or Weyl spinors).

d3 ipx - _—ipx
ba)= Y f Wﬁm [t4a(P. ) o €7 + valp. ) T 7] (C30)

—+1
o=t3
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where the destruction operator is labelled ¢ to distinguish it from the spinless destruction
operator described above. For spin-half particles consistency requires these operators to
anti-commute,

(s Cac} = (P = D) oz » (€31

to ensure that the hamiltonian density, $(x), can continue to commute with itself when
evaluated at spacelike-separated points in spacetime. u(p, o) and v(p, o) are spinors that are
chosen to ensure that both sides of (C.30) transform the same way under Lorentz transfor-
mations. This implies they satisfy the Dirac conditions (iff + m)u(p, o) = (i¢ —m)v(p, o) =
0. Here the ‘slash’ notation denotes j# = p,y", where the Dirac conventions used for the
gamma matrices y* are outlined in §A.2.3. Notice that in the particle rest frame these con-
ditions become the projections iy’u = +u for particles and iy’v = —v for antiparticles,
and in any other frame they are found by applying the appropriate Lorentz boost to these
conditions.
The action that captures these conditions for free fields is

S == f d*x Y@+ myy, (C.32)

where again fields are chosen to be canonically normalized, and m is the particle rest mass
that enters its dispersion relation &(p) = E, = /p> + m>.

C.3.3 Relativistic spin-1 fields

For spin one and higher the field content needed to treat massive and massless states differs.
This is because a massive spin-s state contains 2s + 1 spin components, o = —s,—s +
1,---,s—1,s while a minimal massless spin-s state usually contains only two helicities:
A = +xs. Although these two options have the same number of states for s = 0 and s = %,
they differ from one another for s > 1.

Massive spin-1 fields

Consider first the massive case. The smallest fields that can be used for massive spin-one
particles are vector fields, V,,(x), and consistency of the 4-vector Lorentz-transformation
rule with the transformations of creation and annihilation operators for massive spin-one
particles implies

[€u(P. 1) apa €7 + £, (p, D) Ty 7P (C.33)

! 3
d’p
V() = f W
;1 \(@2n)32E,
where as before E, = +/p? + m?> with m the particle’s rest mass. This form is also only
consistent with [H(x), H(y)] = 0 for spacelike separations if the particles are bosons, so

lap, a5 ] = [dp, 03] = &3(p — Q).
The polarization vector &,(p, A) satisfies p’g, = 0, and so for momentum pointing up
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the z axis, the polarization vector’s spatial part can be chosen to be

s“(ﬁ:il):%(efie ),a"(/l:O):(Epe ) when p”=(pEg)
X — y P %z Z
34)

One rationale for the condition p*e,(p, A) = 0 is that if V,, = d,¢ were a gradient, it would
actually represent a spin-0 particle, and this option must be projected out (as the condition
0"V, = 0 indeed does).

A free lagrangian for this type of particle is

1 * v %
She, = f d*x [E F, F* +m2V"VH], (C.35)

where F, :=9,V, - 8,V,. Notice that the field equation obtained from this by varying V;
is
" —m?V' = (0 -mHV - 5"(9,V") =0, (C.36)

which, when acted on again by d, implies m*d, V* = 0. When m # 0 these field equations
both project out the spinless part (i.e. ensure d - V = 0) and — once this is used in (C.36) —
ensure p*p, +m* = —EIZ7 +p? + m? = 0, thereby identifying m as the particle’s rest mass.

Massless spin-1 fields

Next consider the massless case. It happens that the absence of the longitudinal mode,
A = 0, precludes also using a 4-vector field like V,(x) to represent a massless spin-one
particle. In this case the smallest finite-dimension representation of the Lorentz group that
can be used to represent the two helicity states of a massless spin-one field turns out to
be an antisymmetric tensor, F}, = —F,,. The two separate helicities are represented by
the self-dual and anti-self-dual parts, F7;, o = Fu iF, > Where the ‘dual’ field strength is
defined by

~ 1
Fy, = 3 €wo F¥, (C.37)

for €,,4, the completely antisymmetric Levi-Civita tensor of eq. (A.10).
The mode functions that ensure the consistency of the transformation rule for F,, and
for a massless spin-one particle turn out to imply [51, 54]

Fyv = a,uAv - avAp s (C.38)
with

Au(x) = ;1 f m ,J(p, Dap e + £(p, D) a, e'l‘”] , (C.39)
where E,, = |p| is the relativistic particle energy for massless particles (and, with photons in
mind, the antiparticle is chosen to be identical to the particle). This looks a lot like (C.33),
but with the important omission of the A = 0 polarization.

At this point the astute reader asks: ‘How can (C.38) and (C.39) be consistent with the
earlier statement that F,, is the smallest field whose Lorentz-transformation properties
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are consistent with representing a massless spin-one particle? Why not simply use the 4-
vector A, instead?” From this point of view what is important about egs. (C.38) and (C.39)
is this: performing a Lorentz transformation on the creation and annihilation operators to
accomplish a Lorentz transformation that takes p* — A*,p” indeed implies the field F,
transforms into /\ﬂ”AV” F,, as should a rank-two tensor.

But the ficld A,, does not transform as a 4-vector, because of the omission of the 4 = 0
mode. It instead satisfies

Ay — N A, +0,0 (C.40)

for some scalar function Q. Although the first term on the right-hand side corresponds
to the transformation of a covariant 4-vector, the second term does not. Lorentz-invariant
actions for massless spin-one particles can only be built using A,(x) instead of F,(x) if
they are also chosen to be gauge invariant, that is, invariant under the shift A, — A, +9,Q,
for general Q. It is the freedom to do just such a transformation that allows the 1 = 0 spin-
state to be removed, as required for a massless spin-one state.

C.3.4 Massless spin-2 fields

A similar story holds for massless spin-two particles for which there are only two spin
states, with helicities 4 = +2. A field that can represent this kind of particle is a tensor
Cyv.p with the same symmetries as the Riemann tensor: C,,1, = Cipuy = —Cyptp = —=Crypas
and in addition a trace-free condition, n Cayov = 0.

Requiring the transformation properties of this field to be consistent with what is ob-
tained once expanded in terms of creation and annihilation operators for a massless spin-
two field, implies [51] C,,,4, is obtained as two derivatives of a field

d3 . , L
where E,, = |p|is the relativistic particle energy for massless particles and (as for photons)
antiparticle is identified with the particle.

When a Lorentz transformation is performed on the particle creation and annihilation
operators such that their 4-momentum transforms as p* — A*,p", then h,,, does not trans-
form as a tensor. It only does so up to a gauge transformation of the form

Ry = 0,82, + 0,82, (C.42)

for some field €,. This gauge symmetry must be preserved if interactions are to be built
directly using h,,, rather than C,,,,.

Precisely this kind of structure is obtained when the field equations of General Rel-
ativity are expanded about a flat background spacetime. In this case the metric is written
8uv = Nuy+2k hy, with k* = 871G, related to Newton’s constant, and under coordinate trans-
formations ox* = &(x) the fluctuation ficld A, transforms as ok, = d,&, + 0,&,, as above.
The field C,,,,, is then the linearized Weyl tensor, defined as the completely trace-free part
of the Riemann tensor built from g, .
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C.4 Global symmetries
|

Symmetries play an important role in quantum mechanics, just as they do in classical me-
chanics. Symmetries are special because their existence allows exact statements to be made
about transition probabilities and about energy eigenstates.

In quantum mechanics it is a theorem [41] that transformations that do not change any
transition probabilities can always be represented in terms of unitary operators.* Being
represented by a unitary operator means that the action of the symmetry on any state can
be written as

W) = 19 =Uly), (C.43)

where U*U = UU" = I, with I being the identity operator in the Hilbert space. Probabil-
ities remain unchanged, because (1| J2) — W1|U*U| ) = (| ¥s). Matrix elements of
operators, A, remain unchanged under such transformations because A — A = UAU*, and
so its matrix elements become: (J1|A| ) = (W |U*UAU* Ulr) = (fr1|Al ).

The complete set of transformations, {g,}, that preserve all matrix elements in this way
forms a group, where group multiplication, g;g», consists of convolution (i.e. successive
performance of the two individual transformations). Furthermore, there can be (but need
not be) an independent operator U(g) for each such transformation. These operators form
a unitary representation inasmuch as U(g)U(g2) = U(g182)-

A symmetry is defined to be any transformation of this type that does not change the
system’s hamiltonian:

H=UHU*=H, (C.44)

and so [U,H] = 0. These form a subgroup of the group of matrix-element-preserving
transformations. Two classic consequences follow immediately from eq. (C.44).

e Conservation: Each unitary symmetry, U, defines a hermitian charge, O, whose quantum
numbers for any state are conserved in time. This follows because [U, H] = 0 implies
[0, H] = 0 and so — because the time-evolution operator is U(t, ty) = exp[—1H(t—1))]
— then [Q,U(t,1p)] = 0 as well. Therefore, if Qly(t = ty)) = qly¥(ty)) then (in
Schrodinger picture)

Q) = QU(1.10)| (t0)) = U (1, 10)Q |¢(t0)) = q | ¢(0)) . (C.45)

This expresses conservation in the usual sense that once a state is prepared to have a
particular value of Q then it has this same value for all later times.

o Spectrum degeneracy: It also follows from (C.44) that if two energy eigenstates are
related by a symmetry then they must have the same energy. That is, because [U, H] =
0if|¢2) = Ulyz) and Hy;) = E; | ), then

Ex|yn) = Hlyn) = HU|Y1) = UH| Y1) = E1(Ulyn)) = Erlyo), (C.46)
and because | ,) # 0 this means E| = E;. Physically this says that if a transformation

4 Oor anti-unitary operators, as is the case for time-reversal (more about which in §C.4.3).
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is a symmetry it should not affect energies; in a rotationally invariant world a ruler has
the same total energy regardless of whether it is laid along the x, y or z axes.

For relativistic systems, it is often true that symmetries commute with momentum as
well as energy, [U, P“] = 0. If so, then because El.z(p) = p2 + ml2 it follows that any two
states related by U must have the same rest mass.

All of these statements go over for quantum field theories as well, although for some
conclusions (like spectral degeneracy) it matters whether the system’s ground state is in-
variant under the symmetry or not (that is, whether the symmetry is spontaneously broken).

Just as for ordinary quantum mechanics the action of symmetries (besides time-reversal)
on states and operators is given by a unitary operator U, with | ) = U|¥) and 0 = UoU".
In particular, for creation and annihilation operators &, — U apU™ and @, — U ayU" and
so field operators transform as ¢ = UgU™ and so on.

If U|0) = |0) (which multiplying through by U* shows also implies U*|0) = |0)) then
these transformations amongst creation operators also imply that the corresponding particle
states — call them [(p)) = a,|0) and | U(p)) = d, [0) —are related by the action of U, since

| 3(p)) = &10) = UayU*[0) = U, [0) = Uly(p)). (C47)

When this is true (C.46) implies these particles share the same energy. The above argument
shows why this implication also generally fails when U|0) # |0) (i.e. when the symmetry
is spontaneously broken). In this case particles need not align into degenerate multiples
for a spontaneously broken symmetry, and the symmetry instead partially acts to shift the
vacuum itself (which by assumption is not invariant).’

When a symmetry is not spontaneously broken then it can be linearly realized on the
fields themselves, as described in the main text in §4.2.1, with

¢ > =U@¢U (9 =¢'Gj. (C.48)

Applying two transformations in succession and using U(gig2) = U(g2)U(g>) then shows

that the matrices G;/ satisfy G/(182) = G*(81) Gi/(g2).
It is not always true that symmetries can be realized linearly in this linear way, with the
general case being a nonlinear realization

¢ > =URIU Q) =¢g, (C.49)

where £/(¢, g) is potentially a nonlinear function of the ¢'. This is the case to which one is
led when a symmetry is spontaneously broken, as described in §4.2.2 (with more details
given in Appendix C.6).

C.4.1 Lie algebra summary

Many of the symmetries of practical interest are enumerated using continuous parameters
(like translations, rotations, chiral symmetries and isospin or gauge transformations), mak-
ing them Lie groups from the mathematical point of view. This section steps back from the

3 For translation-invariant ground states the very definitions of Q and U become delicate for spontaneously
broken symmetries, at least for field theories in the infinite-volume limit — c.f. eq. (C.82).
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main line of development to summarize a few facts about these groups, together with their
related Lie algebras.

Of particular interest in physical applications are often explicit representations of Lie
groups and algebras in terms of matrices (that are often important in specific physical
applications). For the present purposes representations are simply examples of matrices
or operators in a physical problem whose matrix multiplication rules furnish examples
of the underlying group multiplication rule. Eq. (C.48) provides an example of this, with
U(g182) = U(g1)U(g2) providing a unitary representation of the group in the quantum
Hilbert space, while the N XN matrices G(g182) = G(g1)G(g2) provide a finite-dimensional
representation of the group on the space of N fields ¢. Although (C.48) leaves ambiguous
where the fields ¢/ and ¢ are evaluated, for simplicity in what follows they are taken to be
evaluated at the same spacetime point (making the symmetry an ‘internal’ symmetry (as
opposed to a ‘spacetime’ symmetry — see §C.4.2 below).

For Lie groups the abstract group elements and their explicit realizations are labelled by
continuous real parameters, w®, witha = 1,--- , N,, and both U(w) and G(w) are infinitely
differentiable. (For instance, for rotations in 3 dimensions the w, could correspond to the
angles of rotation about three orthogonal axes.)

Continuous symmetries are often efficiently characterized by their generators, 7, defined
by examining transformations arbitrarily close to the identity element: g(w) = I + iw“t, +
O(w?). Tt can be shown that the parameters w” can be defined in such a way that any
group element that is continuously deformable to the identity element can be written as
an exponential of the generators: g(w) = exp[iw“t,]. The statement that a group is closed
under multiplication implies that these generators satisfy a set of commutation relations of
the form

[tastp] = ic%ap ta. (C.50)
The span of all linear combinations of such generators is called the Lie algebra associated
with the Lie group. The coefficients ¢?,;, = —c?,, appearing here are called ‘structure

constants’, whose form encodes the multiplication law that defines the underlying group.
Explicit representations of the Lie group also provide representations for the correspond-
ing Lie algebra. For infinitesimal transformations, g = 1 +1iw“t,, the unitary operator in the
quantum Hilbert space becomes U(g) = I + iw“T, and the representation matrices for the
fields become G = I + iw*T,. These act on the fields so that 5¢' = ¢’ — ¢’ has the form

6¢'(x) = 1Ty, ¢'(0)] = 10" (T} ¢ (x). (C.51)

Because the operators U and the matrices G satisfy the same group multiplication rule as do
the group elements g, the operators 7, and the matrices 7, satisfy the same commutation
relations as do the generators #,: that is, [7,, 73] = ic? Ty and [T, Tp] = ic? Ty, with
the same structure constants as in (C.50).

Conjugate and adjoint representations
Any explicit representation of a Lie algebra, {7} say, satisfying

(T Tp) = ic%ap Tas (C.52)
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can be used to define two other representations. The first of these is found by taking the
transpose of (C.52), which shows that the operators S, = -7 (where the superscript ‘7’
denotes taking the transpose) also satisfy (C.52). For unitary representations (those for
which the matrices G are unitary) the 7, are Hermitian matrices and so S, = =7 = =7
are also related by complex conjugation (not Hermitian conjugation) to the 77,’s.

A second related representation can be built from the ¢ s themselves (and so is more
an intrinsic property of the group than of its specific representation in terms of the 7. To
see why, notice that the associative property of matrix multiplication ensures the quantity
[A,[B,C]]+[B,[C,A]l + [C, [A, B]] identically vanishes for any three matrices A, B and C.
Applying this Jacobi identity to three generators of the Lie algebra then implies

0=1Ta [Tp: Tl + [Tp [Te, Tall + [Tes [Tas Th

= _(Cdbccead + Cdcacebd + Cdabcecd){]; . (C.53)

The bracket on the right-hand side of this equation therefore vanishes for any set of struc-
ture constants. One way to read this identity is to say that the matrices A, with components
(AN, =iy satisfy the commutation relation [(A,, Ap] = ic? Ay, with precisely the
same structure constants as in (C.52), and so therefore furnish another representation —
called the adjoint representation — of the same Lie algebra.

Finite-dimensional unitary representations

In physical situations continuous symmetry groups often arise as explicit finite-dimensional
unitary matrices, such as for the 3 X 3 orthogonal matrices — i.e. O(3) transformations — de-
scribing rotations in space, or more generally the internal N XN unitary matrices —i.e. U(N)
transformations — amongst N complex fields, ¢/. This turns out to mean that a special role
is often played in physics by compact groups, for which the parameter space of the group
is a compact set.

Compact groups play a special role because it is a theorem that only compact groups
have finite-dimensional, unitary and faithful matrix representations.® (The Lorentz group,
for instance, is not compact although its subgroup of spatial rotations is. Consequently, as
found explicitly in §A.2.3 say, although rotations can be represented using finite-dimensional
unitary transformations, any finite-dimensional representations of boosts cannot be uni-
tary.)

This section summarizes some useful properties satisfied by representations built from
finite-dimensional unitary matrices, for which G' = G and so 7, = T, if G(w) =
expliw®T,]. Because the generators are finite-dimensional and hermitian the quantity

Yab = Tr (TaTb) (C.54)

is both symmetric and positive definite (and so can be regarded as a metric, called the
group’s Killing metric). Linear combinations of the generators can always be chosen to

0 A representation is faithful if there is a one-to-one correspondence between the group elements and the matri-
ces which represent them. If the group of interest is defined by a finite-dimensional and unitary representation,
this representation is by definition faithful.
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ensure that

Yab = Oab » (C.55)

(such as is true for the standard Pauli-matrix representation of S U(2) —i.e. 2 X 2 unitary
matrices with unit determinant — for which 7, = % o, for a = 1,2, 3). This convention for
the generators of compact groups is usually assumed to have been made throughout this
book.

The metric y,, can be used to build a completely covariant version of the structure
constants:

Chea = cdbc Yda - (C56)

Its definition automatically implies c,ps = —Cpaa, but when the generators are chosen so
that y,, = 9,4 it turns out that c,pg is completely antisymmetric under the interchange of
any two of its indices.

Real unitary representations

There is also no loss of generality in assuming representation matrices to be real: g = g~,
because any complex representation can always be decomposed into its real and imag-
inary parts. Although this can always be done, the resulting representation need not be
irreducible. For reducible representations there is a basis in which all group elements can
be written in a block-diagonal form:

g(l)
G= . (C.57)

Gw

The unitarity and reality of the group elements, G, then imply the matrices 7, are antisym-
metric and imaginary:

Ta=T4 ==T3 =-T,. (C.58)

Subgroups and subalgebras

When describing a symmetry breaking pattern where G breaks to H C G it is convenient
to choose a basis of generators, T,, for G that includes the generators, #;, of H as a subset.
To this end decompose the generators T, a = 1,---, N, into the subset #;, i = 1,--- | N,
and X,, @« = N, +1,---, N, so the X,,’s constitute a basis of generators not included in the
unbroken subalgebra. Here N; = dim G is the number of linearly independent generators
of the Lie algebra of G and N, = dim H is its counterpart for H. Since H is itself a group,
its closure under multiplication — i.e. the statement that h, h, € H implies h hy, € H —
ensures that

titj_tjti:icijk I (C59)

with no X,,’s on the right-hand-side, or (schematically) c;j, = 0.
The X, are not contained in the algebra of H and do not themselves generate a group.
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Instead they are said to generate the space, G/H, of cosets. A coset is an equivalence
class defined to contain all of the elements of G that are related by the multiplication by
an element of H. In the applications of §C.6, the X,,’s represent those generators of the
symmetry group, G, that are spontaneously broken, and (in relativistic applications for
internal symmetries) a Goldstone mode is expected for each independent choice of «.
When the generators of G are chosen to ensure the complete antisymmetry of the ¢ z4’s
then the group property of H (summarized above as c;j, = 0) also implies c;,; = 0. This
says
[t:, X, ] = l.CiaﬁXp’ s (C60)

with no #;’s on the right-hand-side. Equivalently this states that the X,’s form a (possibly
reducible) representation of H. Once exponentiated into a statement about group multipli-
cation, the condition [, X] ~ X implies that for any h € H

hX h™' = 1P, X, (C.61)

where the coefficients, 7, (h), form a representation of H.

By contrast, the commutator [X,, X3] need not have a particularly simple form, and can
be proportional to both X,’s and #;’s. (The special case of a coset G/H for which [X,,, Xs]
does not contain any X,’s is called a symmetric space.)

C.4.2 Internal vs spacetime symmetries

Notice that the above discussion distinguishes unitary transformations (those that preserve
matrix elements) from symmetries (those unitary transformations that commute with the
hamiltonian). This notion of symmetry is adequate for internal symmetries — i.e. those
that do not act on spatial position or time, so U¢(x)U* = ¢(x) with both sides evaluated at
the same position.

A broader definition is needed for spacetime symmetries, for which the transformations
act both on the fields and the spacetime point: Ug(x)U* = $(X), with ¥ # x*. Lorentz
transformations are simple examples where this matters, since for these H generally is not
invariant, since it is part of a 4-vector: UP,U* = AY,P,, with P° = H. In this case a
symmetry is defined instead by the invariance of the action, S = f dt L, rather than of H.
For scattering problems transformations that are symmetries in this sense also commute
with the S -matrix.

The Coleman-Mandula theorem [316] provides an important constraint on the kinds of
continuous spacetime symmetries that can be present within interacting relativistic quan-
tum field theories. The Coleman-Mandula theorem states that the most general possible
non-Grassman’ transformations that commute with a (nontrivial — i.e. S # I) S -matrix are:

U = exp % W], +id"P, + i Q, (C.62)

with generators P, J,,, = —J,,, and Q.
Ten of these are no surprise in a relativistic theory: the six generators J,, satisfy the

7 This is the assumption that supersymmetric theories violate; see [474] for the generalization to this case.
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commutation relations appropriate to the Lorentz group and the four P, generate spacetime
translations and so mutually commute (and fill out the usual 4-momentum operator). The
commutation relations between J,,, and P, fill out the algebra of the Poincaré group of
Lorentz transformations and translations, making these the defining symmetries of special
relativity.?

The power of the Coleman-Mandula theorem is what it says about the remaining gener-
ators: the Q,’s. These must be internal symmetries, and although they can fail to commute
quietly amongst themselves, [Q,, Op] = ic? T, the theorem states that they must always
commute with the spacetime symmetries (i.e. the Poincaré generators): [P,, Q,] = 0 and
[Jv» Qal = 0. The theorem is proven by assuming it to be false, and then showing that the
additional conservation laws for the spacetime symmetries are so strong that they generi-
cally force the scattering matrix to be trivial: S = I.

C.4.3 Discrete symmetries

Discrete symmetries (those that are not described by continuous parameters) are also im-
portant for physics. Some of these can be internal symmetries, such as an example like
¢(x) = —¢(x), which defines a discrete Z, symmetry in field space. Such symmetries con-
strain the kinds of interactions that can arise (forbidding, in the Z; example, terms involving
odd powers of fields). Their representations can also be used to classify states (in the Z,
case states can be chosen to either change sign or be invariant under the group’s action).

Spacetime discrete symmetries are also important. These are defined to be those Poincaré
transformations that cannot be continuously deformed to the unit element. There are two
such discrete transformations within the Lorentz group. To see why, recall that the general
Lorentz transformation is defined by the condition

NN e = v - (C.63)

This condition throws up two obstructions to being able to deform A¥, to the identity
transformation. One of these arises because (C.63) implies the determinant of the matrix
A, must be 1, but only those with determinant +1 can be continuously connected to the
identity matrix. Similarly, (C.63) requires [A%| > 1 and so any matrix with A% < —1 also
cannot be continuously related to the identity matrix.

A general solution A*, to (C.63) can be written as a combination of a matrix continu-
ously connected to the identity, A*, = (e“)*, (called a ‘proper’ Lorentz transformation)
times a product of one or both of the two specific matrices

1 -1
P, = and T#, := s (C.64)
-1 1

where P (parity) acts to reflect all spatial coordinates while T (time-reversal) flips the sign
of time.

8 For theories involving only massless particles this symmetry group is sometimes a bit larger; comprising the
conformal group that also includes rescalings, x — sx*, and conformal boosts.
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These matrices show why time reversal is the lone symmetry that cannot be represented
by a unitary operator. Like for any symmetry, for Poincaré transformations the unitary
operators must furnish a representation. Denoting by U(A, a) the representation of the
Lorentz transformation A#, and spacetime translation @*, this representation in particular
means

UA1,aDU(Nr,a2) = UN 1Az, Ajaz + ay). (C.65)
Denoting the operator that represents time-reversal by 7~ this implies
TUN, )T = UTAT™",Ta), (C.66)

and so for A = I and infinitesimal a* this says 7 (iP,)7 ' = T”,iP, and so TiHT ' =
—iH and TiP7 ' = iP.

Now comes the main point. If 7~ were unitary then it would satisfy TH7 ! = —H,
which is inconsistent with H being bounded from below (as it typically is for stable sys-
tems). But if it is antiunitary then 7iH 7' = —i7 H7 !, allowing 7~ to commute with H.
For antiunitary 7~ it then follows that 7P 7 ! = —P.

A third important discrete symmetry interchanges particles with antiparticles (with mo-
menta and spins held fixed). This acts on creation and destruction operators by C a; C™! =
1. 0;, an operation called charge-conjugation. Here 7, is a phase that can differ for different
particle types. The action of charge conjugation on fields is found by applying the defini-
tion to the expansion of fields in terms of creation and annihilation operators. For example,
for a scalar field this leads to

Co(x)C™! apCle? +Ca; C‘le‘i""‘]

3
- f _4r c
\(2n)32E,
43 ) )
=1 f \/T%Ep |dp 7 + @ e 77| = neg(x), (C.67)
and so acts as complex conjugation.

The three discrete symmetries, C, P and 7, are individually symmetries of electromag-
netism, gravity and the strong interactions, but all three are separately broken by the weak
interactions. The action of each of these three symmetries on various familiar physical
quantities is summarized in Table C.1. (For A, the signs given in this table include the
phases — like 7. in (C.67) — appearing in the parity, time-reveral and charge-conjugation
transformations of the electromagnetic field.)

For relativisitic systems it turns out to be a theorem that any real and local action, § =
f d*x €, turns out to be always invariant under the combined combination of all three
symmetries: CPT (a result called the CPT theorem). There is a simple reason for this.
The action of C complex conjugates all the fields in € and the anti-unitary nature of time-
reversal complex conjugates all couplings in £, so their combined effect takes £ — £*. But
the lagrangian is hermitian so this has no effect. Time reversal and parity also together act
to reverse the sign of all components of any 4-vector, (PT)*,V” = —V#. But this also has
no effect because there are always an even number of such 4-vectors because this must be
true if £ is to be a Lorentz scalar.
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Table C.1 The transformation properties of common quantities under

parity (P), time-reversal (T') and charge-conjugation (C).

quantity P T C quantity P T C
position X - 4+ o+ momentum P - - +
spin s + - + helicity ps - + +
current j - - - charge density 7 + + -
vector potential A - - - scalar potential ~ A° + £
electric field E - + - magnetic field B + - -

C.5 Gauge interactions
. _______________________________________________________________________________|]

Consider next a collection of quantum fields, ¢, that transform under linearly realized
infinitesimal internal symmetries of the form ¢'(x) — ¢'(x) with

6¢'(x) 1= ¢'(x) — ¢'(x) = 1w (T); ¢/ (x). (C.68)

This is a global (or rigid) symmetry when the transformation parameter w“ is independent
of spacetime position.” But an important role is also played by local symmetries, for which
w® = w*(x) is a function of spacetime [475].

Since global symmetries are special cases of local ones, it is more difficult to make
a theory invariant under a local symmetry than for a global one. To see this explicitly,
consider an action for a collection of fields, ¢', where & = L(¢, d¢) is a function of both
the fields and their first derivatives. The variation of £ under (C.68) is

9L\ o o N\
" (a¢ )“" TaS 4+ (a<a ¢f>)‘9” [T ¢/] (C.69)
oL ¢ i o a i j oL a i
(8¢’ W' (T ¢/ + 76, ¢l)1¢u (Ta)' ﬂ(pl) (8(8 ¢1))16 T .

The first two terms on the right-hand side vanish whenever £ is invariant under a global
symmetry (with w?) like (C.68), but with w* spacetime independent.

Eq. (C.69) shows that even if a lagrangian is arranged to be invariant under global trans-
formations, it is not invariant under local ones, but transforms in a universal way

(a(gi;l))la W (T) =g 90" (C.70)
where ji = [02/0(8,¢) (T .) jqﬁf is the Noether current for the global symmetry, as de-
fined by eq. (4.7) in §4.1.1. The universal form of this transformation suggests a way to
build a locally invariant lagrangian. Juxtaposing the fact that (C.70) involves d,w" and
that massless spin-one particles can only be represented by a field A, if it transforms
as 0A, = 0O,w, as in eq. (C.40), suggests that a locally invariant lagrangian might be

9 The attentive reader will notice the matrix 7 used in (C.68) is the transpose of the one used in (C.51). This is
done so that the signs found in this section agree with those widely used in the literature.
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constructed by adding a new term, £; = — ¥ Aﬁ, in whose variation the transformation
0A] = 0w would cancel (C.70).

Adding €; need not be the whole story, because in general the current jj also transforms
under the transformation (C.68). This transformation can also be inferred universally since
the symmetry generators, T,, themselves are obtained by integrating j2 over all space.
Since the generators satisfy [T, T)] = ic?y Ty, the currents must transform (up to terms
that vanish when integrated over space) as

8l =i’ [Ty ji] = a0 j . (€71
This suggests modifying the transformation rule for Aj to also transform in the adjoint
representation:
6AY = 8" + ¢“pe 0’ AL (C.72)
so that 6(j5 A%) = ji,w".
To see whether this works start with a more general lagrangian density £ = £(¢, 0¢, A, 0A)

and ask whether it can be invariant under the transformations (C.68) and (C.72). The vari-
ation of € then is

- oL, a i j 0L soa i j
oQ = (07)1_)10) (T ;¢ + (W)a” i T2); 9] (C.73)

oL a a b sc oL a a b sc

+ (Jﬁ) (@,w + C pe W A,u) + (m)&, (al,a) + C pe W A“) s
and for this to vanish for arbitrary local functions w®(x) the coefficients in it of w“, d,w"
and 0,0, w" must separately vanish. The coefficient of 9,0, w" vanishes if
oL 0L
0(9,A3) A(d,A%)
which means that Aj appears differentiated in £ only through the antisymmetric combina-
tion f7, := d,A; — 0,Aj.

Changing independent variable from 9,A7 to f,, the coefficient of d,w" vanishes when

(C.74)

0¢ ;o 08 0L
——i(T) ¢+ — + 2| =" AS =0, C.75
()79 g (01””) o
To extract the implications of this condition, consider first terms in £ that do not depend on
¢' or its derivative at all. In this case (C.75) states that ¢, and Aj; can only appear together

uv
in £, though the one combination
a a a b sc a a a b pc
FW = fw, + ¢ ,,CAHAV =0,A} - &,Aﬂ + ¢ /,CA#AV. (C.76)

What is special about this quantity is that the dependence on d,w" cancels when it is
transformed using (C.72), leaving 6Fﬁy = c“bcwa;V.

Re-introducing a dependence on ¢' and trading d¢/0Ay, for (9L /0A}), (with the sub-
script indicating the derivative is taken at fixed F;, instead of fixed 9,A7 or f;,), condition

(C.75) becomes
oL . . oL\
(—a(a”¢i))1(7a)j¢ +(6AZ)F—O, (C.77)
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which implies d,¢' must always appear together with Aj, through the covariant-derivative
combination

(D) = 0,0’ =i(T) jAGe . (C.78)

As is easily verified 9w also cancels in the transformation rule 6(D,¢)" = iw*(T4)' (D).
The lesson from the d,w” term is that Aj only appears in ¢ as part of (D,,(b)i or F,, and
never on its own. Notice that the covariant derivative and field strength are related by the

following easily proven identity
[Dy. Dy)¢ = =i(Tup) F, - (C.79)
Finally, setting the coefficient of undifferentiated w® to zero gives
( L

675,.) i(7a) ¢ + (

?
i Di ¢,.)) (T (D) + [%)c”m FS, =0, (C.80)
which simply states that € should be built from ¢, (D,¢)' and F 4y in @ way that is invariant
under global transformations (for which w“ is a constant).

Here is the point: a global symmetry can be promoted to a local symmetry by intro-
ducing a new massless spin-one particle for each symmetry generator, and then building
the lagrangian out of undifferentiated fields like @', covariant derivatives like (D#qb)" , and
covariant field strengths like Fy, .

C.5.1 Higgs Mechanism

Historically, when promoting global to local symmetries the need for massless spin-one
particles was seen as a handicap. Although it worked splendidly for the massless photon
in quantum electrodynamics, the prospects for applications elsewhere seemed limited (the
phenomenon of confinement kept prevented the discovery of massless gluons until later).

The modern understanding wherein all fundamental spin-one particles, massless or not,
are gauge bosons had to await the discovery (by Brout and Englert [55], Guralnik, Hagan
and Kibble [56, 57], Higgs [58, 59] and others, building on earlier work by Anderson
[60] for non-relativistic systems) of the Higgs mechanism. This mechanism shows why the
spin-one particles can be massive, provided they are associated with local symmetries that
are spontaneously broken.

It is fundamental that systems with spontaneously broken symmetries do not have unique
ground states, because by assumption the action of U(g) on one ground state gives a differ-
ent state, |0) := U|0) # |0). But because a symmetry satisfies UH = HU the state |0) has
precisely the same energy as does |0), making it a second ‘ground’ state.

Related to this, the operators U(g) = expl[iQ], and their generators Q, are less useful
when dealing with spontaneously broken symmetries in field theories, particularly in sit-
uations where the spatial directions are infinitely large and the ground state is translation
invariant [43]. This is because in a ficld thcory Nocther’s thcorem ensures that

Q=fd3x P, (C.81)
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arises as the integral over a local current density. It follows then that the state Q|0) is not
normalizable (and so does not lie within the Fock space built apon |0)), because

1OIO)IP = (0100I0) = f & x (010 (0[0) = f x (012,°(0)(0). )

where the first equality uses Q" = Q, the second equality uses (C.81) and the last equality
uses the representation of translation symmetries to write j°(x) = ¢/7*j%(0)e ¥, together
with the translation invariance of Q and the ground state: [Q, P,] = 0 and P,|0) = 0. The
final result diverges like the volume of space because the integrand does not depend at all
on x.

Because of this it is preferable to have a more useful proxy for spontaneous symmetry
breaking than the evaluation of U(g)|0) or Q|0). The existence of a nonzero order param-
eter fills this role, by providing a simpler-to-use criterion for the non-invariance of the
vacuum. For example, imagine two ficlds that are related by a symmetry, such as if'?

Y(x) =i[Q, p(x)]. (C.83)

Then (x) is an order parameter for the symmetry generated by Q if its vacuum expectation
value (vev) is nonzero: v := (0[¥(x)[0) # 0. A nonzero vev is a proxy for spontaneous
symmetry breaking because an unbroken symmetry implies Q|0) = 0 — and its conjugate
(0]Q = 0 — and both of these arise in the right-hand side of (C.83) once its vacuum
expectation-value is taken. Since unbroken symmetry implies v = 0 it follows that nonzero
v implies the symmetry must be broken.

In order not to break any spacetime symmetries the order-parameter field must be a
Lorentz-scalar and independent of x*. To see how this works at weak couplings, where
semiclassical reasoning is valid, consider then a collection of scalar fields, ¢i=1,---,N,
which without loss of generality can be chosen to be real. Suppose the particles represented
by these fields couple to a collection of spin-one particles represented by Ay, with local
symmetry group 6¢' = iw*(7,)' ; ¢/ and 6A% = 8,w" + " A, A lagrangian density for
these particles involving only up to two derivatives is

1 . 1
= V(@) ~ 5 Ziy(Dud) (D" 9) - @yabFf;,F”“V, (C.84)

where Z;; are a collection of numerical coefficients (that can be set to ¢;; by appropriately
redefining the fields, the covariant derivative is D¢ = 0,4 — 17,A;¢ and F}, is as defined
in (C.76) with ¢y, the structure constants associated with the generators 7.

For the present purposes the important feature is to have a potential energy, V(¢), whose
minimum occurs for ¢/ # 0. This is easily arranged following the example of the toy model
of §1.1. For instance for symmetries that preserve the quantity ¢’¢ = 3 ;(¢"), the potential

V(9) = % (67617 . (C.85)

does the job. For positive real parameters 1 and v this potential is strictly non-negative and

10" Notice that commutators like 5¢(x) = i[Q, ¢(x)] are usually well-defined even if the action of Q on |0) is not.
This is because the equal-time commutators of fields are usually local, such as the canonical commutation
relations TI(x, ), p(y, 1)] = —i6>(x — y), for which the delta-function removes the otherwise diverging spatial
integration.
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vanishes for the minimizing surface ¢"¢ = v>. This does not pick a unique solution for ¢'
because it contains all configurations related by the symmetries that preserve ¢’ ¢. Each of
these provides an equally good vacuum, and all are equivalent to the extent that they are
related by symmetries.

For concreteness’ sake choose the vacuum to be the one with (¢') = v and all others
zero, and expand all quantum fields about this semi-classical vacuum expectation value:
¢' =v+¢'and ¢ = ¢ for i # 1. The leading correction to the classical limit keeps only
terms quadratic in the ¢’ and A%,

The revealing terms in this expansion are those arising within the scalar kinetic term,

1 S o . N
L = =32y D" WD, = 3 Zip (T (T AGAY +iZn( T AL + - (C.86)

The second term on the right-hand side is unusual inasmuch as it mixes scalar and vector
degrees of freedom. The good news is that it is always possible to perform a gauge trans-
formation to completely remove this term (a choice called ‘unitary gauge’). The gauge
transformation required to reach this choice absorbs one scalar degree of freedom into Aj
for each independent symmetry generator that is broken by the vacuum. It is the addition
of these new states that provides the missing longitudinal spin states required to promotes
the two spin-states of a massless spin-one particle to the three spin states of a massive one.
Once this is removed, the first term on the right-hand side is revealed as a spin-one mass
term — compare with (C.35). Canonically normalizing fields (which sets Z;; = 0;;) and
computing the particle energies at zero momentum gives the spin-one mass matrix

12, = VT TV, (C.87)

where Vi = (¢') denotes the field-vector containing the field vacuum expectation values.
The spin-one particles indeed acquire a mass when their associated gauge symmetry be-
comes spontaneously broken.

C.5.2 General relativity

A short summary of the basics of General Relativity (GR) is also appropriate here, since
gravitational interactions arise at several points within the main text. Although a proper
discussion goes well beyond the scope of this book, this section suffices to collect some of
the main formulae.

There is a strong analogy between GR and gauge theories of massless nonabelian spin-
one particles, like QCD. Both involve massless states (though the gluons of QCD, unlike
the graviton of GR, are prevented from escaping to infinity as massless states due to the
growth of the strong force with distance). Both involve nonabelian local symmetries: for
QCD these are the local S U.(3) colour transformations of the Standard Model, while for
GR these are a combination of local diffeomorphisms (and local Lorentz transformations,
when coupled to fields with spin). Both also involve nonlinear self-interactions wherein
the force carriers themselves carry charges (that is, gluons carry colour and gravitons carry
energy and momentum). This makes them unlike abelian massless spin-one particles like
photons, which do not carry electric charge.
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The basic field for GR is the spacetime metric itself: g, (x). The local symmetries in this
case correspond to local diffeomorphisms of the type ¥ — x* + &“(x), under which g,
transforms linearly, like a covariant rank-two tensor,

6g,uv = -E.fg,uv = é:/]a/lg,uv + a}l‘fﬂg/lv + av‘fﬂgu/l B (C.83)

where the right-hand side defines the Lie derivative L of the metric. Other fields, such as
scalar or vector fields, similarly transform under diffeomorphisms as their index content
suggests

8¢ = Ledp:=¢£'0,¢ and 6V, = LV, = £'9,V, + 0,V (C.89)

and so on.

Covariant derivatives and curvatures

Just like for local gauge invariance, local lagrangian densities that are invariant under these
transformations can be built by starting with a lagrangian that is invariant under a global
symmetry (in this case the spacetime symmetry of Poincaré invariance) with two provisos:
all ordinary derivatives get promoted to covariant derivatives, d, — D,,, and the gauge field
itself (in this case g,,) appears through a covariant field strength — in this case the Riemann
tensor (see below) — and its (covariant) derivatives.

The covariant derivatives appropriate for scalars and vectors transforming as in (C.89)
are

Du$:=06,6, D,V,:=0,V,-T, V), and D,V :=06,V’ +T, V', (C.90)
where the Christoffel symbol is defined by (A.7), reproduced for convenience here:
1
F\il/l = Eg#a [avgaﬂ + a/lgav - aozgv/l] . (C.91)

Here g"” denotes the inverse metric, defined by the condition g"”g,, = &,. With the above
definitions the metric is covariantly constant:

D,g,1=0=D,g". (C.92)

Notice that the definitions (C.90) ensure that covariant derivatives satisfy the usual prod-
uct rule for derivatives: e.g.

3,(VaW™) = D, (ViW?h) = (D, V)OW* + V(D WY). (C.93)
Notice also that antisymmetrized ordinary derivatives are already covariant, inasmuch as
b,V,-D,V,=9,V,-0d,V,, (C.94)

so (for example) the relation between electromagnetic field strength and vector potential
does not change in the presence of a gravitational field. It is this observation about how
Christoffel symbols cancel in antisymmetric tensors that underlies the study of differential
forms and exterior derivatives: covariant quantities that can be defined without making
reference to a metric.
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The covariant field strength containing derivatives of g,, appropriate for diffeomor-
phisms is the Riemann tensor, R*,,,, as defined by (A.6), again reproduced here:

Ry = 8,)1"’51 + 0T —(p & ). (C.95)
This definition implies the covariant version of this tensor, R,,,, = g.-R%,1,, has the
important symmetry properties R;,1p = Rigy = —Ry00 = —Ryp1 as well as the ‘Bianchi’
identities
Ruv/lp + R/Mpv + R,upv/l =0, (C.96)
and
DO'R,uV/lp + D/lvapa' + Dpr,a—/{ =0. (C97)

Finally, the Riemann tensor is related to the commutator of two covariant derivatives; a
straightforward use of the definitions implies the gravitational analog of (C.79),

[D,, D,IV* = R',,, V*. (C.98)

Generally covariant actions

A local action arises as an integral over a lagrangian density, S = f d*x €. The lagrangian
density cannot be a scalar under diffeomorphisms, however, because € must transform in
such a way as to cancel the transformation of the measure d*x. This is accomplished if
€ = /=g L where g = det(g,,) < 0 is the determinant of the metric and L is a scalar under
diffeomorphisms (i.e. transforms as a scalar field).

The appearance of /=g in the lagrangian density makes the following identity very
useful:

9, (V=g V") = D, (V=g V") = V=g D, V" (C.99)

for any 4-vector V. This shows that integrals of the form f d*x =g D, V¥ are total diver-
gences and so depend only on boundary information.

Because the Riemann tensor already involves two derivatives of the metric, it should
appear linearly in the kinetic term for the metric. Because of the symmetries there are two
types of tensors that can be built by taking traces of the Riemann tensor. The first is the
Ricci tensor, R, := R‘MV = R,,, and the second is the Ricci scalar R = g""R,,. The
Einstein-Hilbert lagrangian for gravity coupled to matter is then given by

1
=g ~5a R+ La(@.A0)| (C.100)

where x> = 871G, and L,, denotes the generally covariant action for matter fields, given (for
example) for a charged scalar field and electromagnetism by

i y * 1 v
Ly ==V(¢'0) = §"D,t" Dyd = 78"V FuuFsy. (C.101)

where D, ¢ = (0, —igA,)¢ and F,,, = 0,A, — 0,A,.
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The Einstein equation obtained from varying this action is

R”V—%Rg”V+K2T’” =0, (C.102)
where
T = \/L—_g (%) s (C.103)
and so on.

C.5.3 Spacetime symmetries reloaded

Once the metric is recognized as being a dynamical field it is worth revisiting the ideca
of a spacetime symmetry. Recall that in the bulk of this book spacetime symmetries are
regarded as those transformations

oxt = EH(x) (C.104)
that leave the Minkowski metric invariant: 6(1,, dx* dx”) = 0, or
677,uv = L{’],uv = 'fﬂa/l’],uv + C%fdmv + avfﬂn,uxl =0, (C.105)

(compare with eq. (C.88) which defines the transformation for a general metric). The gen-
eral solution to this condition led to the Poincaré group: & = a" + *,x” where a* and
Wyy = —Wyy, (With w,, = nﬂ/lw’ly) are constant parameters representing translations and
Lorentz transformations.

Generally covariant theories provide a new context for these transformations, because
for these the action is invariant under a much broader set of transformations: general diffeo-
morphisms corresponding to (C.104) and (C.88) for general g,,(x) and &“(x). Within this
new context g,, = 17, is a specific solution to the field equations and so can be regarded
as being the analog of a field expectation-value: (g, (x)) = 17, in much the same way that
the field ¢ acquires a nonzero expectation value (¢(x)) = v in the ground state of the toy
model of §1.1.

From this point of view eq. (C.105) simply identifies that subset of symmetry transfor-
mations that leaves the metric’s expectation value unchanged — that is, are not sponta-
neously broken by (g,,) = 1,,. More generally, the diffeomorphisms that leave a generic
metric unchanged are called isometries and must satisfy 6g,,, = L¢g,, = 0 and so

E' 028y + 0, gy + 0,E" 81 = Dyéy + DG, = 0, (C.106)

where the first equality follows from the definition of the covariant derivative and uses
the definition &, := g, 1&1 Any solution & to (C.106) is called a Killing vector field, and
such fields need not exist for arbitrary metrics. From this point of view (C.105) states that
Poincaré transformations are the isometries of Minkowski spacetime.

Conserved currents

These observations provide another way to identify (and count) conserved currents, at least
for gauge symmetries whose transformation parameters are spacetime-independent.
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Consider first (for simplicity) an abelian internal local symmetry that acts only on some
matter fields through a transformation rule, 6¢' = w(x)f'(¢), and on the gauge potential
0A, = 0,w. The matter action, S ,,[¢, A, ] for the fields ¢' must be invariant under the gauge
symmetry, and this makes it depend on A,, through the covariant derivative D,¢'. Invariance
means S ,, satisfies

oS .08
88, = | d'x|—= T+ —"0, =0 C.107
f x [ 360 w(x) f A0 w(x) ( )
for any field configurations ¢'(x) and A, (x) and for any symmetry parameter w(x). If this is
specialized to a solution to the ¢' field equation, &S ,,/6¢' = 0, then the first term vanishes
leaving the result!!

0= f d*x JHo,0 = - f d*x w(@9,J"), (C.108)

where the second equality performs an integration by parts (and discards the surface term),
and defines the current

. OSm
TSAL)

Since (C.108) must vanish for any w(x) it must be true that J* as defined in (C.109)
is conserved, in the sense that the ¢’ equations of motion imply 9, J* = 0. It is easy to
verify in simple examples that this definition of the current agrees with the Noether-current
derivation for internal symmetries given in §4.1.1.

The same logic also goes through for spacetime symmetries in generally covariant sys-
tems, and provides a more systematic way to count currents. In this case it is the metric, g,
that plays the role of the gauge potential, but otherwise the argument goes through identi-
cally. Consider then a matter action S ,,[¢', 8uv] that is generally covariant in the sense that
it is unchanged by some transformation d¢’ = L§¢i and 0g,,, = Leguv:

(C.109)

oS . oS
S, = | d* M LB+ n_r V]:o. C.110
f X[5¢,(x) Pt S TS (€.110)

Specializing to configurations satisfying the ¢’ equations of motion and using the defi-
nition of L¢g,, given in the first equality of (C.106) then allows (after integration by parts)
eq. (C.110) to be rewritten as

0= f d*x =g T""D,¢, = — | d*x =g & D, T, (C.111)

and so (because &, is arbitrary) the stress-energy tensor, 7/, defined by (C.103), must be
covariantly conserved, in the sense that

D, T =0. (C.112)

This definition of the conserved stress-energy has the enormous advantage that it is what
appears in the Einstein equations, (C.102), and so is precisely what gravity couples to.
For any specific metric that has an isometry, in the sense that the second equality of

1" The gauge field does not in general satisfy 68 m/0A, = 0 even for classical ficlds because S, only consists of
the matter action and does not include, for example, the Maxwell action —%F wFH.
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(C.106) is satisfied for some &,, a standard conserved current can be defined for each
isometry,

J=T"E,, (C.113)

that satisfies D, j* = 0 — as can be seen using eqgs. (C.112) and D&, + D&, = 0
(i.e. eq. (C.106)). In the special case of flat Minkowski space these are the conserved cur-
rents for Poincaré invariance, but (C.113) shows that they are all really built from one basic
quantity: the stress-energy tensor, 7.

C.6 Nonlinear realizations
]

The nonlinear realization used to implement spontaneously broken symmetries in an ef-
fective theory can be less intuitive than is the linear realization used for unbroken symme-
tries. But it is worth understanding given the widespread appearance of Goldstone bosons
throughout physics.

This appendix derives the ‘standard’ nonlinear realization for the general case of an
internal symmetry group G spontaneously broken down to a subgroup H C G. Following
steps initially taken by [12, 13] and using the notation of [107] this is done by generalizing
the arguments used for the abelian broken symmetry presented in the toy model of the main
text. Since half the art of constructing nonlinear realizations involves choosing variables
that transform conveniently, the first steps in this construction motivate the choices to be
made by describing a simple nonabelian version of the toy model.

C.6.1 A nonabelian toy model

To set up the standard transformation law, consider N real scalar fields, ¢i=1,...,N,
arranged for convenience into an N-component column vector, ®@. There is no loss of gen-
erality in using real fields, since any complex fields can be decomposed into real and imag-
inary parts.

The nonabelian toy model is defined by the lagrangian density

1
£ = ~3 0,070 - V(D), (C.114)

where the superscript “T” denotes the transpose, and where V(®) is a potential whose de-
tailed form is not important in what follows. The lagrangian’s kinetic term is manifestly
invariant under the O(N) group (N X N orthogonal matrices, O" O = 1) of global rotations:
® — O®, where the O’s are independent of spacetime position, 9,0 = 0. Because the
fields are chosen to be real all generators of these symmetries are simultaneously hermi-
tian, imaginary and antisymmetric: T; =T,=-T) =-T,.

In general the potential V(®) need not also be O(N)-invariant, but it is assumed to pre-
serve a subgroup G € O(N), in the sense that

V(g®) = V(®) forall g € G andall ®. (C.115)
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The potential V is assumed to be satisfy two properties. First, its parameters are assumed
to be chosen to allow a weak-coupling semiclassical treatment of the model’s predictions.
Second, it is assumed to be minimized at field values (®) # 0, for which the symmetry
group G is generically spontaneously broken to a subgroup H C G defined by: h{®) = (D),
for all h € H. It is convenient to choose generators, #;, of H as part of the basis of the Lie
algebra of G, writing {T,} = {t;, X, } where T, are a basis of generators of the algebra of G
while X,, are the broken generators of the coset G/H (for more about the nomenclature see
§C.4.1).

A choice of variables

The idea is to identify the Goldstone and non-Goldstone degrees of freedom in this model
and to identify how these each realize the model’s symmetries. Within a semiclassical
framework this involves sorting the fields ® = {¢'} into a set of Goldstone modes, = = {£7},
plus an orthogonal set of remaining physical fields, X = {y"}.

As usual, Goldstone modes are obtained by performing symmetry transformations on
the ground state, and for infinitesimal transformations this corresponds to the directions
X, (®) in ficld space. That is, the components of @ in this direction, (®)" X, ®, are the
ones that create and destroy Goldstone particles. It is straightforward to verify that the G-
invariance of the potential ensures the masslessness of these modes in the semiclassical
approximation. This gives precisely one Goldstone mode for each generator of G/H.

Experience with the abelian symmetries of the toy model of §1.1 suggests that the vari-
ables (®)" X, ® need not be the most efficient for making Goldstone properties manifest,
however. In particular, the low-energy decoupling of Goldstone modes are most manifest
if the freedom to redefine fields is used to arrange that they do not appear at all in the scalar
potential. This is most easily arranged by writing

O=U®X, (C.116)
where
U(é) = explié™(0)X,], (C.117)

is a spacetime-dependent symmetry transformation in the direction of the broken gener-
ators, X,. Since U(¢) is an element of G, this definition ensures the &% drop out of the
scalar potential because G-invariance requires the potential must satisfy V(UX) = V(X).
Consequently all terms in ¥ involving the Goldstone bosons, &%, vanish when 9,4 = 0,
and eq. (C.116) is the change of variables that makes low-energy properties of Goldstone
bosons most manifest.

In order for eq. (C.116) not to over-count the N original fields in @ the variables X must
satisfy a constraint that keeps them orthogonal (in field space) to the Goldstone directions,
such as:

(DY X, X =0, for all X, (C.118)

everywhere in spacetime. As a reality check, notice that this constraint ensures the vanish-
ing of the cross terms, proportional to 9,73 ¢", in the quadratic part of the expansion of
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the kinetic terms about the ground state configuration: X = (®) + X. (Proving this uses the
identity (O)" X,(®) = 0, that is a consequence of the antisymmetry of the X,,’s.) It can be
shown [107] that it is always possible to change to variables satisfying (C.118) from any
original smooth configuration for @.

C.6.2 The Nonlinear Realization

The next step asks how the variables £ and y” transform under the group G given the
simple linear representation of G carried by @,

O - D= g where g =explinT,] €G. (C.119)

This leads to the standard transformation rules widely used when studying Goldstone boson
properties.

The transformation rule implied for the new variables, £* — & and y" — %", is found
by writing ® = U(¢)X and o= U(E))? in (C.119), and so

gUOX = UDKX, (C.120)
for any g € G.
The standard nonlinear transformation law therefore becomes:
E-8Eg  and X' - FE g, (C.121)
where
g &N = X gt and X = e X (C.122)

The first of egs. (C.122) should be read as defining the nonlinear functions &%(¢, g) and
u'(&,g). One first finds the element, g X € G, and then defines the functions & and
u' by decomposing this matrix into the product of a factor, X, lying in G/H times an
element, ¢, in H. The second of eqs. (C.122) then defines the transformation rule for the
non-Goldstone fields, y".

These transformation laws are generically nonlinear in the Goldstone fields, &*. They
nonetheless realize the symmetry group G in that £(6, g1g2) = E(&(&, g2). 1), as can be
verified using the definitions of eqs. (C.122) or by noticing that this property is inherited
from the original linear representation of G on .

The transformations (C.121) and (C.122) remain linear in the special case where g = h
lies in the unbroken sector H. In this case, the solution for ' and 50 are easily seen to
be: ¢! = hand U = hUh™" since in this case hU = Ue™’, as required. Both y" and &
therefore transform linearly under the unbroken symmetry transformations of H, with:

E7Xo = EXy = WEX ) = £ X
X— X=hX, (C.123)
where the last equality in the first line uses (C.61).
It is harder to be equally explicit for general g € G/H, but closed forms are possible for

infinitesimal transformations, g = 1 +iw*X, + - - -, if one works with a basis of generators
that satisfy (C.55). In this case writing y = 1 + it//(£, w)t; + -+, and U(€) = U©)[1 +
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iAY(€, w)X, + ---] and using (C.122) implies u'(¢, ) and A%(&, w) are given (at linear
order in w*) explicitly by:

Aq = Tr[Xoee ¥ (- X)e | = wo = Capy0P7 + O €, (C.124)
and
u; = Tr [z,-e-if'X (w- X)eis‘X] % —Cigp P + O(W &) . (C.125)

These expressions liberally use the conventional choices Tr (X, Xg) = 945, Tr (tit;)) = 0;;
and Tr (#;,X,) = O for the basis of generators of the Lie algbra of G.

In particular, the transformation rules for the £ under broken symmetries implied by
(C.124) are

6EY = W — SE +0wé). (C.120)

This transformation rule is both inhomogeneous (i.e. includes a shift) and acts nonlinearly
on the fields £*. Inhomogeneous transformations are characteristic of Goldstone bosons
because shifts show that a symmetry necessarily changes the vacuum (it changes because
the vev of the Goldstone boson field — i.e. the relevant order parameter — changes). It is
the shift component of the symmetry that precludes £* from appearing undifferentiated in
the lagrangian and so enforces the low-energy decoupling of Goldstone states. The non-
linearity allows low-energy interactions to arise involving two derivatives; fewer than are
possible in the abelian case studied in the toy model of §1.1.

C.6.3 Invariant Lagrangians

The transformation rules allow the construction of G-invariant Lagrangians built directly
using the é* and y” fields. The main complication arises from the construction of the kinetic
terms, since the nonlinearity of the transformation rules for the fields makes them more like
local than global transformations due to the spacetime-dependence of the fields.

Connections and vielbeins

The toy model provides insight into how to construct G-invariant lagrangians. The kinetic
term of the toy model is proportional to d,®"0"® and so is manifestly G invariant. This
must remain so after performing the change of variables to ¢* and X”, and it is instructive
to see how this comes about.

To this end notice that the replacement ® = U(¢)X implies 9,0 = U(9,X + U _18,1 UX).
This suggests defining the combination

D,X=3,X+U"'9,UX, (C.127)

as a covariant derivative for X. Applying the transformations (C.121) and (C.122) to this
shows that it transforms covariantly: 9,X — hD,X, where h := €' Tt does so because
U~'9,U transforms like a gauge potential:

U'0,U - 09,0 = U "9,U)h" —(9,hh". (C.128)
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More information emerges if U~'8,U is separated into a piece proportional to X,, plus
one proportional to #; since the inhomogeneous term, (0ﬂh)h_l, is purely proportional to #;.
Defining A, and e by

U™'9,U = —iA 1 + i€ X, (C.129)
eq. (C.128) implies each of ?IL(f) and €;;(¢) have separate transformation rules,
At - AE) =h [AE] h™ —igh b,
and €, (§)X, — eﬁ(S)XQ =h[e;(©)X.] h!. (C.130)

The quantity ﬂL therefore transforms as if it were a gauge potential for local H trans-
formations. To see this more explicitly, for infinitesimal ¢ ~ 1 + iw* X, and h(¢,g) ~
1 +iu'(¢, w) t; the above definitions give (compare with!? eq. (C.72))

SALE) = i (€, w) — ¢l (€, W) ALE), (C.131)
for structure constants ¢ purely within the Lie algebra of H.
Similarly, efj(f) transforms covariantly under the transformations, with
8e%(&) = —c"pul (¢, w) (). (C.132)

In this last expression, the structure constants define representation matrices, (7:)%g = ic%p.
More explicit formulae for ﬂf, and ¢;; can be found by first extracting the overall factor
of 8,£% — so that A!, = A(£) 9,£" and e = e*4(&) 8,8, Then the useful identity'

1 1
e A ATB) = 1 4 f ds e AR MAE = 1 4§ f ds e B + O(B?)  (C.133)
0 0

for square matrices A and B leads to the following expressions
A& = - fo 1 ds Tr[fe XX, 6] %c"aﬁgﬁ + 0, (C.134)
and
e4(&) = fo 1 ds Tr[X"e X Xl €] 57 — % 5 +0E), (C.135)

where the approximate equalities expand in powers of &%.

In the same way that .?[fy is used to build G-covariant derivatives like D,X, the n-bein
e“s can also be used to build G-invariant self-interactions for the £%. To see how, notice that
the covariant quantity, e;; = % 9,E°, transforms very simply under G: e,-X — h(e,-X)h™!.
Its covariant derivative is constructed from A #;:

(Dye,)" = ,e8 + ¢ p A, &, (C.136)
which transforms in the same way as does eﬁ 10(D,e)* = —c“,-ﬁu’(Z)ﬂeV)B.
12 The sign mismatch between these equations is to do with representing the group using generators that are the

transpose of those used for matter in (C.72) (regarding which, see also footnote ¥ after eq. (C.68)).
13 This identity is derived by setting up and solving a first-order differential equation for U(s) := ¢™54¢8A+5),
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The most general G-invariant lagrangian then is £(e,, D,e,, . ..), where the ellipses de-
note terms involving higher covariant derivatives and the lagrangian is constrained to be
globally H invariant:

L(he i hDe h™t, . ) = Qe Dyey. ). (C.137)

Whenever € satisfies (C.137) for constant &, the definitions of %4 and Al ensure it is also
automatically invariant under global G transformations of the form of egs. (C.121) and
(C.122).

For a Poincaré invariant system, the term involving the fewest derivatives found in this
way is

1 1
Lon == 5 Jop "™ €3 &) = =5 80p) ' E° 0, (C.138)

where the second equality defines the target-space metric g.z := fys eyae‘sﬁ. Here global
H-invariance requires the constant positive-definite matrix f,3 must satisfy

fapclia + faac'ip = 0. (C.139)

Eq. (C.139) can be solved fairly generally. To see how recall the discussion around
(C.61), where it is pointed out that the matrices X,, fill out a linear representation of the
unbroken subgroup H with representation matrices given by (7;:)%s = ¢ ;5. In terms of these
matrices (C.139) states that the commutators, [75, f] vanish in this representation, for all
of the generators, 77, in the Lie algebra of H. If this representation of H is irreducible then,
by Schur’s lemma, this implies f,3 must be proportional to the unit matrix, with positive
coefficient: foz = F 26043. Otherwise, if this representation can be reduced into n irreducible
blocks, then f,z need only be block-diagonal, with each diagonal element proportional to
a unit matrix:

F%d(llﬁl
Jop = . (C.140)
F 36a/nﬁn

for n independent positive constants, F2.

A similar construction gives the action for the X fields (and for any other fields that
happen to be present at low energies). Because the symmetry H is unbroken, these fields
all transform linearly under H: X — hX, where the constant matrices {4} form a (possibly
reducible) representation of H.

In this case the general coupling of these fields to the Goldstone bosons again starts
with an arbitrary, globally H-invariant lagrangian: (X, 9,X,...) = L(hX, ho,X,...), for
constant & € H. This lagrangian is automatically promoted to become G-invariant by ap-
propriately coupling the Goldstone bosons.

The promotion to G invariance proceeds by assigning to y the nonlinear G-transformation
rule: X — hX, where h = h(¢£,g) = "' € H is the field-dependent H matrix which
is defined by the nonlinear realization, eq. (C.122). An arbitrary globally H-invariant X-
lagrangian then becomes G invariant if all derivatives are replaced by the £-dependent
covariant derivative: 8,X — D,X = d,X — iA1;X since this ensures D,X — hD, X and
so transforms covariantly under G transformations.
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Combining all of the above constructions, a general G-invariant lagrangian has the form
Ley, X, Dyey, D, X, . ..), provided only that £ is constrained to be invariant under global
H transformations:

Lhe i h X, hDye i h DX, .. ) = e, X, Dye,, DX, .. ). (C.141)

In summary, the general statement for nonlinear realizations is this: when a global inter-
nal symmetry group G is broken to a subgroup H then the low-energy action is found by
constructing the most general H-invariant local lagrangian built from the low-energy field
content. This lagrangian is then ‘for free’ promoted to be G-invariant by coupling the Gold-
stone bosons in the way dictated by replacing ordinary derivative by covariant derivatives,
0, X = D, X and 9 el — Dyel.

Uniqueness

Although the above construction defines a G-invariant local lagrangian for the fields &*
and X, is this the most general way such an action can be built? This section closes with a
proof of uniqueness for the construction.

To prove uniqueness assume the existence of a general lagrangian density of the form,
L&, 0,¢, X, 0,X), involving the fields &%, x” and their derivatives. (The extension to la-
grangians depending on second and higher derivatives is straightforward.) It is actually
more convenient to trade the dependence of € on 0, for a dependence on the combina-
tions e = e"4(£) 9,£8 and ﬂL = A (&) 9,£°. There is no loss of generality in doing S0,
since any function of £ and ,¢ can always be written as a function of ¢, ey and Aj,. This
equivalence is most easily seen in terms of the matrix variable U(¢) = ¢/ since any func-
tion of & and d,¢ can equally well be written as a function of U and 9, U, or equivalently
as a function of U and U~'9,U. But expression (C.129) shows that an arbitrary function
of U 'laﬂU is equivalent to a general function of e and ﬂL.

The condition that a general function, £(&¢, eff, ﬂj,, X>0,.x), be invariant with respect to
G transformations then is

0L BE oL

s = & i i n X' =0. 142
aga SE” + 5e+aﬂl O, + 5 O+ FOx o o =0 (C.142)

To see what this means, first specialize to the special case where the symmetry transforma-
tion lies in H: g = ¢ € H by using in eq. (C.142), the transformations:
6§a = —Ca,'/g)]i.fﬁ, 6e:f = —Ca,'/ﬂ]ieﬁ, 63{;1 = —Cijkl]iﬂlli,
and &Y =i ()", 80,x" = in' (t:0,x)". (C.143)
Requiring 6¢ = 0 for all possible transformation parameters, ni , then implies
oL 0L

i ok
- e + tﬁ wt -y A, -
o 6?({,

( )ﬂ

0L . 0
o 6((9 )l(t,ﬁ”/\/) =0, (C.144)

which simply states that £ must be an H-invariant function of its arguments for global
linear H transformations.
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Next consider transformations that are not in H, g = é“X ¢ G/H, instead evaluate
eq. (C.142) using the transformations

6 = §“ﬁwﬁ, 6eff = —ca,ﬁuieﬁ, &ﬂL = i)#ui - cijkuiﬂz,
and Sy = il ()" 60" = iui(t,-ﬁﬂ)()" s (C.145)
where &% = £7,(¢)of and u' = u(£)w" are the nonlinear functions of & defined by
eq. (C.122), or (C.125) and (C.126). Using these in eq. (C.142), and simplifying the re-
sulting expression using eq. (C.144), leads to the remaining condition for G invariance:

0L , 0L A b U
9 (5 "5t Caiy”};fy) + @ Oy + RERG) 10,1y(tix)" = 0. (C.146)

To see what this means, first specialize to £&* = 0, in which case ('),,u[’; = c“)au[’; 0"
vanishes. Then since eq. (C.126) implies £%4(¢ = 0) = 6g, it follows that

0L

aev

But since the group transformation law for &% is inhomogeneous, it is always possible to

perform a symmetry transformation to ensure that £* = 0 for any point within G/H, and
so eq. (C.147) also implies the more general result

0L

aev

The rest of the information contained in eq. (C.146) is extracted by simplifying using

0L/0&* = 0. This leads to

=0. (C.147)
£=0

=0 forallé&® e G/H. (C.148)

0L 0L i

(')_ﬂ; + a(a—#)(") l(tiX)” ayu;; =0, (Cl49)
which states that the two variables, ?IL and d,x", can only appear in £ through the one
combination: (Dyx)" = dx" — iA,(1x)". That is, X can appear differentiated in £ only
through the covariant derivative, D, X.

We see from these arguments that the G-invariance of £ is equivalent to the statement
that £ must be an H-invariant function constructed from the covariantly-transforming vari-
ables ey, X and O, X. If higher derivatives of ¢ had been considered, then the vanishing
of the terms in 8¢ that are proportional to more than one derivative of «' would similarly
imply that derivatives of e;; must also only appear through its covariant derivative, (De,),
defined by eq. (C.136).

Since these are the constructions for invariant lagrangians used in earlier sections, this
earlier construction must be unique.

C.7 LSZ reduction and bound-state energies
|

In §12.2.4 of the main text conclusions are drawn about the size of particular contribu-
tions to bound-state energies for positronium. These conclusions are drawn using Feynman
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rules for a correlation function (7' [‘-Fl.*1 (x1) (I)j2 (x2) Wi, (x3) @;,(x4)]), and this section of the
appendix aims to fill in some of the missing steps that relate the correlation function to
bound-state energies.

The main observation is this: the Fourier transform of a time-ordered vacuum correlation
function of a field operator has poles at the positions of the energies of states that can be
created from the vacuum by the operator in question. To see how this works, consider the
vacuum time-ordered correlation function for any local field operator O(x):

1
(2n)?

iG(w, q) = f d*x (QIT[00) O (x)]|Q) e Hiax (C.150)

Imagine evaluating this by inserting a complete set of momentum eigenstates:

. d*k
iG(w, q) = f dtx 9% Z f Py [®(x°) (QIO)IN(k)) (N(K)|O"(x)I2)
N

+0(=x") (QIO" (WIN(K)) (N (k)IO(O)IQ>]

. &’k
= f d*x el‘”z f Gy O (QIO)NK)) (NK)|O* (X)), (C.151)
N

where N contains all other labels besides momentum and ®(«) = {0 if u < 0 and 1 if u > 0}
is the usual Heaviside step function. The last equality assumes O(x) carries a conserved
charge and the quantum numbers are such that it is (N(K)|O*(x)|Q2) that is nonzero (and
so (QO*(x)|N(K)) vanishes). Spacetime translation invariance implies (N(K)|O*(x)|Q2) =
(N(K)|O*(0)|Q) e~ ¥ and so

5 [Qro0N @)
Ey(q) —w+ie ’
(C.152)
where ¢ = (w, q) and K = [E,(k), k], and the Fourier representation of ®(u) is used:

O) = fd—w (;) e, (C.153)

2 \w +ie

3
iGlw.q) =) f % |00 V)| f dhx O(x0) ek —
N

N

For the present purposes what is important about (C.152) is the pole it reveals at w =
E,(q) + ie. This argument as applied to many-field correlation functions is related to the
‘Lehmann-Symanzik-Zimmermann’ (LSZ) reduction formula [324], which further argues
that the residue at these poles gives S -matrix elements for transitions amongst states cor-
responding to the fields involved in the correlation function.

Notice that nothing in the above derivation assumes O(x) is a particular ‘elementary’
field for particle type N; any operator for which (Q|O(0)|N(k)) is nonzero — usually called
an ‘interpolating field’ for N — will do. In particular, for applications to two-body bound
states it is usually convenient to focus on interpolating fields that are bilinears of the ‘fun-
damental’ fields:

O(x1,x2) = P(x1) D(xz), (C.154)

and choose equal times, x‘l) = x(z) =: x%, so that O(x;, x2) = O(x°,x X) where X is the
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centre-of-mass coordinate for x; and x, while x = X; — X5 is the relative separation. In this
case the starting point for the above argument would be the correlation function

iG(w, q) = f dxd3x EX (QIT[0(0, 0;0) 0" (x°, x; X)||Q) e ¥ +19%  (C.155)

1
(2m)°
rather than (C.150), where the integration over X has the effect of projecting onto zero
centre-of-mass momentum.

In practice the above correlation function is computed by perturbing about an approxi-
mate solution for the bound state, in which case it is useful to write the near-pole behaviour
as
R, @)

Glw.q) = —=
N

(C.156)

where R(w, q) = (QO(0)|N(q)) has no pole at w = &y, and expand E, = &, + 6E, and
R(w, q) = R(q) + 6R(w, q). Then

[R(@) + 6R(w, q)
w— &y —O0E,
2 * c S D *
_R@P | R@0R@.0) + RQIR @0 | R@ . R@

N )
w— &y w— &y w— &y w— &y

G(w,q) = (C.157)

which shows that the leading corrections to 0E, can be read off by amputating the two
external bound-state propagators — that is to say, by multiplying by a factor of (w — &,)/R
and its complex conjugate — and evaluating the result at w = &,. In the non-relativistic
applications of Chapter 12 this amounts to evaluating the amputated graph and taking the
expectation value of the result using the zeroeth-order (Schrodinger-Coulomb) wavefunc-
tion.



Appendix D Further reading

This book touches only briefly on each of the applications of effective field theories (EFTS)
throughout physics in order to emphasize the great generality of EFT techniques. But this
also means that many readers are likely to be dissatisfied with the level of detail used to
describe each application. This section aims to help with this by providing some further
reading for those interested in quenching a more fundamental thirst for knowledge in each
of the areas touched.

The bibliography given here is not meant to be an exhaustive survey of the literature,
about parts of which I am sure I am relatively poorly informed (and I apologize in advance
for any gems I may have missed). Instead I list references that [ have found useful myself,
and include review articles to which the reader should go for more detailed referencing in
each area.

Many of these papers (at least those published since the development of the World-Wide
Web in the early 1990s) are available for free online. In particular, references like

[arXiv:hep-ph/9708416] or [arXiv : 1704.02751]
are shorthands (respectively) for the links:

https://arxiv.org/abs/hep-ph/9708416
or https://arxiv.org/abs/1704.02751.

D.1 Quantum field theory
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The main prerequisite for reading this book is an understanding of quantum field theory
(QFT). At face value QFT is only a convenient formalism for handing many-particle quan-
tum mechanics, including in particular processes like emission and absorption, that change
the number of particles. But it is also the ubiquitous language of physics, since it makes it
simple to bake in basic properties like unitarity and cluster decomposition from the get-go
when trying to guess a system’s dynamics. QFT is particularly useful for relativistic ap-
plications because it is a basic fact of relativistic quantum mechanics that all interactions
involve components that change the number of particles (due to the inevitable presence of
antiparticles).

For this reason the appendices are largely devoted to providing a very brief summary of
the basic facts of quantum field theory. Inevitably an interested reader will want more, and
here are a few suggestions for further reading (organized roughly by topics).
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There are very many good textbooks on quantum field theory, not all of which can be
named here. Some useful textbooks on general-purpose relativistic quantum field theory
that I have used are:

e “An Introduction to Quantum Field Theory,” by M. Peskin and D. Schroeder, Westview,
1995. An excellent and readable book on field theory (though with an unfortunate
choice of metric conventions). The first 4 chapters of the book give all required back-
ground preparation for this book, and the remaining chapters give the tools needed
to take the material presented in this book to the next level (renormalization, higher
order effects, and a more solid theoretical foundation).

e “The Quantum Theory of Fields, I-III”, by S. Weinberg, Cambridge Press, 2000. An
original and encyclopedic presentation of quantum field theory from one of the mas-
ters who helped systematize much of it. In particular Volume I addresses many of the
foundational arguments that underpin quantum field theory, while volumes II and III
are more dedicated to applications. Most of the field theoretical arguments alluded to
in this book are laid out in detail here. You will learn something new every time you
read it, probably for the rest of your life. But it is likely not as good for novices as is
an introductory text like Peskin and Schroeder’s book.

e “Quantum Field Theory in a Nutshell,” by A. Zee, Princeton Press 2010. This book fits
into a special niche in that its emphasis is more on concepts and less on calculational
tools. Not a bad place for a learner to start, but probably also not enough in itself for
someone seeking a practical hands-on calculational ability.

e “Quantum Field Theory,” by L. Ryder, Cambridge Press, 1996 (2°nd ed). An older and
somewhat more introductory text on field theory, providing more than enough back-
ground material to understand this book.

e “Quantum Field Theory,” by L. Brown, Cambridge Press, 1994. A clear introduction
to quantum field theory with an interestingly novel choice of topics, that gives an
extremely solid underpinning (though does not cover nonabelian gauge theories).

e “Quantum Field Theory”, by G. Sterman, Cambridge Press, 1993. A clear and system-
atic exposition of modern field theoretic techniques which includes a number of topics
(like infrared divergences and factorization) not covered in other texts.

e For detailed (but advanced and somewhat more mathematical) discussions of C,P, and T
symmetries, the spin-statistics theorem, and related topics, try “PCT, Spin and Statis-
tics, and All That,” by A. Wightman and R. Streater, Princeton University Press, 2000.

Other books that are more aimed at particle physics are also listed below in the section
devoted to the Standard Model. Many of these books (and those mentioned later), particu-
larly Weinberg’s, advocate an effective field theory point of view though this is usually not
their main focus.
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D.2 EFT framework

In this book Part I develops the main EFT formalism used throughout the rest of the text.
The main logic explored throughout the entire EFT program is largely laid out in the paper
entitled:

e “Phenomenological Lagrangians” [Physica A 96 (1979) 327] by Steven Weinberg [2].
This paper has held up remarkably well to the passage of time and remains worth
reading as a statement of purpose for those taking up the subject anew.

A book with similar goals to the one you are reading, whose scope directly aims at EFT
methods (but with a complementary choice of topics) is:

o “Effective Field Theories” by Alexei Petrov and Andrew Blechman, World Scientific,
2015. This book aims more directly at high-energy physics and non-relativistic ap-
plications like NRQED and eftective theories of gravity than the one you are now
reading.

Quantum actions

The framework of generating functionals goes back into the mists of time in the mid-
twentieth century when quantum field theory was relatively young. The specific use of
the 1PI quantum action (often in the old days also called an ‘effective action’ though this
term is now normally reserved for the Wilson action) came in the mid-1960s, where it was
introduced within perturbation theory as the formal sum over 1PI graphs [5]. The non-
perturbative definition used here came a bit later in [15].

In retrospect, much of the formalism of field theory used today was systematized in the
1960s. A comprehensive one-stop-shopping source for much of these developments is:

e “The Quantum Theory of Fields, vol I”’, by Steven Weinberg, Cambridge Press, 2000.
This book (already mentioned above) authoritatively lays out the foundations of quan-
tum field theory, straight from the proverbial horse’s mouth. Unlike most books on
quantum field theory, this book (‘Vol-I’, for short) does not start off assuming quan-
tum field theory is the right subject to study. The goal instead is to study what it means
for quantum mechanics to be consistent with special relativity (Poincaré-invariance),
and Vol-I systematically makes the case that this is quantum field theory.

o “Aspects of Symmetry”, by Sidney Coleman, Cambridge Press 2010. This is a collection
of lectures given by Sidney Coleman over the years at the summer school in Erice
in Sicily. All of these are well-known as masterful expositions of different topics in
field theory, and include a very clear explanation of the generators W[J] and I'[¢] of
connected and 1PI correlation functions.

o “What is quantum field theory, and what did we think it is?”, also by Steven Weinberg [a
contribution to the proceedings of the conference Conceptual foundations of quantum
field theory, Boston 1996, p 241-251 [408]), also available online at hep-th/9702027].
This is less of a ‘shut up and calculate’ description of quantum field theory, and more
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of a retrospective view of what quantum field theory is and how this has changed
over the years. In particular it provides a chatty and easy to read summary of the
modern picture wherein quantum field theory is what emerges when you combine
special relativity, quantum mechanics and ‘cluster decomposition’ (the principle that
probabilities for independent events widely separated in space must factorize).

This last article explicitly enunciates the basic modern point of view: quantum field theory
in itself has very little content, in that the most general field theory consistent with the
analyticity properties of scattering amplitudes is the same as the most general physics that
is consistent with these properties (subject to a few motherhood principles like conserva-
tion of probability (i.e. unitarity) and cluster decomposition). Although largely taken for
granted now, this was controversial in the 1960s when it was felt that quantum field theory
could not describe the strong interactions. This led to a program that based itself only on
the analytic properties of the S -matrix, a summary of which can be found in the review

e “Regge Poles and S-matrix Theory,” by Steven Frautschi, New York: W. A. Benjamin,
Inc., 1963,

and which has echoes in more recent lines of research [476].

The formalism of coarse-graining short distances and the related renormalization group
also has a long history. It starts off with the study of renormalization and scaling in particle
physics (and QED in particular) in the early 1950s [477, 478]. A big improvement in gen-
erality came with more explicit formulations of how to split low- and high-energy degrees
of freedom (coarse-graining) in the 1960s and early 70s, starting within condensed-matter
physics [479, 480, 481] and moving from there back to particle physics [139, 140]. Exten-
sive reviews of these developments can be found in

e “The Renormalization group and the epsilon expansion” by Ken Wilson [Physics Re-
ports 12 (1974) 75] provides an excellent contemporary survey of these techniques
by an inventor.

e “Field Theory, the Renormalization Group and Critical Phenomena” by Daniel Amit,
World Scientific 1984. This book aims more at condensed matter applications of
renormalization methods, and later editions (with Victor Martin-Mayor) also include
discussions of strong-coupling, lattice models and numerical methods.

e “Why The Renormalization Group Is A Good Thing”, published in Asymptotic Realms
Of Physics, 1-19 Cambridge 1981 [40]. This is a contribution to the proceedings of
the festschrift for Francis Low by Steven Weinberg, clearly summarizing some of the
history and ideas. (A bonus is the statement found in this article of the Three Laws of
Theoretical Physics.)

Later progress in formulating and using coarse-grained techniques starts with Polchin-
ski’s formulation of the exact renormalization group [25], and continuing with later refine-
ments [26, 27, 482]. In the meantime parallel developments separately begin to apply EFT
ideas to more and more areas of physics (aspects of which are largely the subject of this
book and so are described below).
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Much of the discussion in this chapter is based on the presentation given in some review
lectures on effective theories

e “Introduction to Effective Field Theory,” by C.P. Burgess [Annual Reviews of Nuclear
& Particle Science 57 (2007) 329, arXiv:hep-th/0701053]. These are my own lectures
and so not surprisingly they overlap in their layout with what is found in this book,
including the development of the 1LPI action and the use of the toy model as a useful
vehicle for illustrating more general features.

e “Five lectures on effective field theory” by David B Kaplan [arXiv:nucl-th/0510023],
which is a very clear survey that sets up the framework quite broadly and then narrows
in to applications more focussed on nuclear and non-relativistic physics. In particular
the discussion of scaling given here is largely as presented in these lectures.

Power counting

Chapter 3 deals with power-counting with effective lagrangians, using dimensional analy-
sis to estimate the dependence of generic Feynman graphs in terms of the scales appearing
in the couplings of the effective theory. The arguments made parallel the power-counting
arguments used when deciding the superficial degree of divergence of Feynman graphs,
such as when proving the renormalizability of a field theory (like QED) [127, 483]. The
dimensional analysis likely comes across as cavalier inasmuch as the relevant graphs re-
ally give multidimensional integrals and one might worry whether their behaviour is well-
captured by naive one-dimensional estimates. As usual, Weinberg’s textbook (Vol-I ibid)
is an invaluable — though fairly compact — resource for these arguments.

The justification for these arguments ultimately rely on Weinberg’s theorem [484], which
underpins the proofs of renormalizability, and clarify why naive arguments properly cap-
ture the multidimensional complications. An authoritative summary of the issues, with
historical commentary, can be found in Vol I of Weinberg’s ‘Quantum Field Theory’ tril-
ogy, cited above. A more recent (though also not that recent) and exhaustive treatment can
also be found in

e “Renormalization” by John Collins, Cambridge Press, 1984. This book provides a very
detailed treatment of renormalization in the post-dimensional regularization age.

The spirit of power-counting from an EFT framework is already in the “Phenomeno-
logical Lagrangians” paper cited above [2], though I follow in this book the notation and
presentation outlined in my own review [24].

The ‘method of regions’ is a very useful technique for identifying how different scales
can enter a calculation when using dimensional regularization. This is described in some
detail in the book

e “Introduction to Soft-Collinear Effective Theory” by Thomas Becher, Alessandro Brog-
gio and Andrea Ferroglia, (Springer, 2015). More generally this book is a useful hand-
book for techniques that arise when using dimensional regularization within an EFT
analysis.
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Symmetries

For some reason physicists tend to pick up much of their group theory on the streets.
Two very useful introductions to the theory of Lie groups for physicists, and a very useful
reference with extensive tables, are

e “Lie Algebras in Particle Physics,” by H. Georgi, Perseus, 1999 (2nd ed). This is a very
thorough treatment of group theory for particle physics, essential for those who find
Appendix C.4.1 either too telegraphic or incomplete.

e “Semi-Simple Lie Algebras and Their Representations”, by R. N. Cahn, Benjamin-
Cummings, 1984. This book picks up where the previous suggestion leaves off, pre-
senting more of the properties of groups and their representations.

e “Group Theory For Unified Model Building”, R. Slansky, Physics Reports 79 (1981)
1-128. This provides a very useful summary of the properties of the representations
of Lie groups, including detailed tables showing how representations decompose in
terms of representations of subgroups.

The development of the theory of nonlinear realizations starts with the nonlinear sigma
model for pion physics [11], which was then generalized to general groups in the standard
form used today in [12, 13].

An in-depth discussion of nonlinear realizations and their historical development, as well
as a systematic derivation of anomalies both from the point of view of triangle diagrams and
of path-integral measure, including also the Wess-Zumino consistency relations [485, 486]
and their solution using descent equations [487], is given in

e “The Quantum Theory of Fields, vol II”’, by Steven Weinberg, Cambridge Press, 2000.
This, the second volume of the Quantum Theory of Fields trilogy (‘Vol-II’ for short)
picks up where Vol-I leaves off, touching on most of the higher topics of quantum
field theory. Besides detailed derivations this book has many historical commentaries
from one of the central participants of the time.

A summary of consistency conditions and the descent equations that emphasizes more
geometrical methods is given in the review by Bruno Zumino in “Relativity, Groups and
Topology II"”, edited by B.S. de Witt and R. Stora (Elsevier, Amsterdam, 1984).

Time-dependent backgrounds

The power of making low-energy arguments and the relative simplicity of the low-energy
limit in quantum mechanics has been known for a long time, going back to the Born-
Oppenheimer approximation [313]. Effective theories were first systematically developed
for field theories with applications to particle scattering in mind [48] (though a parallel
line of development was also underway in condensed matter physics [404]). Because time-
dependent backgrounds often do not arise in these applications work to develop a for-
malism for describing classical time evolution within a Wilsonian effective theory was
historically not a priority.

The beginnings of precision cosmology with the measurement of primordial fluctuations
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[488] provided a big incentive for having controlled low-energy approximations in time-
dependent environments, and most developments trace back to this. (See the discussion
below about Chapter 10 for more references to the cosmology literature.) More recently the
prospect of measuring gravitational waves also stimulated a Wilsonian reformulation [360]
for calculations of time-dependent classical motion, such as those describing the radiation
of inspiraling, nonrelativistic, gravitating objects like black holes or neutron stars.

The discussion in Chapter 6 follows the logic of my own reviews [24] and [489]. This
differs somewhat from much of the cosmology literature for which EFTs often zero in more
specifically to the study of fluctuations about a cosmological background along the lines
developed in [104]. In particular the toy-model discussion follows [89], which was itself
stimulated by related work on cosmological fluctuations [490].

The discussion of well-posedness of the initial-value problem is only now starting to sink
in to the EFT community, largely driven by the desire to describe and test modifications
to general relativity in the strong-field regime revealed by gravitational wave observations.
References [98] and [99] quoted in the main text provide good summaries of these issues
both for gravitational and fluid physics.

D.3 Relativistic applications
|

Part IT begins a discussion of relativistic applications. The Fermi theory of the weak inter-
actions is the poster child for how effective theories arise in nature, and so is discussed in
a variety of EFT reviews such as:

o “Weak Interactions and Modern Particle Theory”, by H. Georgi, Benjamin Cummings,
1984. A very physical discussion of much of the standard model and some of the tech-
niques used to compute with it, with EFT methods squarely in mind. The treatment of
the weak interactions includes various loop corrections to the Fermi lagrangian and
survives well despite its age.

The notation and description of the weak interactions and QED used in this section is partly
taken from my own book

e “The Standard Model: A Modern Primer” by Guy Moore and me, Cambridge Press,
2007, post-Higgs-discovery revision 2013 uses the Standard Model as a vehicle for
learning quantum field theory, mostly at the level of tree graphs, but includes sec-
tions on QED, infrared effects, hadrons and chiral perturbation theory. Modern EFT
methods are also included, and used to organize the treatment of Beyond the Standard
Model (BSM) physics.

There are many classic texts on Quantum Electrodynamics, though usually of a vintage
that predates the widespread adoption of EFT reasoning. More modern discussions can be
found in some of the books listed above on quantum field theory.

A discussion of the U,(1) problem and the role of anomalies in resolving it is given by
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[491], as well as in the review “Uses of Instantons” by Coleman in Aspects of Symmetry
[17].

Chiral Perturbation Theory

Chiral perturbation theory was the place where EFT methods, and the low-energy treatment
of Goldstone bosons, were first systematized in the particle-physics literature. A discussion
appears in Weinberg (Quantum Theory of Fields Vol II ibid) with historical notes. A very
comprehensive and instructive book on the subject is

e “Dynamics of the Standard Model,” by J. Donoghue, E. Golowich, and B. Holstein,
Cambridge Press, 1992. This contains an advanced discussion of the standard model,
with particular emphasis on bound states in QCD, chiral symmetry, and radiative cor-
rections.

Many good review articles also exist on chiral perturbation theory, a selection of which
is listed in reference [492].

Standard Model

There are many books on the Standard Model, which is a well-developed subject. In addi-
tion to the ones listed above two other noteworthy examples are

e “Quarks and Leptons: An Introductory Course in Particle Physics,” by F. Halzen and
A. Martin, Wiley, 1984. This book is an elementary introduction aimed at developing
the computational tools and getting people calculating, with a minimum of formal
baggage. An excellent introduction to utilitarian field theory.

e “Quantum Field Theory and the Standard Model,” by Matthew Schwartz, Cambridge
Press 2014, is a more recent and modern treatment of quantum field theory as applied
to the Standard Model, that also draws heavily on EFT methods to organize calcula-
tions.

Supersymmetry is a well-developed topic in its own right and there are a number of
books that review its various aspects. Among those aimed at possible implications for
particle phenomenology are

e “The Quantum Theory of Fields, vol III”, by S. Weinberg, Cambridge Press, 2000. This
presentation has the nice feature that it builds directly from the tools built in vols. I
and II of this sequence. This is particularly nice for supersymmetry, since many of the
other presentations of supersymmetry use completely different notation for spinors
used in supersymmetry compared to spinors used elsewhere in physics. Weinberg’s
vols I-IIT are uniform in their treatment of spinors in all aspects of their use.

e “Supersymmetry in Particle Physics,” by Ian Aitchison, Cambridge Press 2007, is a
more recent and modern treatment of supersymmetry as aimed at particle physics
applications.
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e “Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N=1 Su-
persymmetry in High Energy Physics,” by Manuel Drees, Rohini Godbole and Probir
Roy, World Scientific Press, 2005 provides a phenomenologist’s eye view of N=1
supersymmetry in 4 dimensions.

The above are complemented by discussions of supersymmetry that emphasize the more
formal strong-coupling, gravity and string theory connections.

e “Modern Supersymmetry, Dynamics and Duality,” by John Terning, Oxford Press 2006,
is a treatment of supersymmetry as aimed at applications to dualities and many of the
modern issues associated with supersymmetric systems.

e “Supersymmetry and String Theory, Beyond the Standard Model,” by Michael Dine,
Cambridge Press 2007, is a treatment of supersymmetry as aimed at more fundamen-
tal applications, such as to string theory.

e “Supergravity,” by A. van Proeyen and D.Z. Freedman, Cambridge Press 2012, is a
modern treatment of supergravity by those that invented much of it, covering many
topics not usually treated.

e “Introduction to Supersymmetry and Supergravity,” by Peter West, World Scientific
1990. This is a treatment aimed at the framework for supergravity, a topic often skirted
over quickly in textbooks (but not here).

o “Supersymmetry and Supergravity,” by Julius Wess and Jon Bagger, Princeton Press
1992. This is one of the standard textbooks by some of the authors who helped define
the subject.

General Relativity and Cosmology

More and more, physicists in all fields are expected to be knowledgeable about gravita-
tional physics, and the geometrical techniques used in its study. Some useful texts for these
purposes are:

e “Gravitation and Cosmology: Principles and Applications of the General Theory of Rel-
ativity”, S. Weinberg, Wiley, 1972. An oldie but a goodie: a very physical introduction
to general relativity and its applications in astrophysics, the solar system and cosmol-
ogy.

e “Gravitation”, C.W. Misner, K.S. Thorne and J.A. Wheeler, Freeman, 1973. The classic
book with the quirky style, which sets the standard for its comprehensive and modern
treatment of geometrical techniques.

e “General Relativity”, R.M. Wald, University of Chicago Press, 1984. A modern update
of the two previous classics, containing more of the modern mathematical techniques.

e “Spacetime and Geometry: An Introduction to General Relativity”, S. Carroll, Cambridge
Press, 2019. A re-release of a modern and very readable book that is a good place to
start.

The last few decades have seen cosmology turn from a very speculative to a data-rich
subject. Much of the evidence that the Standard Model is incomplete comes from the uni-
fied picture of cosmology that this data has spurred, making a good knowledge of this arca



585

Nonrelativistic applications

also mandatory for many areas of physics. Some of the books I have learned from myself
are

e “Principles of Physical Cosmology”, P.J.E. Peebles, Princeton Press 1993. This is a clas-
sic written by one of the inventors of the modern picture of physical cosmology.

e “Physical Foundations of Cosmology”, V. Mukhanov, Cambridge Press 2005. This is a
comprehensive and very clear description of the theory of fluctuations and structure
formation, by one of its inventors.

e “Modern Cosmology,” S. Dodelson, Elsevier 2003. This is a modern textbook on cos-
mology including the discussion of fluctuations.

e “Cosmology”, S. Weinberg, Oxford 2008. This is a modern treatment that definitively
updates Weinberg’s earlier book on Gravitation and Cosmology.

e “Introduction to Cosmology,” B. Ryden, Pearson 2002. This introductory book is aimed
at undergraduates, and so does not presuppose as much background. Yet it is also
thorough and detailed so a good place to start for beginners.

The presentation of the effective theory of gravity and cosmology used in this book
follows some of my own review articles on EFTs in cosmology, mentioned above [489].
String theory provides a concrete example of what might take place at the highest energies,
and this is partly what makes it interesting. Some references are

e “Superstring Theory, vols I and I, by M. Green, J. Schwarz and E. Witten, Cambridge
Press, 1987. Strings and superstrings described by the masters. This book has pro-
vided the first exposure to the field for many novice learners.

e “String Theory, vols I and II”, by Joe Polchinski, Cambridge Press, 1998. Strings and
branes (including the origins of the word ‘brane’ for membranes [87]) most often
arise in supergravity and string theory, and this book is the classic textbook by the
discoverer of D-branes [88].

e “String Theory and M-Theory”, by K. Becker, M. Becker and J. Schwarz, Cambridge
Press, 2007. A modern update on the subject.

e “String Theory and Particle Physics,” by L.E. Ibdiez and A.M. Uranga, Cambridge Press
2012. This is a recent and high-level introduction to the phenomenological aspects of
string theory and branes.

e “A First Course in String Theory,” by B. Zweibach, Cambridge Press 2009. This is an
undergraduate level introduction to string theory, aimed at those who do not already
have an exposure to quantum field theory.

D.4 Nonrelativistic applications
|

The last two parts of the book are aimed at non-relativistic applications of EFT methods,
both for collections of just a few slowly moving particles and for full-blown many body
systems. Given here are a selection of references that I have found useful when learning
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these areas, though the further the area is from my own area of expertise the more likely I
am to have missed other gems (and my apologies if this is so).

HQET, NRQED and all that

There are a variety of review articles for heavy-particle EFTs, some of which are included
among the reviews of EFT methods quoted earlier. Some others are

e “Review of selected topics in HQET,” A.I. Vainshtein (hep-ph/9512419).

e “Heavy-quark effective theory,” M. Neubert, in 20th Johns Hopkins Workshop on Cur-
rent Problems in Particle Theory (hep-ph/9610385).

e “Heavy-quark and Soft-collinear Effective Field Theory,” by C.W. Bauer and M. Neu-
bert, in PDG review K.A. Olive et al.,Chin. Phys. C38 (2014) 090001 (http://pdg.lbl.gov).

e “An Introduction to the heavy quark effective theory,” F. Hussain, and G. Thompson,
(hep-ph/9502241).

e “Precision study of positronium: Testing bound state QED theory,” S.G. Karshenboim,
International Journal of Modern Physics A19 (2004) 3879 (hep-ph/0310099).

e “An Introduction to NRQED,” G. Paz, Mod. Phys. Lett. A30 (2015) 1550128 (arXiv:1503.07216

(hep-ph)).

First-quantized methods

There are fewer surveys of of first-quantized methods within an effective field theory con-
text. Discussions of collective coordinates can be found in books on solitons, such as in
Coleman’s “Aspects of Symmetry” mentioned earlier, or (for example)

e “Magnetic Monopoles,” by Ja. Schnir, Springer-Verlag 2005.

For reviews on the quantum mechanics of the inverse-square potential and the phenomenon
of ‘fall to the centre’, see for example

e B. Holstein, “Anomalies for Pedestrians,” Am. J. Phys. 61 (1993) 142;

e A.M. Essin and D.J. Griffiths, “Quantum Mechanics of the 1/x* Potential,” Am. J. Phys.
74 (2006) 109.

o M. W. Frank, D. J. Land and R. M. Spector, “Singular Potentials”, Rev. Mod. Phys. 43
(1971) 36.

Atomic physics
A number of books on atomic methods have proven useful over the years, including

e “Quantum Mechanics of One- and Two-Electron Atoms,” by H.A. Bethe and E.E. Salpeter,
Springer-Verlag 1957; Plenum Publishing 1977;

e “Rydberg Atoms,” by T.F. Gallagher, Cambridge Press, 1994;

e “Many-body atomic physics,” ed. by J.J. Boyle and M.S. Pindzola, Cambridge Press,
1998.
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e “Atom-Photon Interactions”, C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Wi-
ley Press 2004.

e “Bose-Einstein Condensation in Dilute Gases,” C.J. Pethick and H. Smith, (Cambridge
Press, 2001).

Goldstone bosons in nonrelativistic systems

The different types of Goldstone counting for spacetime symmetries in non-relativistic
systems is another one of those things that has long been in the air (since at least the early
1980s, when I was a graduate student), and because these issues arise more commonly for
condensed matter systems were appreciated there much earlier. See for example

e “Concepts in Solids: Lectures on the Theory of Solids” by Philip W. Anderson, World
Scientific, Singapore 1997

For particle physicists perhaps the most familiar examples where these issues arise are spin
waves in ferromagnets and antiferromagnets [107] (see also Chapter 14.1), whose unusual
properties eventually became systematized in [105] and [108].

Condensed Matter Surveys

Condensed matter physics is a vast area of research, for which there are a number of good
textbook treatments, including:

e “Principles of Condensed Matter Physics”, by Paul Chaikin and Tom Lubensky, Cambridge
Press, 1995. This both gives a thorough treatment of condensed matter physics, with
an emphasis on its ‘soft’ side, and it is also very accessible to those of the unwashed
who are not professional condensed matter physicists (myself included). This book
includes many instances of topological defects and domain walls of various types.

e “Solid State Physics,” N.W. Ashcroft, N.D. Mermin, Harcourt, 1976. This is a classic
undergraduate textbook on condensed matter physics.

e “Introduction to Solid State Physics, 8th Edition,” C. Kittel, Wiley, 2004. This is the
other classic undergraduate textbook.

e “Introduction to Superconductivity,” M. Tinkham, McGraw-Hill Press, 1975. This is a
book aimed more explicitly at the phenomenon of superconductivity.

e “Quantum Field Theory and Condensed Matter,” R. Shankar, Cambridge Press, 2017.
This is a more modern treatment of many of the ideas handled in the older texts.

e “Quantum Field Theory of Many Body Systems,” X.G. Wen, Oxford Press 2004. An-
other modern treatment of quantum field theory for a modern condensed matter audi-
ence.

Degenerate systems

The treatment of degenerate systems described here follows the wonderful reviews,
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o “Effective field theory and the Fermi surface.” J. Polchinski, In the proceedings of the
TASI school Recent directions in particle theory (hep-th/9210046) [405].

e “Renormalization group approach to interacting fermions”, R. Shankar, Reviews of Mod-
ern Physics 66 (1994) 129 (cond-mat/9307009) [406].

A classic treatment of Fermi liquids that predates EFT methods is

e “Quantum Theory of Many-Particle Systems,” A.L. Fetter and J.D. Walecka, McGraw-
Hill 1971 (Dover, 2002).

There are a number of good reviews about Quantum Hall systems, both from the point
of view of EFT methods as well as from a more fundamental point of view. Some textbook
descriptions are in

o “Field Theories of Condensed Matter Physics.”, E. Fradkin, Cambridge Press, 2013.

e “The Quantum Hall Effect,” R.E. Prange and S.M. Girvin, Springer-Verlag, 1987.

e “Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional
Semiconductor Structures,” S. Das Sarma and A. Pinczuk, John Wiley & Sons, 2004.

Some lecture notes that I have found very useful are

e “The Quantum Hall Effect: Novel Excitations and Broken Symmetries,” S.M. Girvin,
Lectures delivered at Ecole d’Ete des Houches, July 1998 (arXiv:cond-mat/9907002
(cond-mat.mes-hall)).

e “Quantum Hall Fluids,” A. Zee, (cond-mat/9501022).

o “Topological Orders and Edge Excitations in FQH States,” X.G. Wen (cond-mat/9506066).

e “Introduction to the Physics of the Quantum Hall Regime,” A.H. MacDonald
(cond-mat/9410047).

e “Lectures on the Quantum Hall Effect”, D. Tong, (arXiv:1606.06687 (hep-th)).

o “Three Lectures On Topological Phases Of Matter,” E. Witten. lectures given at the PITP
school 2015. Published in Riv. Nuovo Cim. 39 (2016) 313.

Some other useful references are cited in the main text.

Open systems

The treatment of fluids goes back to the 19th century, and is the birthplace of many EFT
methods. Very useful textbooks are

e “An Introduction to Fluid Dynamics,” G.K. Batchelor, Cambridge Press, 1967.
e “Fluid mechanics,” L.D. Landau and E.M. Lifshitz, A Course of Theoretical Physics
(2nd revised ed.) Vol 6, (Pergamon Press, 1987).

A textbook study of how electromagnetic fields interact with media is [458]:

e “Electrodynamics of Continuous Media,” L.D. Landau, and E.M. Lifshitz, in A Course
of Theoretical Physics Vol 8, (Pergamon Press, 1960).
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The theory of open systems is also a well-studied field, and some textbook treatments
are given by

e “The Theory of Open Quantum Systems”, H.P. Breuer and F. Petruccione, Oxford Press,
2002. This is a book from which I have learned some of the open-system techniques
described in this book. It is very user-friendly to those not in the area.

Two other good textbooks for this area are

e “An Open Systems Approach to Quantum Optics”, H. Carmichael, Springer-Verlag,
1991.

e Quantum Dynamical Semigroups and Applications”, R. Alicki and K. Lendi, Springer,
2007.



