

How to Build a Nuclear Bomb

Hosted by McMaster Science for Peace

David Kahl

27 March 2007

Overview

Motivation
Principles of Nuclear Energy
Uranium acquisition and refinement
Nuclear Reactors
Bomb Physics

Motivation

- Distinguish Between Good and Bad
 Undergrad Course Project
 The Los Alamos Primer
 - "Those who worry that it is all too easy to find bomb-building instructions in the library or on the Web should rest assured: these lectures were tough for the greatest theoretical physicists of the time to follow" ~Amazon.com official book review
- Support Nuclear Disarmament

Manhattan Project

Fission: New Science in the 1940s

- Today we are standing on the shoulders of giants
- Texts also widely available now

This talk will explain Little Boy

- Uranium shotgun design
- This design is much simpler than a plutonium bomb
- Untested prior to detonation at Hiroshima
- Do not scoff at 'elementary' bomb design

Weapons are more advanced now

- Higher Efficiency Output
- Signifcantly more sophisitcated engineering and physics
- ICMB technology yield unlimited target range

Nuclear Basics

Nuclei and Elements
Big Bang and Stellar Nucleosynthesis
E = mc²
Fusion and Fission
Rubber Band Model

Radioactivity

 Release of Energy Adjusts Proton/Neutron Number Alpha, beta, gamma Varying Lifetimes Shade of Grey, not black and white Radioactivity is everywhere Earth's magnetic field, temperature

Uranium Fission in Detail Spontaneous vs. Induced Splits into uneven nuclei and neutrons Average of 2.5 neutrons each with 2 MeV

Distribution of fission products from Uranium-235

Fission Products www.uic.com.au/graphics/fissU235.gif Chain Reaction of Fission

Uranium Fission Cross-section

U-235

High cross section at low energies Will fission fairly easily

U-238

No cross section below 1.4MeV

Will only fission with high energy neutrons, and even then, cross section of n-capture is high, leading to plutonium.

Cottingham, W. N., Greenwood, D. A. An Introduction to Nuclear Physics, 2nd Edition. Cambridge University Press, 2001.

Natural Uranium

Ore Must be Mined

- Pitchblende and Uranite
 - UO₂, UO₃, U₃O₈
- Saskatchewan produces 30% of the world's uranium
- Ore can be bought for ~\$20/kg
- Machinery for Processing
- Isotopic Composition
 - 99.3% ²³⁸U, 0.7% ²³⁵U

Decay series

- Explains the isotope disparity
- ²³⁸U has a longer lifetime than all elements in ²³⁵U decay chain
 - Roughly 4 billion year difference

Uranium 238 Decay Series

Adapted from Greenwood, N.N. Chemistry of the Elements. Pergamon Press Ltd., U.S.A., 1984.

Uranium 235 Decay Series

Adapted from Greenwood, N.N. Chemistry of the Elements. Pergamon Press Ltd., U.S.A., 1984.

Uranium Enrichment

A weapon requires mainly ²³⁵U
Compare enrichment with depletion
Largest Single Limiting Factor

- Getting ²³⁵U in highly purified form
- For our purposes, over 11,000 kg will need to be refined!
- Initial Refinement Most Time Consuming
 - Range: .7% to ~15%
 - Target value: 80% to 99%
- Refinement methods use mass difference
 - 1.26% mass difference makes this difficult
 - Electromagnetic
 - Method used for the Manhattan Project
 - Gas Centrifuge
 - Primary Method Employed since 1946 due to lower cost
 - Aerodynamic
 - Thermal Diffusion
 - Laser Process

Electromagnetic Separation Ionize and accelerate UCl₄ into B-field Imperfect ionization / collection

http://www.chemcases.com/2003version/nuclear/nc-07.htm

Refinement Facility Oak Ridge, TN

Sample Alpha Track at Y-12

Refines natural to 12-20%

Sample Beta Track at Y-12

 Refines Alpha Track to 80-90%

http://www.hcc.mnscu.edu/programs/dept/chem/abomb/age_id_33232.html

Y-12 Refinement Facility 40 – 240 grams/day of 235U

http:/nuclearweaponarchive.org/Usa/Med/Med.html

Gas Centrifuge

Inject UF₆ gas into rotor

- Gas is very corrosive
- Separates like a merry-go-round
 Only causes slight enrichment
 - Must use a series of centrifuges
- 2500 Centrifuges for 1 year
 - This would process ~11 metric tons of uranium ore

Nuclear Power

 Controlled reactions make heat No greenhouse gases Natural reactors in West Africa Ontario: 50% power from nuclear Worldwide: 550 reactors, 450 active Chernobyl By-passed safeguards to increase output Three Mile Island Contained all radiation 18

Type of Reactors

Slow vs. Fast Neutrons

- Recall cross section for uranium isotopes
- ²³⁸U can capture a fast neutron and decay to ²³⁹Pu
- Breeder reactors fabricate ²³⁹Pu in excess

Light water vs. Heavy water (CANDU)

- Light water reactors require ~3-20% enriched uranium
 - Compare to >80% enrichment for weapons
- Heavy water reactors may operate with natural uranium
- CANDU reactors can burn plutonium

Spent Fuel

- May be stored underground
 - This is where uranium originally came from!

Reprocessing 'waste'

- Spent fuel contains many valuable materials
- Over 90% of waste is uranium
- Conserve world's uranium supplies
- 1 ton of reprocessed material = ~100,000 barrels of oil
- Does contain ~1% plutonium
- Oil and coal also make nuclear waste
 - Much less controlled or accounted for

Molecular and Nuclear Reactions

Conventional explosives

- Rely on breaking chemical bonds for energy
- Energy release on the order of 10eV/molecule

Nuclear weapons

- Break apart the nucleus for energy
- Immediate energy released: 178MeV/nucleus (determined experimentally)

Comparison

 Nuclear explosives are around 10,000,000 times more powerful than conventional explosives

So you want to design a bomb...

Considerations:

- We need a fast chain reaction of fissions
 - Mean free path
 - Critical mass
- Trigger design
 - How the bomb is detonated
- Output and efficiency
 - Energy ouput of explosion
 - How much uranium underwent fission

Neutron Mean Free Path

Mean distance a neutron travels before collision with U

Think of this like a pinball machine

Mean free path for any interaction (ℓ), with crosssection (σ) and density (ρ =4.8 x 10²⁸ nuclei m⁻³):

 $\ell = \frac{1}{\sigma_t \rho_{235U}} = 0.029 \, m = 2.9 \, cm$

1 in 6 collisions is a fission with a neutron energy of 2 MeV. Assume 'random walk.' Then the fission mean free path (s) is:

 $s = \sqrt{6} \cdot \ell = .07 m = 7 cm$

The time (τ) for this to occur with neutron velocity (ν) is: $\tau = \frac{s}{v} = \frac{.07 m}{1.7 \times 10^7 m \cdot s^{-1}} = 8.1 \times 10^{-9} s$

Chain reaction of fission 23

Critical Mass Calculation

Minimum uranium mass to sustain chain reaction

Number of neutrons (N), with neutrons per fission (v), variable neutron current (j), computed fission time-scale (τ), as a function of time (t) and radius (r):

 The neutron current (j) and its radial derivative, with the mean free path (l) and neutron velocity (v) as before:

 $j = -\frac{\ell v}{3} \frac{dN}{dr} \qquad \qquad \frac{dj}{dr} = -\frac{\ell v}{3} \frac{d^2 N}{dr^2}$

 $\frac{dN}{dt} = \frac{|v-1|}{\tau} N - \frac{dj}{dr}$

We may easily combine these two equations which yields: $\frac{dN}{dt} = \frac{(v-1)}{\tau} N + \frac{\ell v}{3} \frac{d^2 N}{dr^2}$

Critical Mass Calculation

We only need to consider the time-independent part of the equation to find the critical radius, so we can set it to zero:

This is an easily solvable 2^{nd} order homogenous ordinary differential equation. The solution is simply dependent on unknown constants C_1 and C_2 :

 $\frac{|v-1|}{\tau}N + \frac{\ell v}{3}\frac{d^2 N}{dr^2} = 0$

$$N = C_1 \cos \left[\sqrt{\frac{3(v-1)}{\tau \cdot \ell \cdot v}} r \right] + C_2 i \sin \left[\sqrt{\frac{3(v-1)}{\tau \cdot \ell \cdot v}} r \right]$$

 This is a sinusoidal wave function, and if we apply the boundry condition N=0 at the centre (r=0), then we have:

 $0 = C_1 cos(0) - C_2 i sin(0)$

Critical Mass Calculation

So this means that $C_1=0$ and we are left with a single constant $C=C_2i$, which gives us the following equation:

$$V = C \sin \left[\sqrt{\frac{3(v-1)}{\tau \cdot \ell \cdot v}} r \right]$$

We set r as one half of the critical radius (R_c), because this is where we expect the neutron density to be the highest because of elastic and inelastic scattering of neutrons. The sine function has its first maxium at $\pi/2$. Thus:

$$\frac{3(v-1)}{\tau \cdot \ell \cdot v} R_c = \pi$$

Critical Mass Value

Solving for the critical radius R_c , we get:

$$R_c = \sqrt{\frac{\pi^2 \tau \cdot \ell \cdot v}{3(v-1)}}$$

Recalling that we have the following values for our variables: $\ell = 0.029 m$ v = 2.5 $\tau = 8.1 \times 10^{-9} s$ $v = 1.7 \times 10^7 m/s$

• If we plug in these values, we find that $R_c = 9.35$ cm. Using ρ_{2350} , we find that a sphere with this radius is 64.9 kg

A mass of this size is precisely large enough to sustain a chain reaction despite neutrons lost through the surface of the sphere of uranium.

Trigger design

Assemble the critical mass at high speed

- Speed of assembly for ²³⁵U is 600 m/s to avoid pre-detonation
- This calculation is tough, but the values are known
- ²³⁹Pu requires a much faster assembly speed
 Include a source of neutrons

²³⁵U can be detonated with a simple shotgun design

Serber, R. The Los Alamos Primer. University of California Press, 1992.

²³⁹Pu requires a more sophisticated concentric shell explosion 28

Trigger Neutron Source

Once the critical mass is assembled, any free neutron that interacts with it will be sufficient to trigger detonation

- ²¹⁰Po is an a-emitter
- ${}^{9}\text{Be} + a \rightarrow {}^{12}\text{C} + n$
- The neutron released in this reaction has enough kinetic energy to induce fission in a ²³⁵U nucleus
- Put half the neutron source on the bullet, and half on the target

Efficiency

- Little Boy had an explosive output of 20kT of TNT
- A 20kT output is equal to 24 TeraJoules
- There are 2.85x10⁻¹¹J/fission
- This means that 8.4x10²³ atoms must fission for a 20kT yield
- This number of atoms will fission in 80 generations of fission
- The time this will take is .648 microseconds
- This is equivalent to .327 kg of uranium
- This means the bomb must have an efficiency of slightly over 0.5%

Tampers

- A tamper is a material which surrounds the critical mass
- To increase efficiency the critical mass you can add a tamper of highly dense material like ²³⁸U or gold

The tamper serves two purposes

- It reflects neutrons back into the mass, decreasing surface loss of neutrons
- It increases the density around the mass, holding it together longer so more fissions can occur before density drops too far to sustain the reaction
- Given that expected efficiency is less than half of one percent any minor increase that the tamper provides will greatly increase the magnitude of the explosion

Aerial of Hiroshima Before

http://newsimg.bbc.co.uk/media/images/41357000/gif/_41357959_hiroshima_1_629.gif 32

Aerial of Hiroshima After

http://newsimg.bbc.co.uk/media/images/41357000/gif/_41357965_hiroshima_2_629.gif 33

Former Prefectoral Office

This was the only building in Hiroshima to survive the nuclear bombing by the US in 1945. Now *A-Bomb Building*. http://upload.wikimedia.org/wikpedia/en/5/5d/HiroshimaPrefectualPromotionHall.JPG ³⁴

Pressure Effects

Conclusion

- Covered Enrichment
 - This is where uranium originally came from!
 - Explained Little Boy
 - Showed most of the calcuations that the book omits
 - Such a basic nuclear bomb is not conceptually difficult
 - Did not show how to calculate minimum detontation velocity
 - Critical mass explains why there are not small nuclear weapons
- Even a low efficiency is deadly
 - Did not do advanced yield calculations

Final Statement

- Understanding basic nuclear physics is useful for effective opposition to nuclear arms proliferation
- Limiting factor for building a bomb is acquiring the fissile materials

Must protect existing fissile material

- The physics involved isn't prohibitively difficult
- I went through most the details in under an hour
 Many reactor designs do not use or produce bomb grade material

Reactors are safe and do not emit greenhouse gases
Please don't go out and build a bomb now

Acknowledgements

Chad Huibregtse, Steve Abbott, Elizabeth Boatman, Elon Candea, Sarah Johns, Jason Marmon, Dr. Patrick Polley, Jared Nance, Eric Stall, John Stierna, Loren Warmington

Works Cited

Buslon, P.S., Explosive loading of engineering structures, E & FN SPON (imprint of Chapman & Hall, London, 1997

Chairman's Office. The Effects of Atomic Bombs on Hiroshima and Nagasaki. The United States Strategic Bombing Survey. Washington, D.C.: United States Government Printing Office. 30 June 1946

- Congress of the United States. The Effects of Nuclear War. Washington, D.C.: Office of Technology Assessment. 1979
- Dana, J.D., The Manual of Mineralogy. John Wiley & Sons, Inc., U.S.A. and Canada, 1977.
- Department of the Army. Fundamentals of Protective Design for Conventional Weapons, Technical Manual, TM5-855-1, Headquarters, , Washington D.C., 1986.
- Feld, B.T., Ed. by Adams R. and Cullen S, Mechanics of Fallout, The Final Epidemic, The University of Chicago Press, Chicago, pg 110-116, 1981.

Geological Environments of Sandstone Type Uranium Deposits. (Report of the Working Group on Uranium Geology), IAEA-TECDOC-328, 1985. Available from http://www-pub.iaea.org/MTCD/publications/PDF/te_427_web.pdf; Internet; accessed 15 December 2004. Global Security. Available from http://www.gobalsecurity.org/wmd/intro/u-centrifuge.htm; Internet; accessed on 14 November 2004.

Greenwood, D.A. & Cottingham, W. N. An Introduction to Nuclear Physics. Cambridge, University Press, 2001

Greenwood, N.N. Chemistry of The Elements. Pergamon Press Ltd., U.K., U.S.A., Canada, Australia, France, and the Federal Republic of Germany, 1984.

Gustafson, J. K.; Uranium Resources. The Scientific Monthly, Vol. 69, No. 2. (Aug.,

1949), pp. 115-120. Available from http://links.jstor.org/sici?sici=0096-

3771(194908)69:2<115:UR>2.0.CO;2-S, accessed 15 December 2004.

Lindop, P., Rotblat, J., Ed. by Adams R. and Cullen S, Consequences of Radioactive Fallout, The Final Epidemic, The University of Chicago Press, Chicago, pg 117-135, 1981.

Minimization of Waste from Uranium Purification, Enrichment, and Fuel Fabrication. International Atomic Energy Agency. IAEA-TECDOC-1115, 1999.

Natural Uranium and its Ores. Available from http://web.ead.anl.gov/uranium/guide/ prodhand/sld002.cfm; Internet; accessed on 6 November 2004.

Nininger, Robert D.; Minerals For Atomic Energy. D. Van Nostrand Company, Inc. New York, 1954.

Nuclear Weapons Technology. Available from http://www.fas.org/irp/threat/mct198-2/2pSec05.pdf; Internet; accessed on 11 December 2004.

Solvent Extraction. Available from http://web.ead.anl.gov/uranium/guide/prodhand/ sld011.cfm; Internet; accessed on 6 November, 2004. Sebos, Ioannis, Groundshock Enhancement Due to Reflections, EJGE, 2002. Serber, R. The Los Alamos Primer. University of California Press, 1994. Settle, F. Nuclear Chemistry Uranium Production. Accessed from http://www. chemcases.com/2003version/nuclear/nc-06.htm: Internet: accessed on 26 March 2007 Surficial Uranium Deposits. (Report of the Working Group on Uranium Geology), IAEA-TECDOC-322, 1985. The Uranium Enrichment Plant Gronau, 2002 Available from http://www.urenco.de/pdf archiv/ analagene2002.pdf; Internet: accessed on 14 December 2004 Uranium Deposits in Proterozoic Quartz-pebble Conglomerates. (Report of the Working Group on Uranium Geology), IAEA-TECDOC-427, 1987. Uranium Enrichment. Available from http://www.urenco.de/pdf archiv/Enrichment 2003.pdf; Internet; accessed 4 November 2004. Uranium Enrichment: Nuclear Issues Briefing Paper 33. Available from http://www. uic.com.au/nip33.htm; Internet; accessed 4 November 2004. Uranium Enrichment Plant Gronau. Available from http://www.urenco.de/pdf archive/ anlagene2002.pdf; Internet; accessed 14 December 2004. Uranium Production – Nuclear Weapons. Available from http://www.fas.org/nuke/ intro/nuke/uranium.htm; Internet; accessed 7 November 2004.

Vein Type Uranium Deposits. (Report of a Working Group on Uranium Geology), IAEA-TECDOC-361, 1986. http://wwwpub.iaea.org/MTCD/publications/ PDF/te_361 _web.pdf; Internet; accessed 15 December 2004. WISE Uranium Project; Available from http://www.antenna.nl/wise/uranium/umaps.html ?set=ures; Internet; accessed 15 December 2004.