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A three-dimensional lattice model of a protein is used to investigate the properties required
for its folding to the native state. The polypeptide chain is represented as a 27 bead
heteropolymer whose lowest energy (native) state can be determined by an exhaustive
enumeration of all fully compact conformations. A total of 200 sequences with random
interactions are generated and subjected to Monte Carlo simulations to determine which
chains find the ground state in a short time; i.e. which sequences overcome the folding
problem referred to as the Levinthal paradox. Comparison of the folding and non-folding
sequences is used to identify the features that are required for fast folding to the glohal
energy minimur, Tt is shown that successful folding does not require certain attributes that
have been previously proposed as necessary for folding; these include a high number of short
versus long-range contacts in the native state, a high content of the secondary structure in
the native state, a strong correlation between the native contact map and the interaction
parameters, and the existence of a high number of low energy states with near-native
conformation. Instead, the essential difference between the folding and the non-folding
sequences is the nature of the energy spectrum. The necessary and sufficient condition for a
sequence to fold rapidly in the present model is that the native state is a pronounced energy
minimum. As a consequence, the thermodynamic stability of the native state of a folding
sequence has a sigmoidal dependence on temperature. This permits such a sequence lo
satisfy both the thermodynamic and the kinetic requirements for folding; i.e. the native
state predominates thermodynamically at temperatures that are high enough for folding to
be kinetically possible. The applicability of the present results to real proteins is discussed.

Keywords: protein folding; lattice Monte Carlo simulation; optimization

1. Introduction

A very large number of distincet conformations are
available to the polypeptide chain of a protein
molecule. Under physiological conditions, & protein
spends most of its time in the native conformation
which spans only an infinitesimal fraction of the
entire configuration space. If this were not so, pro-
teins would be of little value since they can function
only if they are in the neighborhood of their native
conformation. Moreover, proteins are capable of
finding the unigue native conformation out of the
enormous number of existing conformations; this is
frequently referred to as the Levinthal paradox
(Levinthal, 1968, 1969). Thus, the amino acid

f Author 1o whom all correspondence should be
addressed.

sequence of the protein must satisfy two require-
ments, one thermodynamic and one kinetic. The
thermodynamic requirement is that the sequence
must have a unique folded conformation, which is
stable and corresponds to the native structure. The
kinetic requirement is that the denatured poly-
peptide chain can fold into this conformation under
the appropriate solution conditions.

An extensive review of theoretical studies of the
thermodynamics and dynamics of protein folding
has been given recently (Karplus & Shakhnovich,
1992). It was pointed out that the present limita-
tions of computing power reqguire that simplified
modcls be used for studies of the folding process,
This is to be contrasted with the studies of the
native state, which has relatively small (2 A) and
rapid (sub-nanosecond) fluctuations that have been
examined in great detail with molecular dynamics
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simulations employing potentials with a full atomic
representation of the protein chain (Brooks et al.,
1988). Much less is known about the potential
surface governing the non-native portion of con-
formation space involved in protein folding. It
includes a wide range of structures that may differ
by tens of anstroms. Concomitantly, instead of the
time scale of picoseconds to nanoseconds that is
required for exploring the neighborheod of the
native state, the characteristic times corresponding
to the motions in the full conformation space are in
the nanosecond to second range. The existence of
such a separation of time and length scales with fast
local motions and stow large-scale motions makes it
possible to introduce two simplifying concepts that
can serve as a basis for theoretical work on protein
folding. The first is an effective potential or poten-
tial of mean force and the second is a discretized
description of the polypeptide chain. Both of these
concepts are based on the idea of “preaveraging”
the small-scale motions to obtain a “‘coarse grained”’
model that can treat a molecule on the time and
length seales at which protein folding occurs. This
leads to an approach to protein folding that
combines a simplified representation of the poly-
peptide chain (bead model with interactions only
between spatial neighbors) with a simplified repre-
sentation of the conformational space {lattice
model).

Such a bead mode! has been used in the develop-
ment of a heteropolymer theory of protein thermo-
dynamics (Shakhnovich & Gutin, 1989, 1990a). The
probability was estimated that a random sequence
of amino acids would have a unique compact ground
state and so satisfy the first requirement for a
biologically relevant polypeptide chain. The prob-
ability was found to be surprisingly high with
reasonable estimates of the model parameters; e.g.
one percent of all random sequences in the hetero-
polymer model have a thermodynamically stable
unique structure. This suggests that the evolu-
tionary requirement for proteins with specific fune-
tions could have been achieved by selection from
the large number of sequences with a unique ground
state.

The requirement that a sequence be able to fold
to the native structure in a biologically useful time
may lead to more restrictive conditions, A wide
range of phenomenological folding models exist. An
example that has been studied in detail is the diffu-
sion-collision model (Karplus & Weaver, 1976,
1979). Most of the models focus on the Levinthal
paradox and suggest ways by which only a small
fraction of the total number of conformations
participate in the folding process. The existing
models have been veviewed by Karplus &
Shakhnovich (1992). It has heen argued in the
context of analogies between spin-glasses and pro-
teing  {Bryngelson & Wolynes, 1987 1989;
Shakhnovieh & Gutin, 1989, 1990q) that the energy
surface of a protein is “rugged”. This means that
there are many energy barriers that have to be
crossed during the folding process. On such a

surface, folding requires that there exists a tempera-
ture high enough for the process to oceur (i.e. the
protein is not frozen in one of the minima) yet low
enough so that the ground state is stable.

One way of shortening the folding time on a
complex energy surface with many local minima is
to introduce a hierarchy into the process; e.g.
secondary structure forms first, followed by coales-
cence of the secondary structural elements to yield
the tertiary fold of the native state. The diffusion-
collision mode! (Karplus & Weaver, 1976, 1979) and
the closely related framework model (Kim &
Baidwin, 1982, 1990} embody this idea.
Additionally, it has been suggested that the entire
surface may be significantly biased toward the
native state so ag to channel the folding process.
Such biases have been introduced by the choice of
the energy function that makes only native contacts
stabilizing (G6 & Abe, 1981} or by introducing a
weighting function that favors the native backbone
dihedral angles (Bryngelson & Wolynes, 1987,
Skolnick & Kolinski, 1990). It has been shown in
lattice simulations that either of these biases can be
sufficient for rapid folding. Both of these assumed
biases have been related to the “‘principle of
minimal frustration” (Bryngelson & Wolynes, 1987,
1989), which postulates that the energy minimum of
a small part of a protein in isolation is not very
different from the structure of that part in the
native state of the entire protein.

Although the above models may be sufficient to
achieve rapid folding, little has been done to show
that they are necessary or that they occur in real
proteins. Moreover, local dihedral angle biases,
which reduce protein folding to an analog of the
helix-coil transition (Zwanzig et al., 1992), do not
lead to a cooperative (all-or-none) folding transi-
tion, one of the essential experimental aspects of
protein thermodynamics {(Karplus & Shakhnovich,
1992). Instead, longer-range interactions, which are
an essential aspect of the complexity of folding (M.
Karplus & E. Shakhnovich, unpublished results),
are required for cooperativity. Thus, two major
unresolved conceptual problems in understanding
the mechanism of protein folding are the determina-
tion of the necessary conditions for overcoming the
Levinthal paradox and the demonstration of which
mechanism is employed in the folding of poly-
peptide chains. Tn the present study, we attempt to
examine these problems by the use of a simplified
lattice model.

Since we are unable to use an analytical
approach, as it has been done for the thermo-
dynamic aspect of folding (Shakhnovich & Gutin,
1989, 1990a), we make use of an unbiased lattice
model that possesses a very large number of con-
formations that cannot all be scanned in a folding
simulation, and has a well defined native state.
Although lattice models have been used by others
(see the review by Karplus & Shakhnovich, 1992),
the present. approach differs in two essential aspects.
First, we choose a system where the lowest energy
state is known, unique, and satisfies the thermo-
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dynamic¢ condition on the sequence that can corre-
spond to a functioning protein. This is achieved by
introducing an overall (hydrophobic) compactness
condition on the polypeptide chain so that the low
energy portion of the conformation space can be
searched exhaustively; i.e. all compact self-avoiding
conformations can be enumerated and the lowest
energy state determined from this enumeration.
Second, rather than introducing preconceived biases
into the energy function, we use an unbiased energy
funection that consists of contact interactions
between beads chosen from a (Gaussian distribution.
We generate a series of random sequences and deter-
mine which of them can fold to the stable native
state in a reasonable time using a Monte Carlo
search procedure. In this way, we obtain an
unbiased sample of folding and non-folding
sequences. The differences between the two sets
allow us to obtain insights into the kinetic condition
for a biologically relevant polypeptide sequence.

The specific protein model is a 27 bead hetero-
polvmer chain on a cubic lattice. This model has
already been used in a preliminary study of the
folding kinetics (Shakhnovich ef af., 1991). Despite
its simplicity, the model contains certain essential
features of protein folding. The total number of
conformations of a 27-mer on a cubic lattice,
including the non-compact conformations, is
approximately 52, a number much larger than can
be scanned by any simulation. Thus, the Levinthal
paradox is present in this system. Successful folding
can occur only if the energy surface is such that the
molecule avoids most of the conformations in the
folding process. Moreover, comparison of thermo-
dynamic results obtained by numerical simulations
of a 27-mer with those from the anaiytical theory
for infinite heteropolymers (Shakhnovich & Gutin,
1989, 1990a) has shown that a 27-mer chain is a
good model for the thermodynamics of long chains,
This suggests that the kinetic results obtained with
the 27-mer model are likely to be applicable to
longer chains.

The procedure followed when using this model to
study the kinetics of folding is to generate a large
number of random sequences. Starting with a coil
configuration, these sequences are subjected to a
Monte Carlo simulation under conditions where the
native state is stable to determine whether or not
they fold in a reasonable number of steps. This
provides a data base of sequences that do and do
not satisfy the thermodynamic and kinetic criteria
for a functional sequence. Definition of sueccessful
folding is the most complicated part, but it is essen-
tial. Since the unique ground state is known, it is
possible to make a rigorous determination of
whether a given simulation reaches the ground
state; a successtul folding simulation is one that
finishes at the global energy minimum.
Correspondingly, “folding” sequences are those that
can find this global minimum a number of times,
independent of the initial conformation; the non-
folding sequences are those that cannot find it in a
reasonable time. Thus, the present simulations

avoid the problems that occur when the global
energy minimum is not known: it has often been
observed that folding is dependent on initial condi-
tions and that a simulation may terminate in a
metastable trap (Honeycutt & Thirumalai, 1992).

We analyze the results to find the features of the
folding sequences that distinguish them from the
non-folding sequences. We use the model to explore
the relation between folding and (1) characteristics
of the energy spectrum, (2) structural features of the
native conformation, and (3} the relationship
between the energy levels and corresponding con-
formations. We also discuss the relevance of our
results for the folding of real proteins, for methods
that prediet protein three-dimensional (3D7) struc-
ture, and for general stochastic optimization
methods.

Section 2 describes the methods used in the calen-
lations. The results are presented in Section 3 and
discussed in Section 4.

2. Methods
(a} Lattice model

The numerical simulations in this paper use short
chains of 27 monomers with discrete positions (Shakhno-
vich et ol., 1991: Fig. }{a)). This choice is made to satisfy
the full enumeration condition. The bonds between
monomers all have unit length. Allowed monomer posi-
tions inelude only cubic lattice sites. Contacts can be
formed only between 2 monomers that are not successive
in sequence and are at unit distance from each other.
There are at most 5 such contacts for the 2 terminal
monomers and 4 for the other monomers. Thus, a fully
compact self-avoiding chain corresponds to a 3x3x3
cube with 28 contacts. There are 103,346 such structures
unrelated by symmetry (Shakhnovich & Gutin, 19900).
When multiple conformations related by symmetry are
not excluded, there are 4,960,608 compact self-avoiding
structures (Chan & Dill, 1990). Additionally, all non-
compact self-avoiding conformations can oceur during
folding process; there are approximately 52% ~ 10'® such
conformations.

The energy of the polymer chain is assumed to depend
only on nearest neighbor contacts and to be independent
of other aspects of the chain conformation (e.g. there are
no pseado-dihedral angle biases). The energy funetion is
taken to have the simple form:

E=Y BAr—r), ()

i<j

where Bj; is the interaction energy between monomers i
and j located at positions r; and r;, respectively. A(r;—7))
iz 1 if monomers ¢ and j are in contact and is 0 otherwise.
To permit the study of a model without preconceived
biases, the interaction parameters B;; are obtained from a
(Gaussian distribution with a mean B, and standard devia-

tion ap; that is,
1 £ By—B,\*
! e 2( I ) . (2)

2nog

P(Bij) =

+ Abbreviations used: 3D, three-dimensional; 2T}, two-
dimensional; REM, random energy model.
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Figure 1. The lattice model of protein folding. {a) The
cubic lattice and an example of a compact self-avoiding
walk of a chain (thick line) of 27 monomers {numbered in
order}; the native structure of sequence 43 is shown. (b)
The 3 types of possible Monte Carlo moves (I to 3; see
Methods). Situation 4 shows a conformation where no
move of the central monomer is possible, The current
conformation is shown in thick lines. Possible new con-
formations are shown in broken lines. A move is possible if
all new positions are unoceupied. The monomers that are
moved are shown in dark stippling.

This model for B;; corresponds to a heteropolymer with a
random sequence of monomers of many different tvpes.
The parameter 0 measures the degree of heterogeneity of
a chain; a homopolymer with all monomers interacting
with the same energy has o, = 0. As B, becomes more
negative, collapse from a random coil to a globule is
favored. The parameter B,, which introduces the overall
attractive term. emulates the hydrophobic effect observed
in globular proteins. When B, is sufficiently negative, the
global energy optimum generally corresponds to one of
the compaet self-avoiding conformations. In this limit,
only 103.346 conformations have to be checked to find the
global energy optimum. Equations (1) and (2) provide a
complete description of the heteropolymer being con-
sidered here. This choice is of particular interest because it
is the starting point of the analytical theory and deriva-

tion of the phase diagram of a random heteropolymer by
Shakhnovich & Gutin (1989).

The Monte Carlo simulation of protein folding starts
with a random self-avoiding conformation. Such & con-
formation corresponds to an extended denatured chain
hecause of the much higher probability of a random
process generating such a state; the number of contacts is
in the range of 5 to 10. This conformation is then itera-
tively updated by a large number of small discrete
changes. Bach Monte (‘arlo step consists of the following:
a move is selected at random until & move is found that
conserves the unit bond lengths and does not result in
more than 1 monomer per lattice site (a self-avoiding
walk). A comparisoen of the present results with those
obtained when multiple occupancy is allowed {Shakhno-
vich ef al., 1991) is given in Appendix TT. Once an allowed
move is found. the corresponding energy change in the
svstem, AE. is evaluated (eqn (1)) and the Metropolis
criterion is used to accept or reject the proposed move
(Metropolis ef al.. 1953). The Metropolis criterion involves
a comparison of exp(—AE/kgT) with a random number
uniformly distributed between (0 and 1. The move is
rejected if the random number is larger than the exponen-
tial. All moves that decrease the energy of the system are
accepted. 7' is the temperature of folding. Each applica-
tion of the Metropolis criterion is counted as cne Monte
Carlo step (Metropolis et af., 1953).

Moves (Fig. 1(b)) are proposed in the following way.
First, a decision is made whether positions of 1 or 2
monomers will be changed in the current Monte Carlo
step: a move of a single monomer is selected with a
probability of (-2, Moves involving more than 1 particle
are inecluded because it has been shown that the kineties
on a lattice with only single particle moves and with
excluded volume constraints ig unrealistic (Hilhorst &
Deutch. 1975} If a single monomer move is selected, a
monomer index is chosen randomly from 1 to ¥, For
terminal monomers, 1 of the 5 possible moves is then
picked randomly (move type 1). For internal monomers,
there is only 1 new position if monomersi—1,{. {4+ 1 form
a right angle (move type 2). If they are on a line there is
ne new position and the selection of a move starts from
the beginning. When a move of 2 monomers is selected, a
monomer index is chosen randomly from | to N —3. If
monomers ! to {+3 form a crankshaft (i.e. the distance
between ¢ and i+ 3 is 1) | of the 2 possible 90° crankshaft
rotations is picked randomly: otherwise., a move is unsuc-
cessful and the selection of a move starts from the
beginning.

For single and double monomer moves, about 8% and
0-59,, respectively, of the moves tested by the Monte
Carlo criterion are accepted for the trial sequence in the
initial phases of folding (sequence 2, T =1, B, = —2). The
number is much smaller for collapsed structures. The ratio
of single versus double monomer moves tested by the
Monte Carlo criterion is approximately 5: this is so
because the crankshafts are rare and because a crankshaft
move is likely to result in double cecupancy.

An order parameter that describes a transition of a
chain from a degenerate state with many backbone con-
formations to a state with few, possibly only L. backbone
conformation is:

M
X(T)y=1-— Z_p,?. (3)

where:

M
Z=3 exp(—EfkyT). (4)



1618

Monte Carle Simulation of Protein Folding

ky is the Boltzmann constant set to 1 in this study, p; is
the Boltzmann probability for a system to be in state {,
and Z ig the chain partition function. If there is a unique
ground state with a large Boltzmann weight (p, ~ 1,
Pi=o ~ 0), X ~ 0. If many states have comparable oceu-
pation {p? « 1), X ~ 1.

In the analytic random heteropolymer model corre-
sponding to eqns (1} and (2), it is found that the average
of X over all possible random sequences (Shakhnovich &
jutin, [989) is:

(Xy = {Tm

where T is the critical temperature given for the ensemble
of all random sequences by:

./ .
T ®)

y is the number of conformations per monomer and p is
the average number of contacts per monomer (each
contact is counted only once, as in eqn (1)). Thus, at
sufficiently low temperatures, (X} approaches zero; this
means that the ground state thermodynamically domi-
nates the distribution of states. The fraction of random
sequences that have the native state with Boltzmann
probability py of at least 1 —¢ is (Shakhnovich & Gutin,
19%0c;:

it T < T, 5
i > 1 )

sin(n{ X >} e

Plp, 2 1-8) == 5 (7)

The number of different conformations of a hetero-
polymer chain is ¥ ~'. The number of thermodynamically
relevant conformations of a given sequence, Npp, can be
calculated in the random heteropolymer model {Shakhno-
vich & Gutin, 1989). For the limiting values of X,

1
S)N TPICX

ifXx1
Nyp =exp (ka [+X

fX <1’ (8)

where § is the configurational entropy of a chain.
Correspondingly, X(T) reflects the degree of conforma-
tional heterogeneity of a single sequence at temperature
T.

A convenient measure of the similarity between two
conformations ¢ and j is the fraction of common contacts
between them, €, We can calculate the probability
distribution of @ for an ensemble of conformations of a
given sequence at temperature T

M

@) = Z 5(Q—Q:j)?7fpjs )]

Lj

where 3(@—@;) =1 if @ = @; and is 0 otherwise. Note
that Pr(1)=1—X(7T). For random heteropolymers,
{P(Q))> has a bimodal shape. This is found analytically in
the limit of infinite length chains and also for the cubic
lattice model of a 27-mer {Shakhnovich & Gutin, 1989,
1990a). The first peak at @ = | corresponds primarily to
the overlap of the native state with itself; it also has
contributions from the self-overlap of other low energy
structures. The second peak at ¢ ~ 0 (0-3 in the 27-mer) is
dominated by the overlap between the native state and
other low energy states. This peak is increased by the
overlap between the relatively stable non-native states
and other non-native states unrelated to them. The fact
that ¢ is as small as 0-3 implies that there is little relation

between the geometry of the native state and other low
energy states. An energy surface with this property is
referred to as “rugged” or a “rugged landscape” (Frauen-
felder et al., 1991; Karplus & Shakhnovich, 1992).

(b) Definitions and choice of variables

A particular sequence is defined by the matrix B of
interaction parameters B, The native conformation i the
compact self-avoiding chain with the lowest energy. A
sequence folds in a given Monte Carlo simulation if it finds
the native conformation within a reasonably small
number of Monte Carlo steps (see below); the conditions of
the folding simulations are such that it would not neces-
sarily remain in the native conformation if the simulation
was continued (Shakhnovich ef al., 1991). Foldicily of a
given sequence is defined as the fraction of all Monte Carlo
runs that started with a random conformation and
finished in the native conformation under a given set of
conditions. A sequence is a folding sequence if the native
conformation is structurally unique and foldicity is high
under conditions where the native structure is thermo-
dynamically stable.

To perform the Monte Carlo simulations, several para-
meters have to be chosen. These parameters are the
maximal number of steps in a simulation, the temperature
T, the collapse parameter B,, and the heterogeneity para-
meter ¢g. In the work by Shakhnovich ef al. {1991}, the
values of these parameters were chosen by trial-and-error.
Their values were used in this paper as a starting point for
refinement. The maximal number of Monte Carlo steps
was set to 50 10% because folding is usually achieved
within 10% 10¢ steps. The simulation was stopped when
the native state was reached for the first time. This
corresponds to measuring the first passage time and is
sufficient for our aim of studying the kineties of folding.
An exploration of equilibrium properties would require
simulations to extend beyond the first passage. Since only
the relative values of the parameters B,, g5 and T are
important, the heterogeneity parameter ¢, was fixed at 1.
Folding of a trial sequence (sequence 2 in Results, section
(a)) was explored to find folding parameters for the simu-
lations of all sequences (Fig. 2). Foldicity of sequence 2 is
optimal in a relatively wide range of B, values {Fig. 2(a)).
However, it is advantageous to use the most negative
value of B, (B, = —2) that still gives significant folding to
increase the probability that the global energy optimum
corresponds to a compact self-avoiding conformation
(Results, section {¢)). When B, = —2 and ¢ = 1, almost
all B,; are less than 0 (eqn (2)).

Foldicity of sequence 2 is maximal in a broad range of
temperatures where X°®(T) is larger than (-5 and smaller
than 0-9 (Fig. 2(b); insert}; the supersecript csa indicates
that only the compact self-avoiding chains were used in
the calculation of X (M in the summation of eqn (3) is
103.346). The temperature used for the subsequent
folding simulations was obtained from two considerations:
(1) thermodynamic stability of the native state must be
ensured and (2) foldicity should be as high as possible.
The first requirement is best satisfled by low temperatures
and imposes an upper limit on the folding temperature.
For the 200 sequences studied, this limit corresponds to a
temperature at which X®* = -8 because the native con-
formation still has a relatively high average Boltzmann
weight ((r4) at this temperature (Fig. 3(a)); all other
conformations have probabilities £0-2. Note that non-
compaet conformations are not taken into account in
these calculations and that the true thermodynamic
stability is less than 04 (see also the Discussion). The
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Figure 2, Optimal folding conditions for the trial
folding sequence 2. Foldicity is determined from 10 inde-
pendent Monte Carlo folding simulations. (a) The depen-
denee of foldicity on the collapse parameter B, at T' = 1-0.
{b) The histogram shows the dependence of foldicity on
temperature T at B, = —2:0. The curve is X**(T) on the
same scale. The inset shows the dependence of foldicity on

X%

second requirement is generally expected to be better
satisfied by temperatures higher than 7(X®* = 0-8),
especially for the sequences that have low T(X%* = (-8);
the trial sequence 2 has one of the highest 7(X® = (0-8)
values among the 200 sequences studied. A higher
temperature increases the probability of a system being
able to overcome the energy barriers on its way to the
native state. Thus, as a compromise between the 2
requirements, the folding temperature for all sequences
was set to the highest value that reasonably fulfills the
stability condition; i.e. the absolute temperature was
selected at which X“** = (-8, Defining a relative tempera-
ture 7:

T
=

x

T= T, =T(X*" = 08), (10}
we use T = l. The temperature used for folding is there-
fore different for each sequence. For the energy functions
describing the heteropolymer (equs (1), (2)), T is distri-
buted approximately normally with a mean of 0-7 and
standard deviation of 0-3 (Fig. 3(b)).

Use of constant T with t = 1 rather than constant 7', is
justified as follows. The generation of the B,; with eqn (2)
yields a set of protein sequences with different 7 and
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Figure 3. Determination of folding temperature.
(a) Distribution of Boltzmann probabilities of the native
structure for the 200 random sequences at T(X** = (-8),
The Boltzmann probabilities were calculated using an
ensemble  of compact self-avoiding chains only.
(b) Distribution of 7(X**=0-8) for the 200 random
sequences in the database.

different X**T). For sequence 2, X“%T) shows the
folding transition region (Fig. 2(b)). A real protein would
have a much steeper transition than the 27-mer. By using
=1, we are studying the folding kinetics in the same
portion of the transition region for all sequences. If a high
constant T were used, some sequences would not satisfy
the thermodynamic stability criterion; i.e. they would be
denatured. If a low constant 7' were used, many sequences
would cease to fold because they would not have enough
energy to overcome the energy barriers. Use of an appro-
priate constant T ensures that the native state is stable
and that a sequence still has a possibility of folding.

The dependencies of folding on T and B, shown in Fig.
2 for the trial sequence were found to be typical for other
folding sequences (results not shown).

When several groups of sequences are compared (e.g.
folding versus non-folding sequences), the standard error
of the mean:

(11)
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Figure 4. Distribution of foldicities for the 200 random
sequences. See Methods for folding conditions.

0.0

is used to judge the significance of the differences between
the groups where x is the quantity compared and = is the
number of the sequences in the group.

We can compare the energy function for the current
lattice model with that for the solvated proteins, We do
this by comparing the average residue-residue contact
energies. For solvated proteins, we use the residue—residue
contact energies e;; listed in Table V of Miyazawa &
Jernigan (1985). Their expression for the total energy
differcnce between the selvated extended and solvated
native structure of a protein is the same as that for the
lattice model (egqn (1)). except that e; values are used
instead of B;; values. Thus, the proper averages of ¢; and
B;; should be directly comparable. Residue-residue
contacts in a protein are assumed to occur when the
centers of the 2 side-chains are closer than 65 A. In a
typical globular protein of 100 to 200 residues, there are
between 1'7 and 20 contacts per residue (Mivazawa &
Jernigan, 1985). This can be contrasted with 1-04 (28/27)
contacts per monomer for a lattice model. For proteins,
the average contact energy is —2:64 kT and the stan-
dard deviation for the contact energies is 1-37 kg T. In this
averaging, e;; values are weighted according to the
frequencies of the corresponding residue types in the
protein database (column 2 in Table ITT, Mivazawa &
Jernigan., 1985). For the 30 folding sequences in the
lattice model, the average contact energy is {B;) =
—2-02(£0-01), the standard deviation of B;; values is
og = 1:00, and the average folding temperature iz {T',» =
1-24( £ 0-035). This ecorresponds to an average contact
energy of —146 kg7 and to the standard deviation of
81 kgT. Thus, the values for real proteins in the
Miyazawa & Jernigan model are only a factor of 1'7 larger
than the values for the lattice model. Moreover. there is
also agreement hetween the lattice model and real pro-
teins. Temperature denaturation experiments (Privalov,
1989; Privalov & Khechinashvili, 1974) suggest that the
average residue-residue contact energy of myoglobin at
303 K is 1'24 & T'. Similar values are obtained for other
proteins (Privalov & Khechinashvili, 1974). We note that
this approximate agreement of the lattice model with the
Miyazawa & Jernigan model and real proteins was
obtained solely by considering the B, ogand T that result
in optimatl folding in the lattice model. not by optimizing
the match between the 2 sets of parameters.

It should he noted that Mivazawa & Jernigan (1985)
did not wuse the correct temperature with the

Boltzmann-like statistics employed to calculate the ener-
gies from the observed contact frequencies. They used
room temperature, but it has recently been suggested that
they should have used the critical temperature T, (Gutin
el al.. 1992). Gutin el al. (1992) estimated that the critical
temperature 7, is a factor 1-5 higher than room tempera-
ture. This would result in an increase of the corrected
contact energies of Miyvazawa & Jernigan for the same
factor. However, the results in this paper indicate that
rapid folding into the stable native structure occurs
slightly above the eritical temperature T, (see Discussion).
Because the folding temperature can be eguated with
room temperature, the critical temperature could also be
less than room temperature. Whatever the precise value
of the critical temperature, the difference between the
room temperature and the eritical temperature is small
and does not destroy the approximate agreement between
the contact energies in the Mivazawa & Jernigan model
and in the lattice model.

3. Results
(a) Database for analysis

A total of 200 random B matrices were generated
by using random numbers and the Gaussian distri-
bution in equation (2). Each of these sequences was
subjected to ten independent Monte Carlo simula-
tions starting with a random coil state to determine
which of the sequences fold to the ground state. The
conditions described in Methods, section (bh), were
used. The distribution of foldicities, defined in the
same section, is shown in Figure 4. There are 30
strongly folding sequences that folded four or more
times, 24 weakly folding sequences that folded
between one and three times, and 146 sequences
that did not fold at all. The division of the folding
sequences into strongly and weakly folding sub-
groups is useful because the trends described below
are more pronounced if weakly folding sequences
are omitted from the analysis.

{b) Test of metastability of folded states

[t is conceivable for a polymer chain to fold
repetitively into a unique local energy minimum
that is different from a global minimum. This ¢ould
be caused by kinetic “funnels” on the configuration
surface (Leopold et al., 1992). In fact, the question
has often been raised as to whether the native
structure of a protein corresponds to a free energy
minimum  (Honeycutt &  Thirumalai, 1992;
Levinthal, 1968; Wetlaufer & Ristow, 1973}, though
a range of experiments, at least for small proteins,
suggest but do not prove that it is (Anfinsen, 1973;
Karplus & Shakhnovich, 1992). In principle, protein
structures could correspond to metastable states
because any unique, stable and rapidly accessible
structure would be sufficient for a real protein to
fulfill its biological role.

Because we have a database of random sequences
that do not find the ground state, it is possible to
determine whether any of them do, in fact, end up
in a single metastable state. To test the frequency of
repetitive folding into a unique local minimum, the
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conformations with the lowest energy from the ten
independent folding simulations were compared for
each of the 146 non-folding sequences. They all
correspond to relatively low energy minima; e.g.
their energies were about ten units above the
ground state energies. None of these sequences
folded into the same local energy minimum more
than once. The fraction @ of common contacts
between these structures is in the range of 002 to 0-4;
this corresponds to the similarity expected from a
set of randomly chosen structures. Therefore, the
present model does not support the metastahle
native state model. This is in accord with the results
of Huneycutt & Thirumalai (1992) who have done
off-lattice simulations. They also found that the
gystem ended up in different metastable states.

(c) Comparison of lower parts of energy spectrum of
the ensemble with compuact self-avoiding chains

The ensemble of all self-avoiding chains, which
includes many more non-compact than compact
structures (Chan & Dill, 1990), contains too many
conformations to find the global energy minimum
by evaluating each one of them. The ensemble is
also too large to calculate thermodynamic functions
such as X by using the summation over all strue-
tures. Instead, only the compact self-avoiding
chains are considered in this paper. To determine
the validity of this simplification, a Monte Carlo
simulation of 50 x 10° steps was performed for all
chains to find the global energy minimum. The
simulation started from the native structure (i.e. the
self-avoiding structure with the lowest energy) at a
high temperature of 7" = 12 Only 11 out of the 200
random sequences were found to have an energy
minimum more negative than that of the native
structure. The same Monte Carlo simulation was
used to explore the lower discrete part of the energy
spectrum of the 200 random sequences. The sample
energy spectra of ten random sequences (Fig. 17(a))
show that if the discrete part of the spectrum is
sparse for compact self-avoiding chains, it is likely
to bhe sparse for all chains. Therefore, there is a
strong correlation between, for example, X and X
{(Fig. 17(b)). These two results imply that the
features that depend only on the lower discrete part
of the spectrum can be characterized by use of the
compact self-avoiding chains alone, neglecting the
non-compact conformations. Full enumeration of
shorter chains in 2D confirms this finding (A.
Dinner, A. 8ali, E. Shakhnovich & M. Karplus,
unpublished results). It is these features that are
dominant in diseriminating the folding from non-
folding sequences (see below).

(d) Relation between foldicily and the energy
spectrum

Since the heteropolymers are characterized by the
contact energy distributions (eqns {1} and (2}} inde-
pendent of the nature of eonformations, it is of

_65 4

101

4
o
|
r |

. H
~75- ==—E
-804 .
]0;5 _t00310 00
41 42 43 44 45 46 47 48 49 50
SEQUENCE

Figure 5. Energy spectra for 10 sample folding and
non-folding sequences. The energies of the lowest 400
compact self-avoiding conformations are drawn. The
numbers below the spectra show the foldicities of the
corresponding sequences: if no number is given. the
sequence does not fold.

interest to determine whether there is a relation
between foldicity and some features of the distribu-
tion of the energy levels of compact self-avoiding
chains. The energy spectra for four folding and six
non-folding sequences are shown in Figure 5. Tt is
apparent that folding is associated with a large gap
between the lowest and second lowest energy levels
of compact self-avoiding chains, AE|,.

Average X**T) for strongly folding and non-
folding sequences are shown in Figure 6. The folding
sequences are characterized by a sigmoidal shape of
X°2(T) while the non-folding sequences conform to
X*(T) found for random chains by Shakhnovich &
Gutin (1989} (Fig. 17(b}). In fact, the former corre-
sponds to a cooperative folding transition while the
latter does not. The difference in the form of the
curves can be related directly to the nature of the
lower part of the energy spectrum. A sparse spec-
trum with a large AE |, leads to a cooperative curve,
while a quasi-continuous low energy spectrum
results in the non-cooperative behavior. It is clear
that if AE | is larger, a higher T will be required to
excite the system into energy levels above the
ground state at equilibrium, This is reflected in the
slower increase in X®(T). Associated with this is
the increase in T, the value at which X**(7T} = 0-8
(egqn (10)); (7> for the folding sequences is 1-24
while (T} for the non-folding sequences is (-63.

The dependence of foldicity on T, and AE,, is
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Figure 6. (X**T)> for strongly folding (continuous
line) and non-folding (broken line) sequences at t = 1. The
error bars show the standard error of the mean.

shown in Figure 7. It confirms that AE,; and T, are
strongly correlated. Both of these parameters of the
energy spectrum determine whether or not a given
sequence is a folding sequence. A line can be drawn
that separates the (T, AE ;) space into two regions
corresponding to the folding and non-folding
sequences. When the line is drawn to minimize the
number of the non-folding and folding sequences in
the folding and non-folding part of the plot, respec-
tively, only three false non-folding sequences are
predicted out of the total sample of 200 random
sequences {Fig. 7); the line is given by the equation
AE ;= 18—16 x T,. That the dividing line is almost,
vertical, demonstrates the importance of T,.. An
optimally placed horizontal line would also separate
most folding from the non-folding sequences, indi-
cating that AE,, by itself is also significant. Since
the latter (AE,,) is a simpler eriterion than the
former {T,), we consider both in what follows. The
high prediction success for the optimal line shows
that it is possible to use only the two simple thermo-
dynamic parameters to identify almost all strongly
folding sequences without performing kinetic Monte
Carlo simulations.

(e) Associations between foldicity and the
conformation of the native state

The order of a contact between two monomers is
defined as the absolute difference between their
residue indices: A7 = |[{—j| with A{ > 3. Due to the
geometric properties of the cubic lattice, only
contacts of an odd order are possible. A total of 156
(212+1 5 12} different possible contacts exist for a
27-mer; each compact self-avoiding conformation
has 28 of these.

[t has been suggested that stabilizing contacts
between residues close in sequence govern nuclea-
tion events which would greatly accelerate the
folding process (Wetlaufer, 1973). Tf this were true
the frequency of local contacts in the native struc-
ture of a folding sequence would he expected to be

.
4.0 .
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Figure 7. Discrimination between strongly folding and
non-folding sequences on the basizs of the energy gap,
AE,, and T, Btrongly folding sequences, filled circles:
non-folding sequences, dots. The weakly folding sequences
(not shown) are concentrated around the boundary
between the strongly folding and non-folding sequences.
They were omitted from the plot in order to obtain better
contrast between folding and non-folding sequences. The
continuous line separates the 2 groups of sequences by
minimizing the number of the folding and non-folding
sequences in the non-folding and folding parts of the plot,
respectively. The broken line indicates the critical
temperature T, for the ensemble of compact self-avoiding
chains estimated from Fig. 17(b) using eqn (5).

higher than that in the non-folding sequences. The
distribution of spatial contacts as a function of their
order for native structures of the folding and non-
folding sequences, and for all 103,346 compact self-
avoiding chains is shown in Figure 8. While local
contacts are more likely than global contacts, as

020 §
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Figure 8. Distribution of contacts in native structures
of strongly folding and non-folding sequences, and in all
compact self-avoiding chains, Ai is the order of a contaet,
defined as the ahsolute difference of indices of monomers
in contact. Strongly folding sequences, filled circles; non-
folding sequences, open circles; compact self-avoiding
ehains, squares. The error bars show the standard error of
the mean. The peints at the bottom are an artefact of the
cubic lattice resulting in no contacts of an even order.
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Figure 9. Definition of secondary structure segments
(Chan & Till, 1991). A contact map for sequence 43 is
shown. A dark stippled square indicates a contact
between the 2 corresponding monomers. The minimal
length of a helix, parallel strand and anti-paraliel strand

is 2 contacts, A turn always has 2 contacts, Anti-parallel
strand and helix contacts can include turn contacts.

expected, no significant differences in this prefer-
ence can be seen between the three groups of
structures.

Even though the structure of a 27-mer chain on a
lattice is simple compared to that of real proteins,
secondary structure can still be defined on the bhasis
of characteristic contacts in the contact map (Chan
& Dill, 1991; Fig. 9). Four classes can be
distinguished: helix, parallel-sheet, antiparallel-
sheet, and turn contacts. A helix, for example, is
defined by at least two contacts of the form i+4,
i+249d, where 7 is the starting residue of the helix
and d has to change from ¢ in steps of 2. There are
no significant differences in the fractional content of
the four secondary structure types between native
structures of the folding and non-folding sequences
(Table 1). As pointed out in the Discussion, the role
of secondary structure in folding of real proteins and
of longer chains on a lattice may be more important
than ohserved here.

() Association of foldicity with the correlation
between interaction matriz and native structure

A contact map C can be constructed for any
conformation by placing 0 at position i3 if
monomers i,j are in contact and 1 if they are not
(Fig. 9). It has been shown that it is possible to
produce successful folding by using an interaction
matrix B that mirrors the contact map C for the
native conformation: i.e. monomers that are in
contact in the native state are made to interact
attractively while other monomer pairs do not
interact (GO & Abe, 1981). This correlation means
that a special biags towards the native state is intro-
duced in the choice of parameters. Since random B;;
values are used in this study we can address the
question whether a higher correlation between the
interaction matrix B and the contact matrix Cis a
feature that distinguishes folding from non-folding
sequences.

A plot of foldicity versus DPearson correlation
coefficient hetween B and C is shown for the 200
sequences in the database (Fig. 10). Both folding
and non-folding sequences have correlation coeffi-
cients of around (-35. This relatively high correla-
tion is due to validity of the ‘quasi-chemical
approximation” according to which the probability
of occurrence of a contact in the native state is
proportional to exp(—B;/T.) (Gutin et al., 1992).
However, there is no significant difference between
the two groups in the sense that the variation
within the two groups is smaller than the difference
between the two groups (Fig. 10). Clearly, the corre-
lation coefficients for the random folding and non-
folding sequences are much closer to each other than
to the correlation coefficient of unity for the
sequences with perfect correspondence between B
and C, as assumed in the G3 & Abe (1981} model.
Nequences with a correlation coefficient between B
and C significantly higher than the average do not
occur among the 200 random sequences in the data-
base. It follows that studying the folding of
sequences where B is artificially highly correlated
with C may lead to conclusions not generally valid
for random folding sequences. Nevertheless, a small
bias in the potential (eqn (1)) of the type described
by Go & Abe (1981) must be present to make the
observed ground state most stable.

Whether or not the native structures of folding
and non-folding sequences differ in their ability to

Table 1
Association hefween foldicity and secondary structure contents in the native
conformation
Sequence type Helix Parallel sheet Anti-parallel sheet Turn
Strongly folding r118(+0:013) 04 16( £ 0-033) 0264 ( £ 0027) G121{0:020)
Non-folding G10Z(£0-006)  0-432( +0-014) 0-252( 4 0-011) 0-133( = 0-009)

The fractional content of the contacts of different secondary structure types is shown. The
anti-parallel sheet contacts include turn contacts. The number of ail contacts is 28. The error is the
standard error of the mean for the 30 strongly folding and 146 non-folding sequences.
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Figure 10. Dependence of folding on the correlation
hetween the interaction matrix and the native contact
map. This dependence is shown for the 200 random
sequences in their native state (open circles). To judge the
significance of the observed correlation coefficients, the
curve shows the distribution of correlation coefficients for
comparison of the 103,346 compact self-avoiding chains
with random interaction matrices that were calculated
using eqn (2} with B, =—2 and o5 = 1. The correlation
coefficients for the interaction matrices used by Go & Abe
(1981) are 1, as indicated by the arrow.

satisfy the contacts with the lowest values of B; can
be explored further as follows. The 156 B; inter-
action parameters in the B matrix that can possibly
correspond to a contact between two monomers are
sorted in order of increasing energy, separately for
each of the 200 sequences. Every contact is then
checked to determine whether it occurs in the native
structure of the corresponding B matrix. Finally, a
histogram is prepared that counts how many times
the lowest B, second lowest By, third lowest By,
ete. corresponds to a native contact. This histogram
is then normalized by division with the number of
sequences to obtain the probabilities that the i-th
lowest B,; corresponds to a native contact (Fig. 11).
As with the correlation coefficient between B and C,
there is no difference between the folding and non-
folding sequences. There is 802 chance that the
lowest B;; corresponds to a native contact. This
probability decreases to 209, for the 50-th lowest
B, A fit of the curves P[{B;;(Ai)>] in Figure 11 to
exp[—<{B;(Ai)>/T.] gives T, =17. This value is
significantly higher than 7. ~ 1 as estimated from
(X=*{TY> (Fig. 17(b), eqn (5)); it is also higher than
T, ~ 0.77 as estimated from the distribution of the
energy gap between the two compact states with the
lowest energies (Fig. 14; eqn (21}). This discrepancy
reflects the degree to which the constraints imposed
on the conformation by the chain connectivity inva-

lidate the guasi-chemical approximation.

(g) Association of foldicity with a relationship
between energy levels and corresponding structures

It was suggested by Shakhnovich et al. (1991)
that the sequences with high foldicity have a signifi-
cant optimum in P$*(Q)} in the neighborhood of

0.80 1

0.60 1

0.40 1

0.20 1

0.00 T v y v
0 10 20 30 40 50 60

Figure 11. Probability that an [-th lowest B; will
correspond to a native contact. The distribution was
obtained as described in Results from the 200 random
sequences. Strongly folding sequences {continuous line),
nen-folding sequences (broken line). The smaller noise in
the curve for the non-folding sequences as compared with
the folding sequences reflects the larger number of the
non-folding sequences available to estimate the prob-
ability distribution.

@ = (r6 to 09 in addition to the maximum at ¢ = 1;
this optimum was absent in the non-folding
sequences. The optimum is due to the existence of
conformations that have low energies and are also
structurally similar to the native state. The pre-
sence of these conformations was thought to speed
up the folding kinetics.

Average PT2{()) for the folding and non-folding
sequences are shown in Figure 12. There are no
significant differences between the folding and non-
folding sequences. In particular, as demonstrated by
the similarity of the two curves in the region ¢ = 0-6
to ¢} = 0-9, the non-folding sequences have the same
distribution of the low energy conformations struc-
turally similar to the native state as the folding

0.20 1
0.151

0.101 3
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Figure 12. {P7XQ)> for strongly folding and non-
folding sequences. The shape of (PFX(Q)) for the folding
sequences remains the same when only 15 sequences with
foldicity of at least (-80 are used in the average.
Continuous and broken lines are used for the folding and
non-folding sequences, respectively. The error bars indi-
cate the standard error of the mean.



Monte Carlo Simulation of Protein Folding 1625
10l@ T =0.200 _ e T =0.200 -
0.81 06
< o g
] 3 04
o~ 0.41 o
1
0.21 021
0.0 ' ~ - ~ - 0.0 T ﬂ_'t“ — ———
00 02 04 06 08 10 00 02 04 06 08 1.0
Q Q
10 (b) T = 0.538 — 020 4 (f) T = 0538 = TX —
] ]
0.81 0.161
S 06 g 0.2 I
8 ] ] |
n~ 0.41 o 0.08-
0.2-l 0.04- J_r'_{r
0.0 i i T i T T 00 T r—ﬂ_mr = T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Q Q
0.20 4 {c) T=1503=T, - 0.161(9) . T=1.503
| of
0.16 0.12 1 i
S 0.12; 1 ) A
3 J g 0081 Il
o 0.081 a -
0.04 0.04 1 l
0.00 +—=-14 LT e L, 0.00 4= LU L L e 7 T
00 02 04 06 08 1.0 00 02 04 06 08 10
Q Q
0.164(d) HTP T =2.500 0.16 (h) —l-l_ T =2.500
012 - o121 ik
<) i g |
7 0.08- 8
a- - a
0.04 1 J
0.00 += W Do o 1 Pt — i
00 02 04 06 08 1.0 00 02 04 06 08 10
Q Q

Figure 13, Comparison of P§(§) for folding sequence 43 and non-folding sequence 48. {a) to (d), folding sequence 43;
(e) to {h), non-folding sequence 48. Temperatures T' and T, are indicated on the plots.
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sequences. Because T =T, (t1=1) was used in
Figure 12, the sequences are being compared at
different values of 7 with T generally higher for the
folding than the non-folding sequences. When
PN} values are compared at the same absolute
temperature T, the difference between the folding
and non-folding sequences can be significant
{Shakhnovich et al., 1991; Fig. 13).

Tn prineciple, there are two possible reasons for a
difference between (Fr(@)) values for the two types
of sequences. First, the lower part of the energy
spectrum for the non-folding sequences might be
compressed relative to the folding sequences while
keeping the ordering of the energy levels intact.
Second, the ordering of the levels might be changed
by moving the low energy structures related to the
native state to more positive energies; this would
significantly decrease Baoltzmann weights of these
structures, Because this would change the form of
{Pr (@) (e.g. it would decrease {/’;_(§) ~ 0:8)3), it
is clear from Figure 12 that the first case applies. In
other words, the differences between the {Pr(Q))
values are due only to a difference in the folding
temperature 7', and not to a different relationship
between the energy levels and their structures. Note
that T, depends only on the distribution of energy
levels. not on the corresponding structures, whereas
Pr_(€)) does depend on the structures described by
their monomer—-monomer contacts. The lower T,
the more compressed is the lower part of the energy
spectrum. Therefore, the absolute temperature has
to be decreased for the non-folding sequences to
achieve the same thermodynamic preponderance of
the native and near-native states with respect to the
non-native states. The dependence of (@} on T for
a sample folding sequence and a non-folding
sequence illustrates these statements (Fig. 13). It
shows how the disappearance of a peak at ¢ = 1 for
the non-folding sequence lags behind that of the
folding sequence, corresponding to a lower 7', of the
non-folding sequence. Additionally, it shows that
the difference in the shape of P(Q) between the non-
folding and folding sequences can be accounted for
by the temperature at which £{¢}) is calculated; i.e.
the shapes in the following pairs of plots are similar:
(b} and (e}, (¢) and (), (d) and (g} (Fig. 13}.

4. Discussion

The protein model used in this work is a 27-bead
heteropolymer chain on a cubic lattice (Shakhno-
vich et al., 1991). Despite its simplicity, the model
contains essential features of protein folding. The
total number of conformations, inciuding the non-
compact conformations, is approximately 5°%, a
number much larger than can be scanned by any
simulation. Thus, the Levinthal paradox is present
in this system. The energy of each conformation is
given by the sum of the monomer—monomer contact
energies (eqn (1)); two monomers are in contact
when they are nearest neighbors on the cubic lattice
and are not neighbors in a sequence. The contact

interactions were selected from a Gaussian distribu-
tion bilased toward compact states by a mean
(hydrophebic) attraction (eqn (2)). In this model,
the density of levels in the energy spectrum of a
sequence is also given by a (aussian distribution
(Appendix I). As a result, there is a discrete lower
part of the energy spectrum with few levels and the
quasi-continuous part with many levels that have
more positive energies (Shakbnovieh & Gutin, 1989,
1990a). The folding in this model is simulated by a
Monte Carlo procedure that consists of a large
number of small changes in the conformation, while
preserving bond lengths and avoiding multiple oceu-
pancy of lattice sites.

Because the total number of compact self-
avoiding conformations unrelated by symmetry is
only 103,346 (Shakhnovich & Gutin, 19904), the
madel permits the knowledge of the ground state
energy and structure, as well as of the low energy
spectrum with its associated structures. As one goes
higher in energy towards the quasi-continuous
range, the non-compact structures, which cannot
be fully enumerated, become more important.
However, this does not affect the resuits and the
analysis proposed here,

We have generated and studied 200 random
sequences of which 30 have high foldicity; i.e. in ten
Monte Carlo runs at least four of the trajectories
reach the ground state within 50x16° steps.
Analysis of the results permits us to obtain informa-
tion about what distinguishes the two {ypes of
sequences without a preconceived model. A signifi-
cant aspect of this work is that the features impor-
tant for folding are identified by comparison of the
folding and non-folding sequences, not by inspection
of the folding sequences alone, as in usual analyses
of protein structures. Thus, this approach allows us
to separate the properties exclusive to the folding
sequences from the general features of any hetero-
polymer sequence. It leads to surprising results:
some features which might have been expected to be
typical of the folding sequences are also found in the
non-folding sequences. First, we discuss only the
lattice model and conclusions based on it. The ques-
tion of the relation of this model to real proteins is
considered in the second part of the Discussion.

Whether or not a given sequence folds rapidly to
a stable native state is defermined by features of its
energy spectrum (Figs 5 to 7). There tends to be a
large gap between the two lowest energy structures
of the folding sequences. Moreover, a high T, =
TXSTy=08) (eqn {10)) is conducive to high
foldicity. X“*(T) (eqn (3)) is an order parametcr
that decreases with the thermodynamic weight of
the native state. Thus, T, increases with the weight
of the native state at any given temperature. A high
T, results from a wide energy separation between
the ground state and the bulk of the structurcs,
which is proportional to the sparseness of the entire
low energy spectrum, not only to the gap between
the two lowest levels. This difference between the
folding and non-folding sequences is manifested in
the shape of the curve for {X**(T}> as a fanction of
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T (Fig. 6). For the non-folding sequences, a non-
co-operative curve, characteristic of the random
sequences (Shakhnovich & Gutin, 198%; Fig. 17(b)}),
is obtained. By contrast, the folding sequences have
a high co-operative (sigmoidal) shape for (X**(T}).
It remains to be seen what patterns in the amino
acid sequences give rise to the interaction matrix
that results in the high 7', and in the large energy
gap, and thus lead to rapid folding.

A number of proposals have been made in the
literature concerning the mechanism by which a
sequence can fold in a reasonable time, overcoming
the problem raised by the Levinthal paradox. The
present simulation permits us to address some of
these. No difference exists between folding and non-
folding sequences with respect to features of the
native state, such as the distribution of the short
and long range contacts (Fig. 8), and the contents of
the helix, paraliel sheet, anti-parallel sheet and furn
contacts (Table 1). There is also no significant differ-
ence in the correlation between the interaction
matrix B and the native contact map, although the
correlation itself is significant for both the folding
and non-folding sequences (Figs 10 and 11). We
emphasize, however, that these findings were
obtained for short chains on a lattice and that they
may or may not be valid for longer chains of real
proteins. To explore the differences in the relation-
ship between the energy levels and corresponding
structures, the probability distributions Pr_(€) (eqn
(M) for the structural overlap § were compared for
the folding and non-folding sequences (Figs 12 and
13). The comparison shows that the lower part of
the energy spectrum of the non-folding sequences
with the associated structures can be obtained by
compressing the lower part of the energy spectrum
of the folding sequences. This leads to a smaller T',.
No reordering is required of the energy levels corre-
sponding to the conformations that are close to the
native state.

There are three temperatures of interest. The
critical temperature T, which is a property of the
ensemble of all random sequences (eqn (5)), the
absolute temperature T, and the relative tempera-
ture 1, which is defined as the ratio between T and
T, (eqn (10)). Since X®(T) varies with sequence,
the relative temperature at the same absolute
temperature is different for each sequence. At the
same relative temperature 7, however, the sequences
are likely to have approximately the same
Boltzmann weight of the native state, regardless of
the energy gap between the ground state and the
first excited state (Fig. 3(a)). Whether a sequence
folds is determined by an interplay between T and
7. The first condition is that absolute temperature 7
at which folding is attempted must be high enough
{more than =x1-06p/k;) so that the system has
enough energy to overcome the highest energy
barrier on the way to the native structure. The
second condition is that relative temperature 1 of
folding must not be too high (i.e. must be less than
%~ 1:0), otherwise folding would not be sufficiently
driven towards the global minimum and the native

structure would not be stable enough. Instead, the
sequence would be exploring too much of a phase
space to fold in a reasonable time because its energy
fluctuations would allow it to climb over more
energy barriers. The relative temperature can be
low enough when the lower discrete part of the
spectrum is sparse, with the energy gap between the
lowest and second lowest energy levels, AH,
greater than k7. Therefore, the requirement for a
folding sequence is that the relative temperature is
sufficiently Jow at a sufficiently high absolute
temperature. Both conditions are satistied when T,
is larger than ~1, as shown in Figure 7.

As noted hefore, the only conditions for rapid
folding into the stable native state that are revealed
in this study are the large gap in the energy spec-
trum between the native state and other conforma-
tions, and the sparseness of the discrete part of the
spectrum. This coincides with fulfiiling the stability
requirement at a high absclute temperature. In
particular, the temperature of folding at which the
native state is stable (7)) has to be higher than the
critical temperature for the ensemble of random
sequences (T%,). In our model, {(T'.> = 1-24{+ 0-035)
for the folding sequences, and 7_x 1 for the
ensemble of all random sequences with a compact
self-avoiding conformation (Fig. 17(b), eqn (5)). By
contrast, (T.> for the non-folding sequences is
0-63(+0-016). Thus, the main difference between the
folding sequences and the non-folding sequences is
that the folding sequences are stable at a higher
temperature where folding is kinetically possible.

A random folding sequence is different from
random sequences (e.g. Fig. 6) because it satisfies
the two folding conditions; i.e. it has a thermo-
dynamically stable native state and this native
state iz kinetically accessible from the denatured
state.

The thermodynamic requirement has been
discussed by Shakhnovich & Gutin (1990a), who
have derived an expression that gives the fraction of
all random heteropolymer sequences with a speci-
fied Boltzmann weight of the native state at a given
temperature (eqn (7)}. This fraction is determined
on the basis of the whole energy spectrum by taking
into account the difference between the energies of
the lowest state and all excited states, not only the
first excited state. Equation (7} is applicable only
below T, and cannot be employed to estimate the
fraction of thermodynamically stable sequences
above T, Over the whole temperature range the
fraction of thermodynamically stable sequences
decreases as the temperature and the required prob-
ability of the native state increase. At each
temperature, below and above 7, the thermo-
dynamically stable random sequences are different
from the random sequences because they have a
sufficiently large energy gap between the lowest
state and the rest of the states (Shakhnovich &
Gutin, 1990a).

The Monte Carlo simulations show that a random
sequence is not likely to fold at a temperature where
it is reasonably stable if that temperature is below
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T, (Fig. 7); T, is approximately unity for the
ensemble of compact self-avoiding chains (Fig.
17{b)). On the other hand, a random sequence is
likely to be able to fold if it is reasonably stable at a
temperature higher than 7T, (Fig. 7). Random
folding sequences are those thermodynamically
stable random sequences that satisfy the thermo-
dynamic requirement at a temperature higher than
T.; ie. all random sequences that are thermo-
dynamically stable at 7' > T, and none of the
random sequences that are only stable at 7' < T, are
likely to be folding sequences. Further discussion of
this point will be given in a subsequent paper (A.
Sali, E. Shakhnovich & M. Karplus, unpublished
results).

The probability that a gap between the ground
state and the first excited state is equal to or greater
than A can be estimated from heteropolymer theory
(Appendix I):

F(AE,, > A} = exp(—A/T.). (12)

Since real folding (Gutin et al., 1992) and simula-
tions take place at T = T, we see that 1%, of all
sequences have a gap of a few &5 7. In this paper, we
require a native state concentration of only 409,
(Fig. 3(a)) to be able to sirmulate folding at a
temperature at which it is most rapid (Fig. 2). In
this case, 159 (30/200) of the random sequences are
folding sequences (Fig. 4). Note that we caloulate
thermodynamic stability using the compact self-
avoiding chains only. Since there are many non-
compact self-avoiding chains, the true thermo-
dynamic stability is smaller than 409} as obtained
with the use of the compact self-avoiding ensemble
alone. Based on an exhaustive Monte Carlo
sampling beyond the first passage time, the true
thermodynamic stability of the folding sequences at
T is estimated to be 1 to 59 (A. Sali, E.
Shakhnovich & M. Karplus, unpublished results),
At the folding temperature, the interaction energies
of the native contacts are not sufficiently favorable
for the chain to remain in the native state for a large
fraction of the time. On the average, the more stable
a structure as based on the maximally compact
states, the higher its true stability. Consequently, if
a more stable native state were required, the only
difference would be that many more sequences
would have to be simulated for a longer time at a
lower temperature (eqn (12), Fig. 2), which is not
computationally feasible. This situation can be
compared with studies of long chains on the
diamond lattice (Skolnick & Kolinski, 1991) where
true thermodynamic stability was achieved by
explicitly decreasing the energy of the native
contacts, Another example is a study of folding
transitions by the use of Monte Carlo sampling of
heteropolymer chaing on the 3D cubic lattice
{O’Toole & Panagiotopoulos, 1992). In this study,
the thermodynamic stability of the native state was
ensured by designing optimal sequences for highly
symmetric native structures. In contrast to these
two studies, our purpose was not to design special

stable sequences but to find out by selection from
random sequences what is required for folding.

The essential feature of the interaction matrix B
that results in a pronounced energy minimum is its
correlation with the contact matrix of the native
state. However, it is important to note that only a
weak correlation is required. In fact, as shown here,
the difference in the Pearson correlation coeflicient
between B and C for the folding and non-folding
sequences iz not gignificant in the sense that the
variation within the two groups is smaller than the
difference between the two groups. To illustrate the
sensitivity of AE |, to the correlation between B and
C, we consider the effect of making the native
contact energies B;; more favorable by only 0-1 £, 7.
Such a change to the native contacts increases A\,
by about 2-8 ky7T. This increase in AK,, is compar-
able to the initial AE, of the folding sequences
{Fig. 7). Such a modification of B increases the
cross-correlation coefficient by only 0-03. This small
change in the cross-correlation coeflicient is well
within the variability observed among the random
folding and non-folding sequences (Fig. 10).

Although it has been sufficient to consider only
the energy spectrum in separating folding from non-
folding sequences in our simulations, a simple argu-
ment. shows that the requirement for rapid folding
found in this work is not the only necessary feature
of the energy hypersurface. We consider a typical
folding sequence with a large energy gap and
randomly shuffle the structures assigned to each of
the energy levels. The resulting energy hypersurface
could correspond to the golf course model of a
rugged energy landscape (Bryngelson & Wolynes,
1989). This golf course hypersurface still satisfies the
folding requirement as described in this work
because the density of states is not changed by
randomizing the structures. For such an energy
hypersurface, however, no mechanism short of
enumerating all possible conformations will find the
native state. Thus, rapid folding on this surface does
not oceur. This argument seemingly contradicts the
results in the present paper which show that a
pronounced energy minimum is necessary and suffi-
cient for rapid folding. However, this apparent
contradiction can be explained in the following way.
First, a physically reasonable polypeptide energy
function does not result in the golf course landscape.
This is so because of the chain connectivity and
because a small change in the structure is likely to
produce a small change in the energy. The laster
effect is intrinsie to any energy function expressed
as a sum of many small terms (for example, eqn (1)).
The resulting non-randomness in the distribution of
the structures among the energy levels is present in
the folding sequences as well as in the non-folding
sequences. Second, the simulations show that only
those sequences with a pronounced minimum fold
rapidly and that all the sequences with a
pronounced minimum fold rapidly. This shows that
either (1) no special distribution of structures
among the different energy levels exists for the
folding sequences as compared with the non-folding
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sequences, or that (2) the additional non-random-
ness in the distribution of structures that results in
rapid folding is ereated with high probability when
there is a large energy gap between the lowest two
states and when the lower discrete part of the
spectrum is sparse. The former possibility is
supported by the plots of {P*“*(())>, which show
that no reordering of the structures assigned to the
different energy levels is required to match the
distributions of the folding and non-folding
sequences (Fig. 12). A more complete description of
how a large energy gap creates the conditions for
rapid folding will be given in a separate paper (A,
Sali, E. Shakhnovich & M. Karplus, unpublished
results),

Two questions arise about the generality of the
results obtained for the 27-mer lattice model. Are
these results valid for longer polymeric chains? Are
they valid for real proteins!

To give a complete answer to the first question, a
simulation of significantly longer chains would have
to be done, Such a simulation would be impossible
to combine with exhaustive enumeration. However,
the following facts indicate that the folding require-
ments deseribed here may be valid for longer chains.
Comparison of the thermodynamic results from
simulation of the 27-mer with predictions of analy-
tical theory for long chains (Shakhnovich & Gutin,
1989) shows no significant differences. Also, the time
course of the process of folding (Shakhnovich ef al.,
1991; A. Sali, E. Shakhnovich & M. Karplus, unpub-
lished results} is consistent with the thermodynamic
description of random polymers given in the analy-
tical studies of long chains: i.e. the folding transition
is a cooperative first order phase transition with a
significant free energy barrier bhetween the
denatured and native states. It has been shown that
the probability distribution for a gap size, AK |4, in
the energy spectrum does not depend on chain
length {eqn (12)). Further, the results obtained do
not depend on the details of the Monte Carlo folding
algorithm nor on the details of the energy function;
e.g. when several monomers are allowed to cceupy
the same lattice point with some energetic penalty
and the crankshaft moves are not performed, the
associations between foldicity and polymer features
do not change {Appendix II). Moreover, Monte
Carlo folding simulations with random 16-mer and
25-mer sequences on the two-dimensional cubie
lattice result in the same conclusions (A. Dinner, A.
Sali, E. Shakhnovich & M. Karplus, unpublished
results). The time scale of folding of real proteins
varies widely but does not appear to be dependent
on the chain length (Roder & Elbve, 1993). It
should be noted, however, that longer chains may
lead to a greater importance of secondary structure
in the kinetics of the folding process.

Other simulations based on lattice models of poly-
peptide chain that were constructed to obtain rapid
folding (G & Abe, 1981; Leopold ¢ al., 1992) have
large energy gaps on the order of NkyT energy
units. In the model described by G3 & Abe (1981),
only native contacts have a non-zero contact energy

on the order of —kgT. As a result, the negative
energy of a conformation is proportional to its frac-
tion of native contacts. Because chain connectivity
severely limits the number of conformations with a
significant fraction of native contacts, the gap
between the native and the few near-native con-
formations on one hand, and the bulk of the
remaining conformations on the other hand, is large,
in the order of NkyT. No structure that is signifi-
cantly different from the native state can have low
energy. Similar reasoning applies to the model
described by Leopold & co-workers (Leopold et al.,
1992) since their interaction matrix is related to
that of G& & Abe. Our results are also in agreement
with the assumption of Goldstein et af. (1992) that
folding competes with the glass transition and that
folding is maximized when the ratio between the
folding and the glass transition temperatures is
maximized. They used the REM model to show that
this ratio increases with the energy difference
between the native state and the “liquid-like” phase
and decreases with the energy fluctuations in the
liquid-like phase. Since the liquid-phase in their
model corresponds to the guasi-continuous part of
the spectrum, their assumed criterion is similar to
the requirements for a large energy gap and for the
sparseness of the lower part of the spectrum that
were found in this work. Recently, Miller et al.
(1992) studied folding of short heteropolymers with
hydrophobic and hydrophilic beads by a Monte
Carlo simulation on the 2D square lattice. They
found that folding is slow when 7T is too low because
the chain becomes stuck in local minima, that
folding is slow when 7T is too high because the
molecule searches randomly through the large
ensemble of open conformations, and that folding
may be relatively fast for intermediate T. These
findings are consistent with our results.

A more complex question is whether the present
results are valid for real proteins. One important
difference is that the lattice model does not take
into aceount the presence of side-chains. Those are
knewn to be tightly packed in the native state
(Ponder & Richards, 1987) and their packing may
be involved in the final stage of protein folding
(Piitsyn, 1987; Shakhnovich & Finkelstein, 1989).
Thus, the correspondence between the folding of the
lattice model and real proteins is likely to be as
follows. The first process in both cases is a fast
transition from a random coil with low density into
a random homopolymer-like state with a relatively
high density and random structure (Eléve et al.,
1992; Roder & Eléve, 1993; Shakhnovich et al.,
1991). Many proteins then fold into the native state
through another intermediate, the molten globule
{Ptitsyn, 1987), which has a high density and a
structure similar to the native state but may differ
from it in the details of the side-chain and
secondary structure packing. In the lattice model,
the folding proceeds directly from the high density
non-native state to the unique state which is
equated with the native state {Shakhnovich et al.,
1991). Thus, it may be better to regard the present
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model as concerned with the transition from a
random coil to a collapsed globule and finally to the
organized molten globule. For real proteins, during
the conversion of the molten globule into the native
structure, specific stereochemical requirements have
ta be fulfilled to allow tight packing. It has been
argued that such requirements can be satisfied with
significant probability even for random sequences
(Ptitsyn & Volkenstein, 1986}

1t seems likely that real proteins also have a
Gaussian energy density because the energy is a sum
of a large number of weakly correlated energy
terms. Moreover, some interdependence between the
energies of states with similar conformations is
expected for the same reasons that were given for
the energy function in equation (1). Tn such a case,
the sufficient requirement for rapid folding
described in this paper, the sparseness of the lower
part of the spectrum guaranteed for a small fraction
of sequences by the Gaussian distribution of energy
levels, would be directly applicable to real proteins
even though the exact structural model and energy
function were not.

Another difference to be considered when
applying the present lattice model to proteins is
that protein motion is guided by molecular dyna-
mics whereas the lattice model folds according to
the Monte Carlo procedure. Monte Carlo simulation
is an approximation to molecular dynamics because
it allows only discrete particle positions, a small
number of moves that transform a system from one
discrete configuration to another, and because it
assigns arbitrary rates to these moves. There is
some evidence that the main features of the Monte
Carlo folding process do not depend on whether the
diamond lattice or the 210 cubic lattice are used
(Skolnick & Kolinski, 1991). Moreover, as discussed
above, no differences in the important features of
folding kineties have been observed between the 2D
(A. Dinner, A. Sali, E. Shakhnovich & M. Karplus,
unpublished resuits) and the two 3D lattice models
employed in this paper; the moves allowed in the 2D
model were of the same type as the moves in the
present 3D model. These observations suggest that
Monte Carlo procedure is adequate for describing
the main features of the protein folding process,
especially when those features occur over many
Monte Carlo steps. Ultimately, this assumption can
only be tested by comparing the current results with
those from a molecular dynamics study, which is
currently very difficult to do even for a model as
simple as the one used here. Tests could be made for
2D models, though they would require some way of
estimating the probability of the different pseudo-
angle and pseudo-dihedral angle transitions that
correspond to the Monte Carlo moves. The equiva-
lency of Monte Carlo simulations and molecular
dynamics is consistent with a separation between
the deterministic small scale and stochastic large
scale motions on short and long time seales, respec-
tively. Positive conclusions on the applicability of
the Monte Carlo method to study dynamics of pro-
teing were also obtained by Skolnick & Kolinski

{1991}. We note that explicit inclusion of the rigid
body Monte Carlo moves of larger elements of
secondary structure is useful in simulations of more
complex protein-like models (Skolnick & Kolinski,
1991). However, we do not include these types of
moves in the present simulations because even the
loeal moves of one or two monomers are gufficient
for a significant fraction of random sequences to be
folding sequences and because our simulations are
already ergodic (A. Sali, E. Shakhnovich & M.
Karplus, unpublished results).

The folding simulations show that rapid folding
always ends in the global energy minimum and that
random sequences do not repetitively fold into the
same local minimum, This indicates that the native
state corresponds to the global energy minimum,
and not to one of the local minima as suggested by
the metastability hypothesis of the native state
(Honeycutt & Thirumalai, 1992), If this finding is
valid for real proteins, it implies that protein strue-
ture prediction methods may not have to simulate
the whole folding process but could rely on energy
minimization methods. It 1s conceivable that these
methods could take a more direct route through the
phase space when searching for the global energy
minimum, although the multi-minimum problem
still has to be solved {Scheraga, 1989).

Recently, Rooman ef al. (1992) used a database of
known protein structures to derive pseudo-energy
potentials for main-chain conformation of a single
residue. They applied the potentials to predict the
structure of segments between 5 and 15 residues
long, They showed that those segments that have
large energy gaps between the two lowest states are
predicted most reliably. Moreover, in many cases
the same regions were identified as the parts of the
protein structure that are likely to form eatly in
protein folding {Rooman & Wodak, 1992). This
result is consistent with our simulations that indi-
cate that the whole sequence with a large gap folds
fast, from which it is reasonable to expect that the
parts of the whole sequence also have the same
tendency during early stages of folding when short
segments  independently assume non-random
structure.

One interesting extrapolation of the importance
of a pronounced energy minimum as the necessary
and the sufficient condition for rapid folding is its
use to propose methods for design of stable folding
proteins (Shakhnovich & Gutin, 1993a.5).

In its more general form, the problem addressed
in this paper is: what are the characteristics of the
many-dimensional surface of a non-linear function
with many interdependent local optima that will
allow a Monte Carlo procedure to find a global
optimum? The answer is that a Monte Carlo pro-
cedure tends to be successful if the function has a
pronounced global optimum. This means that the
success of optimization can be improved not only by
better optimizers but also by devising functions
with a more pronounced global optimum,. This
result was used as an assumption to help in the
design of associative-memory Hamiltonians for
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recognizing protein folds {Goldstein et al., 1992).
Other examples of optimizing methods that take
advantage of a more pronounced optimum by
simplifying the function include the variable target
function method (Braun & G&, 1985), the antlion
method (Head-Gordon & Stillinger, 1993) and the
diffusion equation method (Piela et al., 1989). The

global optimum can also be made more pronounced
by using additional information as exemplified by
the methods relying on NMR derived constraints
(Clore et al., 1986), X-ray diffraction data (Briinger
et al., 1987) and related protein structures (Sali &
Blundell, 1993).

APPENDIX I
Statistics of the Lowest Energy Gap in Random Sequences

To examine the statistics of the size of the energy
gap AE,, between the ground-state and the first
excited state, we use the Random Energy Model
(REM) developed for spin glasses (Derrida, 1981).
This model has been shown to describe the thermo-
dynamics of heteropolymers (see the Discussion for
applicability to proteins and the definition of the
REM in eqn (2): Shakhnovich & Gutin, 1989),

In the REM, the energies of the conformations
are independent random variables distributed
according to the following (Gaussian density func-
tion (Shakhnovich & Gutin, 1989):

| fE- BN
2 ar
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PelBYy= 3= ¢ .
£ \/21105

GE=GB Np,

E,= NpB, (13)

where p is the average number of contacts per
monomer; each contact is counted only once (eqn
{1}). The expression for the fraction of sequences
having the lowest gap larger than A is:

FAE, ;> A)
1
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where P(E) is given by equation (13) and M =y !
is the total number of conformations. Equation (14)
states that each of the M conformations may be a
ground state conformation with energy E and that
the remaining M —1 conformations must have an
energy at least // 4+ A each.

Defining:

and making a substitution £+A = {/ we obtain:
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We used the relation:

dv
au =~ P

which follows from the definition of V {eqn (15)).

For P(E)} of a Gaussian form (eqn (13)} we have:
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Later we will see that the largest contribution to the
integral in equation (16} comes from:

U] ~ o5/ /N ~ N

and A ~ 1; therefore the last term in the exponen-
tial in equation (17) may be omitted and we get:
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Integrating by parts and taking into account that
V(o) =0and F(—oc} =1 we have:
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where we used the definition of V (eqn (9)) and the
fact that M » 1. The integrand in equation (19)
vanishes when U/ > £ where E, is determined from
the condition:

M j P = 1. (20)

Taking P as given in equation (13) we have for

E.=— /Nog/20Invy,

which coincides with the boundary between the
semi-continuous and lower diserete parts of the
spectrum in the REM (Shakhnovich & Gutin,
1990a). We approximate the integral in equation
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Figure 14. Comparison of In[F(AE,, > A)] with the
results from a simulation. A total of 1000 random
sequences were generated using eqn (2) to obtain the
experimental distribution (points). The line is a least-
squares fit of the analytical model in eqn (12) to these
points. The best value for parameter 7, was found to be
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{19} and finally get:
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Note that F{AE, > A) does not depend on the
length of a chain even though the density of energy
levels, P(E), does (eqn (13)).

The distribution F(AE,;; > A) depends on the
parameter T.. This parameter was estimated by
least-squares fitting the model in equation (21) to
the distribution of A, values for 1000 random
sequences (Fig, 14), 7', = 077 was found to give a
good fit to the model. This T, value for the ensemble
of compact self-avoiding chains can be compared
with (X®*7)) using equation (5}). {(X*T)) is
hinear for T < & 0-77, thus confirming the applicabi-
lity of the model in equation {21). T, from equation
(21) can also be compared with an independent
calculation based on equation (6). For the ensemble
of self-avoiding chains, y = 417 from M®* = (y/e)¥
where M** =103,346. The average number of
contacts per monomer in the ensemble of compact
self-avoiding chains is 28/27, thus giving T, = 0-85
{eqn (6}). This value is in agreement with 7\, = 0-77
from equation (21). Although 7', for the ensemble of
all self-avoiding chains is not estimated here, it
must be lower than 7', for the compact self-avoiding
chaing because more structures occur in the discrete
part of the spectrum (Fig. 17).

APPENDIX 11
Dependence of Folding on a Monte Carlo Folding Algorithm

Shakhnovich et al. {1991) did a similar study for
the 27-mer cube with a Monte Carlo algorithm that
is slightly different from the one employed in this
paper. Their algorithm allowed up to three
monomers at the same lattice site and the energy
function had added terms that penalized the double
and triple occupancies. No crankshaft moves were
included in the original model. However, the
original model still led to rapid folding because
multiple occupancies were allowed. A possible nega-
tive consequence of the multiple occupancies is that
chain eutting may ocecur, which could change the
characteristics of the folding model compared to the
real folding process.

The 200 random sequences studied here were
tested with the original Monte Carlo folding algo-
rithm. To get the foldicities with this algorithm, up
to 20 x 10° steps were done with original values for
the multiple oceupancy penalties of D, = 10 and
Dy = 14. The rest of the parameters were the same
as for the current Monte Carlo algorithm.

A high correlation between the two types of foldi-
cities is shown for the 200 random sequences in
Figure 15. This indicates that the conclusions about
the features important for rapid folding are inde-
pendent of the details of the folding model used.
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Figure 15. Comparison of foldicities from the 2
different Monte Carlo procedures. The numbers show how
many sequences out of the sample of 200 have a corre-
sponding combination of foldicities from the two Monte
Carlo procedures. “Crankshaft” foldicity is obtained by
the procedure described in Methods. “Multiple occu-
pancy” foldicity is obtained by the procedure published
by Shakhnovich et al. (1991) and described in
Appendix TT.
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Figure 16. Associations for the multiple occupancy Monte Carlo algorithm. This Figure repeats the plots in Figs 4 (a),
6 (b). 7 (¢). 8(d). 10 (e) and 12 () with the data from the multiple occupancy Monte Carlo algorithm. See the legends to
the original Figures for explanation. There ave 25 strongly folding and 139 non-folding sequences for this algorithm.

Table 2
Association between foldicity and secondary structure contents in the native
conformation for the multiple occupancy Monte Carlo algorithm

Sequence type Helix Parallel sheet Anti-paralle]l sheet Turn
Strongly folding 0-10 (£ 0:013) 0-386{ £ 0-0386) (G-290( + 0-029) 0097( £ 0-018)
Non-folding 0-095( £+ 0-006) (-428(+0-014) 0-256(+0-011) G-134( £+ 06-009)

This Table is equivalent to Table 1, except that the 25 strongly folding and 138 non-folding
sequences were defined by the multiple oceupaney Monte Carlo algorithm.



1634

Monte Carlo Simulation of Protein Folding

wl\w

(NIRRT

]
S
i womimmms TR TR
T

ALY

(] II|IIIHI\III

[ LR NI

los 1.0 03 1.0
10 070506
41 42 43 44 45 46 47 48 49 50
SEQUENCE
1.04(0) —
] ;’i)_/
0.8“ / 4 ;xi
A ' *
p 0.6 /?{1/2
; ] // .fi,
V 0.4+ i
] /if,
0.2 I;;,"
00 05 10 15 20 25
T

Figure 17, Comparison of the ensemble of compact self-
avoiding chains with the ensembles that also contain non-
compact self-avoiding chains and conformations with
double and triple occupancies. {(a) Comparison of the
lower part of the energy spectra for sequences 41 to 50.
The energy levels are shown for the lowest 400 compact
self-avoiding chains (the Ist column), non-compact self-
avoiding chains only (the 2nd column), and only the
structures with multiple-occupancies (the 3rd column).
Non-compact and multiple occupancy structures with
E < E,+10 were sampled in a long multiple occupancy
Monte Carlo simulation of 50 x 10° steps, starting from
the native structure at a high temperature of 7' = 1-2. The
top and bottom line of numbers below the spectra are the
crankshaft and multiple occupancy foldicities, respec-
tively. (b) Comparison of (X(7))> for the 200 random
sequences. Shown are (X(T)) for all compact self-
avoiding structures {thick, continuous line), all compact
self-avoiding structures from the Monte Carlo simulation
(thin, continuous line), all self-avoiding structures from
the Monte Carlo simulation (thick, broken line), and all
structures from the Monte Carlo simulation (thin, broken
line). The conformations for the caleulation of the indivi-

The results from the multiple occupancy simula-
tion were then analyzed in the same way as the
results from the Monte Carlo simulation without
multiple occupancies; Table 1 and Figures 2, 4,6, 7,
8, 10 and 12 were replotted with the data from the
multiple occupaney simulation {Table 2, Fig. 16).
No significant differences were observed between
the results from the two sets of simulations.

However, there are some differences between the
two models. For the original algorithm, the discrete
part of the spectrum contains many multiple occu-
pancy structures when the energy parameters 53,
oy, Iy and Dy are optimized for rapid folding (Fig.
t7(a)). Moreover, for 259, of the sequences, a
multiple occupancy super-compact structure was
found by a Monte Carlo simulation at high tempera-
ture that had a lower energy than the compact self-
avoiding vonformation with the lowest energy {ie.
the native state). For the ensemble with no multiple
occupancies, only 59, of the sequences have a semi-
compact conformation that is lower in energy than
the native state. Consequently, the thermodynamic
functions that depend on the discrete part of the
spectrum are not identical for the ensemble of self-
avoiding chaing and the ensemble that also includes
the chains with double and triple occupancies
(Fig. 17(b)).

An important advantage of the multiple occu-
pancy algorithm is its speed. The multiple occu-
pancy folding simulation needs approximately 24
seconds of CPU time on an IBM RS/6000-550 work-
station for 1 million Monte Carlo steps. The current
algorithm spends about 30 seconds for the same
number of steps but it also needs to do about three
times as many steps to fold a sequence. This makes
the multiple occupancy algorithm ahout four times
more efficient than the current algorithm. Given the
high similarity in the kinetic behavior of the two
algorithms (Fig. 15), the multiple occupancy algo-
rithm may be preferred for kinetic studies of protein
folding.

We thank Aaron Dinner, Georgios Archontis and Peter
Leopold for discussing the protein folding problem. E.S.
benefited from numerous discussions with Alexander
Gutin, Oleg Ptitsyn, Peter Wolynes and Alexei
Finkelstein. A.8. is a Fellow of The Jane Coffin Childs
Memorial Fund for Medical Research. This investigation
has been aided by a grant from The Jane Coffin Childs
Memorial Fund for Medical Research (A.S.), by David
and Lucille Packard Fellowship {E.8.) and by a grant
from the National Science Foundation (M.K.). The
computations were done on IBM RS/6000, Silicon
araphies Iris 4D, SUN Sparcstation, DEC Decstation and
NeXT workstations,
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