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Why non-canonical kinetic terms?

Scalars with non-canonical kinetic terms are 
ubiquitous in particle physics and cosmology, e.g., 

Dark energy 

Modified gravity 

Supergravity/string theory
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Galileons

Higher-derivative scalars discovered in response to DE problem, 
starting with DGP 

Properties of  the galileons: 

Second-order equations of  motion 

Galilean invariance 

Vainshtein mechanism: nonlinearities kill “fifth force” 

Non-renormalization theorem
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Galileon Lagrangians

The five Lagrangians in D=4 consistent with 
galilean symmetry and with second-order eoms on 
flat space:  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Generalizing galileons: without gravity

Most general flat-space scalars with second-order eoms: 

Lose galilean invariance (though may have other interesting 
symmetries) 

Some special cases—DBI, conformal, and (A)dS galileons—
have interesting origins in higher-dimensional physics 

Vainshtein mechanism! How does this affect 
nonperturbative solutions?
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Generalizing galileons: with gravity 
Horndeski

Generalizing to include gravity yields Horndeski 
gravity, the most general scalar-tensor theory with 
second-order equations of  motion (X=(∂φ)2):  
 
 
 
 

These Lagrangians are now ubiquitous in modified 
gravity
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Such theories have interesting non-
perturbative physics

Long known that canonical scalars have a zoo of  interesting 
nonlinear phenomena 

This talk: 

Quantum tunneling 

Solitons 

Both arise when potentials have non-degenerate minima 

These have been well-understood for decades. What changes when we 
introduce newly-discovered kinetic structures?
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Tunneling

Consider a potential with two minima at different 
heights: 
 
 
 

Classically both minima are stable, but quantum 
mechanics induces decay of  false vacuum via 
tunneling
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Tunneling: Lorentzian and Euclidean 
pictures

Prescription for determining decay rate (Coleman 
1977):  

Transform to Euclidean time, i.e., invert 
potential
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Tunneling: Computing the decay rate

The action of  the Euclidean “bounce” solution 
determines the decay rate:

�

V
⇠ e�B

B = SE(bounce)� SE(FV)
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Does WKB hold with non-canonical kinetic terms? 
Details: arXiv:1703.00909

The result Γ/V ~ e-B was proven for the canonical scalar field using WKB 
approximation 

By solving for the wavefunctional ψ[φ] in the semi-classical limit, we show 
that for general 
 
 
the dominant contribution to the decay rate comes from the solution to the 
Euclidean equation of  motion 

Explicitly see: non-canonical kinetic terms do not change 
Coleman prescription for decay rate* 

*Assumption: second-order eoms

L = L(�, �̇, @i�, @i@j�)
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Decay rates

Problem of  finding decay rate Γ amounts to solving Euclidean eoms 
with O(4) symmetry 

Warm up: L = P(X) + V(φ) with X=(∂φ)2. Euclidean action:  
 

Define non-standard Lagrangian with volume factor removed:  
 
 
 
and similarly non-standard canonical momentum: 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P(X) decay rates in the thin-wall limit

Consider thin-wall limit (small potential difference between the two minima):  
 

The bounce factor in this limit is  
 
 

with S1 the tension of  the bubble wall,  
 
 

In the canonical case P(X) = X/2 this reduces to Coleman's famous result ✓ 

However, Γ/V ~ e-B depends extremely sensitively on even small changes in S1
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Galileon decay rates

Finally consider galileons (incl. non-gravitational generalizations). For 
concreteness consider cubic galileon,  
 

Two regimes: 

Standard: Canonical kinetic term dominates, standard decay rate:  
 

Vainshtein: Galileons dominate, qualitatively different decay rate: 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Galileon decay rates:  
Vainshtein mechanism

Which regime we're in depends on free parameters: 

ε: difference between potential heights 

Δφ: difference between location of  the two minima 

Λ: energy scale associated to the galileon 

Canonical(/galileon) term dominates if   

Equivalently: depends on whether Euclidean bubble size ρ is larger or smaller 
than a threshold value, akin to a Vainshtein radius 

If  the galileon dominates, the decay rate can be many orders of  magnitude 
larger than for a canonical scalar with the same potential
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Solitons

Solitons are: 

Non-trivial field configurations 

Finite energy 

Localized in space 

Do not dissipate 

Exist due solely to nonlinearities in the field, no external source 

E.g., if  two non-degenerate minima, can have domain wall
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Domain walls

For example,  
 
is solved by
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Derrick's theorem: a no-go

Zero-mode/scaling arguments (Derrick's theorem) 
tell us we need a potential or time dependence. 

Derrick's theorem extended to galileons: Endlich 
et al. arXiv:1002.4873 

Extended to generalized galileons: us 

Let's focus on each of  these in turn.
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Adding a potential 
Details: arXiv:1607.05260

Stable static walls difficult to obtain: 

Standard galileons with a potential: galileon Lagrangians are 
total derivatives in 1D, so no difference from canonical case 

Conformal galileons with a potential: domain walls do not 
exist 

(A)dS galileons: naturally possess a potential due to their 
symmetries. Leads to bubbles, but they shrink and suffer 
from ghosts
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Time dependence—light-speed domain walls

Time dependence requires v=c so that there isn't a frame where the soliton is 
at rest 

Masoumi & Xiao, arXiv:1201.3132—standard galileons have stable light-
speed solitons 

Generalized galileons: 

DBI galileons: stable solitons ✓ 

Conformal galileons: unstable X 

(A)dS galileons: naturally include a potential, so should not include 
solutions with v=c
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Summary of  nonperturbative effects

Tunneling rates very sensitive to kinetic structure, 
especially for galileons outside a Vainshtein region 

Non-canonical kinetic terms can severely boost 
vacuum decay rate 

Difficult to construct static galileon domain walls 

Easier for walls moving at speed of  light
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Effective field theory and modified gravity: 
All* theories are effective theories

Decoupling: high-energy physics not needed to 
understand phenomena at low energies 

EFT approach underlies our ability to use 
nonrenormalizable theories, including GR 

The lens through which modern physical theories are 
viewed! 

Unless you have a theory of  everything at hand, 
new theories should be seen as EFTs
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What does (and doesn’t) go into an EFT

Write down most general Lagrangian consistent with 
particle content and symmetries, expanded in powers of  
E/M 

M: some (high) energy scale signaling breakdown of  
EFT 

Requirements: locality, analyticity, etc. 

Notably not required: second-order equations of  motion
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Modified gravity as an EFT

Modifications of  GR: useful for dark energy, dark matter, inflation, etc. 

These theories are nonrenormalizable, hence should be seen as 
effective theories 

Construct MG analogously to beyond-Standard Model physics 

Most MG theories are constructed to be ghost-free: Horndeski, 
Lovelock, generalized galileons, etc. 

Higher derivatives are generic in EFTs — healthy UV does not imply 
ghost-free EFT
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Questions

When should (and shouldn’t) we restrict to ghost-
free theories like Horndeski and Lovelock? 

What new higher-derivative terms can one write 
down? 

Are these phenomenologically interesting?
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Healthy UV can have unhealthy EFT 
I. Is quantum gravity unstable?

GR is lowest-energy term in EFT expansion: 

All terms (besides Rn) lead to ghosts 

Is flat space unstable in quantum gravity? 

Answer (fortunately) is no
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Healthy UV can have unhealthy EFT 
II. U(1)-breaking scalar

Illustrative example (Burgess and Williams 1404.2236):

S =

Z
d4x
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Healthy UV can have unhealthy EFT 
II. U(1)-breaking scalar

Writing 
 
 
we have a massless Goldstone θ and a massive ρ 
with M2=λv2 

The action becomes

�(x) =
vp
2
(1 + ⇢(x)) ei✓(x)
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Z
d4x
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Healthy UV can have unhealthy EFT 
II. U(1)-breaking scalar

For energies << M, we can integrate out ρ to 
obtain an effective action for θ 

Solution to ρ eom is highly nonlocal, but can 
localize by writing perturbatively in 1/M  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Healthy UV can have unhealthy EFT 
II. U(1)-breaking scalar

At low energies, EFT for angular mode θ is  
 

O(M-4) term is ghostly! 

Original theory is healthy — what happened‽ 

Resumming full 1/M expansion (nonlocal) would cure ghost — higher 
derivatives are an artifact of  truncation 

EFT point of  view: ghost is of  mass ~M, cannot be produced within 
EFT

L = �1
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Ghostbusting
EFTs with higher derivatives 
require additional initial 
conditions — spurious 
solutions 

Only a subset of  these are 
physical insofar as they 
reflect solutions of  the full 
theory 

Ghost instabilities associated 
to higher derivatives are not 
present in physical solutions

Full solutions

Physical 
solutions



Ghostbusting
Given a higher-derivative EFT, 
how do we identify these 
physical solutions? 

Simply solving the equations 
of  motion will lead to disaster 

Are they (exact) solutions to 
some other, ghost-free theory? 

If  yes: justifies use of  ghost-
free theories 

If  no: opens up theory space

Full solutions

Physical 
solutions
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How do we identify physical solutions?

Consider in 1D particle mechanics  
 
the eom is  
 
and has solutions 

Exponential solutions are bad but not physical—not 
consistent with perturbative expansion in ε 

Only the C=D=0 solutions are physical insofar as they 
perturbatively reflect solutions of  the full (UV) theory
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Reduction of  order method

Instead of  setting initial conditions to remove runaways 
(numerically unstable?), can reduce order of  EFT eom. 

In this example, defining                                         we see 
that, to order in which we’re working, 
 
 
so that the physical C=D=0 solutions emerge naturally 

Allows to straightforwardly deal with higher derivatives in 
EFTs, e.g., numerically

E ⌘ ẍ� ✏x

(4) = O(✏2)

E + ✏Ë = ẍ+O(✏2) =) ẍ = O(✏2)
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When do the physical solutions correspond to 
an action?

Key: field redefinitions. Recall the U(1) scalar:  
 
 
and send 
 
 
Leaves us with a second-order theory, the quartic galileon!  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When do the physical solutions correspond to 
an action?

The problematic higher derivatives have been 
shunted off  to O(M-6), which we can safely ignore 

Physical solutions to this EFT could be obtained by 
exactly solving a quartic galileon (up to O(M-4))
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Prescription for identifying genuine higher 
derivatives

Construct EFT operator basis up to two redundancies: 
Integrations by parts and field redefinitions (equations 
of  motion) 

This is very well understood in beyond-SM physics 

Extra ingredient for modified gravity: construct operator bases 
with as few higher derivatives as possible 

Those higher-derivative terms that are left should be included! 

Deal with these by solving equations of  motion perturbatively
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Shift-symmetric scalar EFT basis: no ghosts 
until dimension 12!

Dimension Operators
4 X = (∂φ)2
5 None
6 None
7 Cubic galileon*
8 X2

9 None
10 Quartic galileon
11 None
12 X3, (�2

µ⌫)
2
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Modified gravity EFT:  
scalar-tensor operator basis

Field redefinitions enforce lowest-order equations 
of  motion. Scalar-tensor operators which are 
unaffected should involve Riemann couplings 

Consider scalar-tensor EFT in derivative 
expansion (e.g., Weinberg’s EFT of  inflation)

Derivatives Operators
4 X2, Gauss-Bonnet [Weinberg]

6 X3, quartic Horndeski, five new higher-derivative operators
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Six-derivative scalar tensor operators 
generated through Riemann couplings

Should be considered alongside comparable-size Horndeski terms 
in, e.g., inflation, dark energy. No reason a priori to ignore them 

Must deal with higher derivatives in one of  two ways: 

Solve equations of  motion order by order, or 

Reduce order of  equations of  motion using perturbative nature
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Take-home message

Advocate for consideration of  modified gravity as an 
EFT, including allowing higher derivatives 

Healthy UV does not imply ghost-free low-energy EFT 

Additional justification required to restrict to theories with 
second-order equations of  motion 

Both Horndeski and non-Horndeski terms should be treated in 
EFT expansion 

Not impossible — e.g., DBI


