Aspects of Field Theory with Higher Derivatives

Adam R. Solomon Center for Particle Cosmology, University of Pennsylvania

Based on: Carrillo-González, Masoumi, ARS, & Trodden 1607.05260 (PRD) and 1703.00909 (PRD), ARS & Trodden 1709.xxxxx

Outline

Motivation

- Galileon tunneling
- Galileon solitons
- * Higher derivatives, modified gravity, and EFTs

Why non-canonical kinetic terms?

 Scalars with non-canonical kinetic terms are ubiquitous in particle physics and cosmology, e.g.,

Dark energy

Modified gravity

Supergravity/string theory

Adam R. Solomon (UPenn)

Galileons

- Higher-derivative scalars discovered in response to DE problem, starting with DGP
- * Properties of the galileons:
 - * Second-order equations of motion
 - * Galilean invariance $\phi \rightarrow \phi + c + b_{\mu}x^{\mu}$
 - * Vainshtein mechanism: nonlinearities kill "fifth force"
 - Non-renormalization theorem

Galileon Lagrangians

The five Lagrangians in D=4 consistent with galilean symmetry and with second-order eoms on flat space:

 $\mathcal{L}_{2} \sim (\partial \phi)^{2}$ $\mathcal{L}_{3} \sim (\partial \phi)^{2} \Box \phi$ $\mathcal{L}_{4} \sim (\partial \phi)^{2} \left[(\Box \phi)^{2} - \phi_{\mu\nu}^{2} \right]$ $\mathcal{L}_{5} \sim (\partial \phi)^{2} \left[(\Box \phi)^{3} - 3\phi_{\mu\nu}^{2} \Box \phi + 2\phi_{\mu\nu}^{3} \right]$

 $\sim \varepsilon \varepsilon \partial \phi \partial \phi \partial^2 \phi$ $\sim \varepsilon \varepsilon \partial \phi \partial \phi \partial^2 \phi \partial^2 \phi$ $\sim \varepsilon \varepsilon \partial \phi \partial \phi \partial^2 \phi \partial^2 \phi \partial^2 \phi$

with

 $\phi_{\mu} \equiv \partial_{\mu}\phi$ $\phi_{\mu\nu} \equiv \partial_{\mu}\partial_{\nu}\phi$

Adam R. Solomon (UPenn)

Generalizing galileons: without gravity

* Most general flat-space scalars with second-order eoms: $f_n(\phi, (\partial \phi)^2) \times \mathcal{L}_n$

Lose galilean invariance (though may have other interesting symmetries)

 Some special cases—DBI, conformal, and (A)dS galileons have interesting origins in higher-dimensional physics

* Vainshtein mechanism! How does this affect nonperturbative solutions?

Generalizing galileons: with gravity Horndeski

- Generalizing to include gravity yields Horndeski gravity, the most general scalar-tensor theory with second-order equations of motion (X=(∂φ)²):
- $\mathcal{L}_{2} = G_{2}(\phi, X),$ $\mathcal{L}_{3} = G_{3}(\phi, X) \Box \phi,$ $\mathcal{L}_{4} = G_{4}(\phi, X) R - 2G_{4,X} \left[(\Box \phi)^{2} - \phi_{\mu\nu}^{2} \right],$ $\mathcal{L}_{5} = G_{5}(\phi, X) G_{\mu\nu} \phi^{\mu\nu} + \frac{1}{3} G_{5,X} \left[(\Box \phi)^{3} - 3\phi_{\mu\nu}^{2} \Box \phi + 2\phi_{\mu\nu}^{3} \right]$ * These Lagrangians are now ubiquitous in modified gravity

Such theories have interesting nonperturbative physics

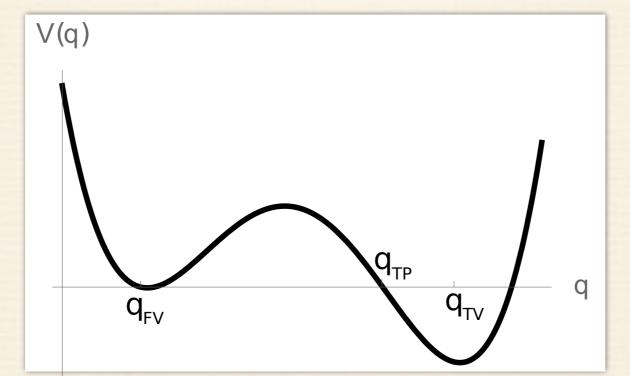
 Long known that canonical scalars have a zoo of interesting nonlinear phenomena

This talk:

- Quantum tunneling
- Solitons
- * Both arise when potentials have **non-degenerate minima**
- These have been well-understood for decades. What changes when we introduce newly-discovered kinetic structures?

Tunneling

Consider a potential with two minima at different



 Classically both minima are stable, but quantum mechanics induces **decay** of false vacuum via tunneling

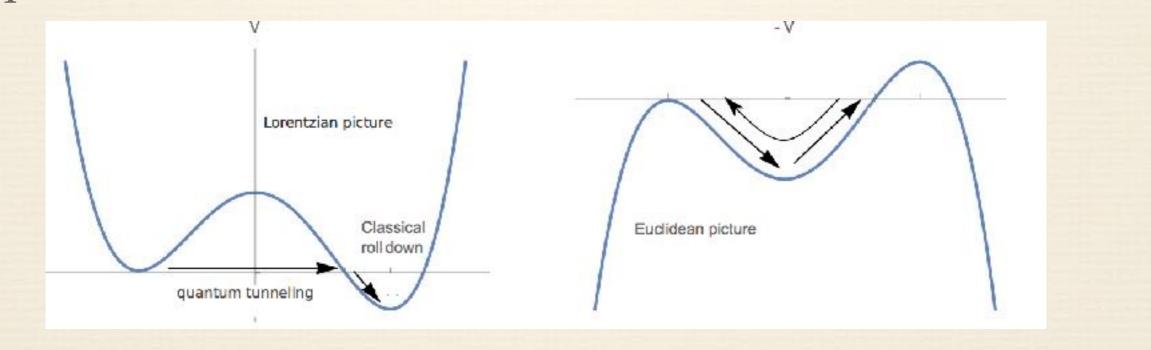
Adam R. Solomon (UPenn)

heights:

Tunneling: Lorentzian and Euclidean pictures

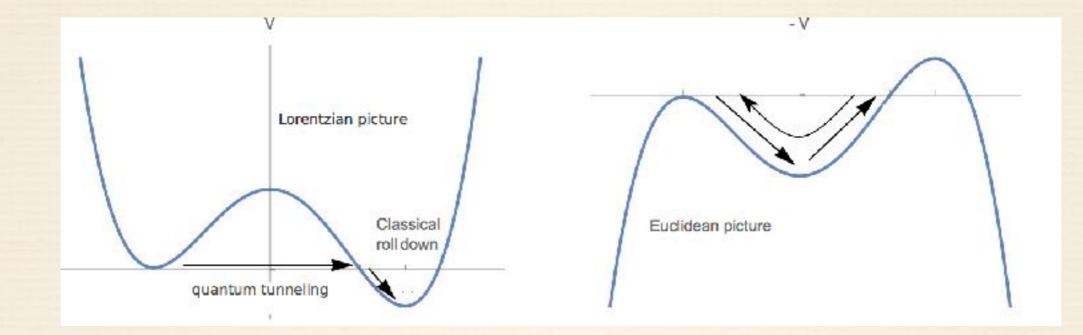
Prescription for determining decay rate (Coleman 1977):

Transform to Euclidean time, i.e., invert potential



Adam R. Solomon (UPenn)

Tunneling: Computing the decay rate



The action of the Euclidean "bounce" solution determines the decay rate:

$$\frac{\Gamma}{V} \sim e^{-B}$$
$$B = S_{\rm E}(\text{bounce}) - S_{\rm E}(\text{FV})$$

Adam R. Solomon (UPenn)

Does WKB hold with non-canonical kinetic terms? Details: arXiv:1703.00909

* The result $\Gamma/V \sim e_{-B}$ was proven for the canonical scalar field using WKB approximation

 By solving for the wavefunctional ψ[φ] in the semi-classical limit, we show that for general

$$L = L(\phi, \phi, \partial_i \phi, \partial_i \partial_j \phi)$$

the dominant contribution to the decay rate comes from the solution to the Euclidean equation of motion

- Explicitly see: non-canonical kinetic terms do not change Coleman prescription for decay rate*
 - *Assumption: second-order eoms

Decay rates

- Problem of finding decay rate Γ amounts to solving Euclidean eoms with O(4) symmetry
- * Warm up: $L = P(X) + V(\phi)$ with $X = (\partial \phi)^2$. Euclidean action:

$$S_{\rm E} = 2\pi^2 \int \rho^3 (P+V) \mathrm{d}\rho$$

* Define **non-standard Lagrangian** with volume factor removed:

$$S_{\rm E} \equiv 2\pi^2 \int \rho^3 L \mathrm{d}\rho$$

and similarly non-standard canonical momentum:

$$\pi_{\phi} \equiv \frac{\partial L}{\partial \dot{\phi}}$$

Adam R. Solomon (UPenn)

P(X) decay rates in the thin-wall limit

Consider thin-wall limit (small potential difference between the two minima):

$$\epsilon \equiv V_{\rm FV} - V_{\rm TV} \ll V$$

The bounce factor in this limit is

$$B = \frac{27\pi^2 S_1^4}{2\epsilon^3}$$

* with S_1 the tension of the bubble wall,

$$S_1 \equiv \int_{\text{wall}} \pi_{\phi} \mathrm{d}\phi$$

* In the canonical case P(X) = X/2 this reduces to Coleman's famous result \checkmark

* However, $\Gamma/V \sim e_{-B}$ depends extremely sensitively on even small changes in S₁

Adam R. Solomon (UPenn)

Galileon decay rates

 Finally consider galileons (incl. non-gravitational generalizations). For concreteness consider cubic galileon,

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \frac{1}{\Lambda^3}(\partial\phi)^2\Box\phi - V(\phi)$$

✤ Two regimes:

* Standard: Canonical kinetic term dominates, standard decay rate:

$$B_{\rm can} = \frac{27\pi^2 (S_1^{\rm can})^4}{2\epsilon^3}, \qquad S_1^{\rm can} = \int_{\rm wall} \dot{\phi} d\phi$$

* Vainshtein: Galileons dominate, qualitatively different decay rate:

$$B_{\text{gal}} = \frac{2\pi^2 (S_1^{\text{gal}})^2}{\epsilon} \qquad S_1^{\text{gal}} = \int_{\text{wall}} \frac{6}{\Lambda^3} \dot{\phi}^2 \mathrm{d}\phi$$

Adam R. Solomon (UPenn)

Galileon decay rates: Vainshtein mechanism

* Which regime we're in depends on free parameters:

 ε: difference between potential heights

* $\Delta \phi$: difference between location of the two minima

* Λ : energy scale associated to the galileon

* Canonical(/galileon) term dominates if $\frac{\epsilon}{\Delta\phi} \gg (\ll) \Lambda^3$

 Equivalently: depends on whether Euclidean bubble size ρ is larger or smaller than a threshold value, akin to a Vainshtein radius

 If the galileon dominates, the decay rate can be many orders of magnitude larger than for a canonical scalar with the same potential

Solitons

* Solitons are:

Non-trivial field configurations

✤ Finite energy

Localized in space

Do not dissipate

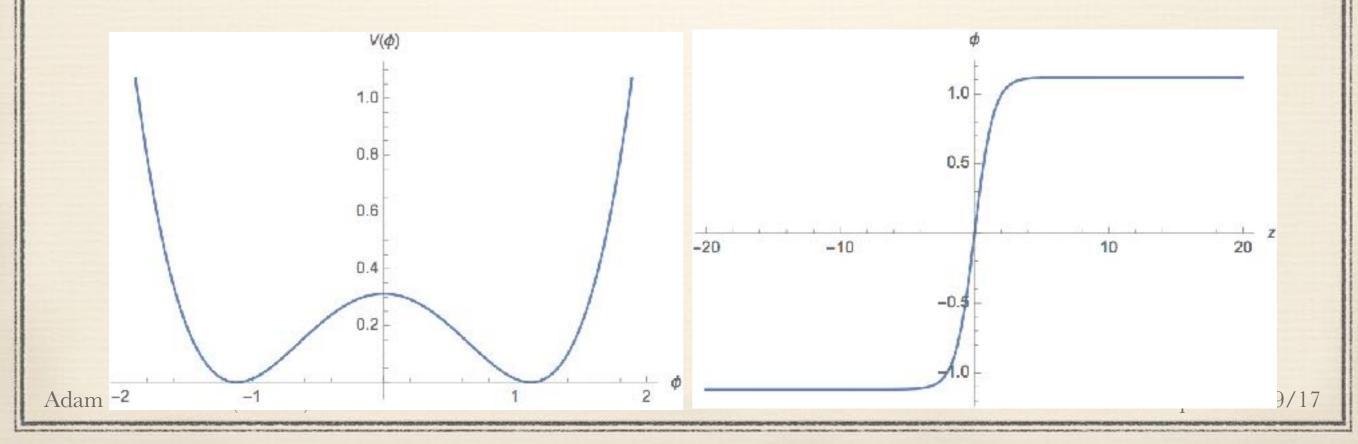
* Exist due solely to **nonlinearities in the field**, no external source

* E.g., if two non-degenerate minima, can have domain wall

Adam R. Solomon (UPenn)

Domain walls

* For example, $V(\phi) = -\frac{1}{2}m^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4}$ is solved by $\phi(z) = \frac{m}{\sqrt{\lambda}} \tanh\left(\frac{mz}{\sqrt{2}}\right)$



Derrick's theorem: a no-go

Zero-mode/scaling arguments (Derrick's theorem)
 tell us we need a potential or time dependence.

 Derrick's theorem extended to galileons: Endlich et al. arXiv:1002.4873

Extended to generalized galileons: us

* Let's focus on each of these in turn.

Adding a potential Details: arXiv:1607.05260

- Stable static walls difficult to obtain:
 - Standard galileons with a potential: galileon Lagrangians are total derivatives in 1D, so no difference from canonical case
 - Conformal galileons with a potential: domain walls do not exist
 - (A)dS galileons: naturally possess a potential due to their symmetries. Leads to bubbles, but they shrink and suffer from ghosts

Time dependence-light-speed domain walls

- Time dependence requires v=c so that there isn't a frame where the soliton is at rest
- Masoumi & Xiao, arXiv:1201.3132—standard galileons have stable lightspeed solitons
- Generalized galileons:
 - ✤ DBI galileons: stable solitons ✓
 - Conformal galileons: unstable X
 - (A)dS galileons: naturally include a potential, so should not include solutions with v=c

Summary of nonperturbative effects

 Tunneling rates very sensitive to kinetic structure, especially for galileons outside a Vainshtein region

Non-canonical kinetic terms can severely boost vacuum decay rate

Difficult to construct static galileon domain walls

* Easier for walls moving at speed of light

Effective field theory and modified gravity: All* theories are effective theories

- Decoupling: high-energy physics not needed to understand phenomena at low energies
- EFT approach underlies our ability to use nonrenormalizable theories, including GR
- The lens through which modern physical theories are viewed!
- Unless you have a theory of everything at hand, new theories should be seen as EFTs

What does (and doesn't) go into an EFT

 Write down most general Lagrangian consistent with particle content and symmetries, expanded in powers of E/M

 M: some (high) energy scale signaling breakdown of EFT

* Requirements: locality, analyticity, etc.

* Notably **not** required: second-order equations of motion

Modified gravity as an EFT

- * Modifications of GR: useful for dark energy, dark matter, inflation, etc.
- These theories are nonrenormalizable, hence should be seen as effective theories
 - * Construct MG analogously to beyond-Standard Model physics
- Most MG theories are constructed to be **ghost-free**: Horndeski, Lovelock, generalized galileons, etc.
- Higher derivatives are generic in EFTs healthy UV does not imply ghost-free EFT

When should (and shouldn't) we restrict to ghostfree theories like Horndeski and Lovelock?

* What new higher-derivative terms can one write down?

Are these phenomenologically interesting?

Healthy UV can have unhealthy EFT I. Is quantum gravity unstable?

* GR is lowest-energy term in EFT expansion: $\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2}R - 2\Lambda + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + \frac{d_1}{M^2} R^3 + \cdots$

* All terms (besides Rn) lead to ghosts

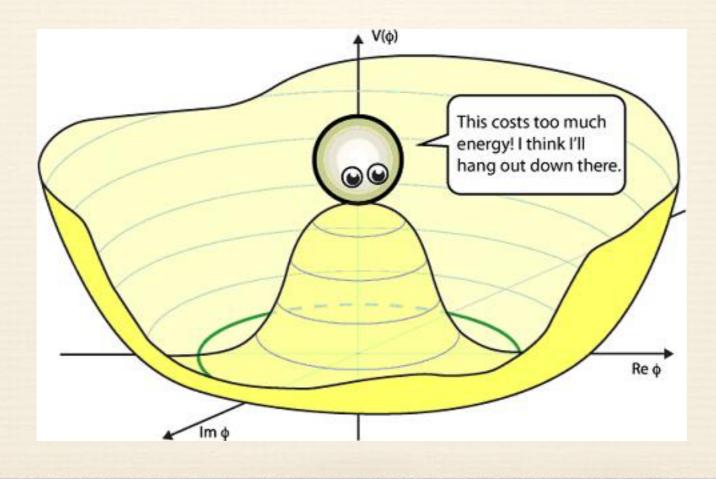
* Is flat space unstable in quantum gravity?

Answer (fortunately) is no

Adam R. Solomon (UPenn)

Illustrative example (Burgess and Williams 1404.2236):

$$S = \int \mathrm{d}^4 x \left[-\frac{1}{2} \partial_\mu \Phi^* \partial^\mu \Phi - V(\Phi^* \Phi) \right]$$



Adam R. Solomon (UPenn)

* Writing

$$\Phi(x) = \frac{v}{\sqrt{2}} \left(1 + \rho(x)\right) e^{i\theta(x)}$$

we have a massless Goldstone θ and a massive ρ with $M^2 = \lambda v^2$

The action becomes

$$\mathcal{L} = \int \mathrm{d}^4 x \left[-\frac{1}{2} (\partial \rho)^2 - \frac{1}{2} (1+\rho)^2 (\partial \theta)^2 - V(\rho) \right]$$

Adam R. Solomon (UPenn)

$$\mathcal{L} = \int \mathrm{d}^4 x \left[-\frac{1}{2} (\partial \rho)^2 - \frac{1}{2} (1+\rho)^2 (\partial \theta)^2 - V(\rho) \right]$$

- * For energies << M, we can **integrate out** ρ to obtain an effective action for θ
- Solution to ρ eom is highly nonlocal, but can localize by writing perturbatively in 1/M

$$\Box \rho - (1+\rho)(\partial \theta)^2 - V' = 0 \quad \Longrightarrow \quad \rho = -\frac{(\partial \theta)^2}{M^2} - \frac{(\partial \theta)^4 + 2\Box(\partial \theta)^2}{2M^4} + \mathcal{O}\left(\frac{1}{M^6}\right)$$

* At low energies, EFT for angular mode θ is

$$\mathcal{L} = -\frac{1}{2} (\partial \theta)^2 + \frac{1}{2M^2} (\partial \theta)^4 - \frac{2}{M^4} \theta_{,\mu\nu} \theta^{,\mu\rho} \theta^{,\nu} \theta_{,\rho} + \mathcal{O}\left(\frac{1}{M^6}\right)$$

✤ O(M₋₄) term is ghostly!

- Original theory is healthy what happened?
- Resumming full 1/M expansion (nonlocal) would cure ghost higher derivatives are an artifact of truncation

EFT point of view: ghost is of mass ~M, cannot be produced within EFT

Ghostbusting

Full solutions

Physical

solutions

- EFTs with higher derivatives require additional initial conditions — **spurious** solutions
- Only a subset of these are physical insofar as they reflect solutions of the full theory
- Ghost instabilities associated to higher derivatives are **not present** in physical solutions

Ghostbusting

Full solutions

Physical

solutions

- Siven a higher-derivative EFT, how do we identify these physical solutions?
 - Simply solving the equations of motion will lead to disaster
- Are they (exact) solutions to some other, ghost-free theory?
 - If yes: justifies use of ghostfree theories
 - If no: opens up theory space

How do we identify physical solutions?

* Consider in 1D particle mechanics $L = \frac{1}{2}\dot{x}^2 + \frac{1}{2}\epsilon\ddot{x}^2 + \mathcal{O}(\epsilon^2)$

the eom is

 $\ddot{x} - \epsilon x^{(4)} = 0$

and has solutions

 $x = A + Bt + Ce^{t/\epsilon} + De^{-t/\epsilon}$

Exponential solutions are bad but not physical—not consistent with perturbative expansion in ε

 Only the C=D=0 solutions are physical insofar as they perturbatively reflect solutions of the full (UV) theory

Adam R. Solomon (UPenn)

Reduction of order method

- Instead of setting initial conditions to remove runaways (numerically unstable?), can reduce order of EFT eom.
- * In this example, defining $E \equiv \ddot{x} \epsilon x^{(4)} = \mathcal{O}(\epsilon^2)$ we see that, to order in which we're working,

$$E + \epsilon \ddot{E} = \ddot{x} + \mathcal{O}(\epsilon^2) \implies \ddot{x} = \mathcal{O}(\epsilon^2)$$

so that the physical C=D=0 solutions emerge naturally

 Allows to straightforwardly deal with higher derivatives in EFTs, e.g., numerically

When do the physical solutions correspond to an action?

* Key: **field redefinitions**. Recall the U(1) scalar: $\mathcal{L} = -\frac{1}{2}(\partial\theta)^2 + \frac{1}{2M^2}(\partial\theta)^4 - \frac{2}{M^4}\theta_{,\mu\nu}\theta^{,\mu\rho}\theta^{,\nu}\theta_{,\rho} + \mathcal{O}\left(\frac{1}{M^6}\right)$ and send

$$\theta \to \theta + \frac{2}{M^4} \theta_{,\mu\nu} \theta^{,\mu} \theta^{,\nu}$$

Leaves us with a second-order theory, the quartic galileon! $\mathcal{L} = -\frac{1}{2}(\partial\theta)^2 + \frac{1}{2M^2}(\partial\theta)^4 + \frac{1}{M^4}(\partial\theta)^2 \left[\theta_{,\mu\nu}\theta^{,\mu\nu} - (\Box\theta)^2\right] + \mathcal{O}\left(\frac{1}{M^6}\right)$

Adam R. Solomon (UPenn)

When do the physical solutions correspond to an action?

$$\mathcal{L} = -\frac{1}{2} (\partial \theta)^2 + \frac{1}{2M^2} (\partial \theta)^4 - \frac{2}{M^4} \theta_{,\mu\nu} \theta^{,\mu\rho} \theta^{,\nu} \theta_{,\rho} + \mathcal{O}\left(\frac{1}{M^6}\right)$$
$$\theta \to \theta + \frac{2}{M^4} \theta_{,\mu\nu} \theta^{,\mu} \theta^{,\nu}$$
$$\mathcal{L} = -\frac{1}{2} (\partial \theta)^2 + \frac{1}{2M^2} (\partial \theta)^4 + \frac{1}{M^4} (\partial \theta)^2 \left[\theta_{,\mu\nu} \theta^{,\mu\nu} - (\Box \theta)^2\right] + \mathcal{O}\left(\frac{1}{M^6}\right)$$

 The problematic higher derivatives have been shunted off to O(M⁻⁶), which we can safely ignore

 Physical solutions to this EFT could be obtained by exactly solving a quartic galileon (up to O(M-4))

Adam R. Solomon (UPenn)

Prescription for identifying genuine higher derivatives

Construct EFT operator basis up to two redundancies:
 Integrations by parts and field redefinitions (equations of motion)

* This is very well understood in beyond-SM physics

 Extra ingredient for modified gravity: construct operator bases with as few higher derivatives as possible

* Those higher-derivative terms that are left **should** be included!

* Deal with these by solving equations of motion **perturbatively**

Shift-symmetric scalar EFT basis: no ghosts until dimension 12!

Dimension	Operators
4	$\mathbf{X} = (\partial \mathbf{\phi})^2$
5	None
6	None
7	Cubic galileon*
8	\mathbf{X}^2
9	None
10	Quartic galileon
11	None
12	X ³ , $(\phi_{\mu\nu}^2)^2$

Adam R. Solomon (UPenn)

Modified gravity EFT: scalar-tensor operator basis

 Field redefinitions enforce lowest-order equations of motion. Scalar-tensor operators which are unaffected should involve Riemann couplings

* Consider scalar-tensor EFT in derivative expansion (e.g., Weinberg's EFT of inflation)

	Derivatives	Operators
	4	X ² , Gauss-Bonnet [Weinberg]
	6	X ³ , quartic Horndeski, five new higher-derivative operators
Adam	R. Solomon (UPenn)	Hopkins 9/19/17

Six-derivative scalar tensor operators generated through Riemann couplings

 $R_{\mu\nu\alpha\beta}\phi^{\mu\alpha}\phi^{\nu\beta}, \quad R_{\mu\nu\alpha\beta}\phi^{\mu}\phi^{\alpha}\phi^{\nu\beta}, \quad XR^2_{\mu\nu\alpha\beta},$ $R^{\mu\nu}{}_{\alpha\beta}R^{\alpha\beta}{}_{\rho\sigma}R^{\rho\sigma}{}_{\mu\nu}, \quad (\nabla R_{\mu\nu\alpha\beta})^2$

- * Should be considered alongside comparable-size Horndeski terms in, e.g., inflation, dark energy. *No reason* a priori to ignore them
- * Must deal with higher derivatives in one of two ways:
 - * Solve equations of motion order by order, or
 - * Reduce order of equations of motion using perturbative nature

Take-home message

- Advocate for consideration of modified gravity as an EFT, including allowing higher derivatives
- Healthy UV does not imply ghost-free low-energy EFT
- Additional justification required to restrict to theories with second-order equations of motion
- Both Horndeski and non-Horndeski terms should be treated in EFT expansion
 - ✤ Not impossible e.g., DBI