Superfluids and the Cosmological Constant Problem

-110 OIL

Adam R. Solomon
Carnegie Mellon University

With Justin Khoury & Jeremy Sakstein (UPenn) arXiv:1805.05937 (JCAP)

Outline

- 1. Intro to the cosmological constant problem(s)
- 2. Proposed solutions and obstructions
- 3. Our proposal: finite-temperature superfluid/ Lorentz-violating massive gravity

"The cosmological constant problem is the unwanted child of two pillars of twentieth century physics: quantum field theory and general relativity."

Tony Padilla

What is the cosmological constant?

* Einstein's equations allow a cosmological constant:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2} T_{\mu\nu}$$

- * Most pronounced effect is on long distances/cosmology:
 - $\Lambda > 0$: late-time acceleration
 - * Λ < 0: collapse
- * Observations indicate the Universe is accelerating, consistent with a cosmological constant of size

$$\Lambda \sim \mathcal{O}\left(\frac{\text{meV}^4}{M_{\text{Pl}}^2}\right)$$

What could produce Λ ?

- * One known theoretical source of Λ : vacuum energy
 - * Equivalence principle: the vacuum gravitates
 - * Lorentz invariance: $T_{\mu\nu} \sim \frac{\rho_{\rm vac}}{M_{\rm Pl}^2} g_{\mu\nu}$
- * Massive fields contribute $\rho_{vac} \sim m^4$
- * Observed Λ is about the vacuum energy due to neutrino masses, tiny compared to any other particles in Standard Model (and beyond)
 - ❖ Electron vacuum energy alone would lead to de Sitter horizon ~ 10⁶ km
 - * Pauli: the radius of the world "nicht einmal bis zum Mond reichen würde" (would not even reach the Moon!)

Where is the vacuum energy?

* The problem is even worse with more particle species:

$$\frac{\rho_{\text{vac,electron}}}{\rho_{\text{vac,obs}}} \sim 10^{32}$$

$$\frac{\rho_{\text{vac,SM}}}{\rho_{\text{vac,obs}}} \sim 10^{54}$$

$$\frac{\rho_{\text{vac,obs}}}{\rho_{\text{vac,Planck}}} \sim 10^{121}$$

$$\frac{\rho_{\text{vac,obs}}}{\rho_{\text{vac,obs}}}$$

* "The worst theoretical prediction in the history of physics!"

Cosmological constant problems old and new

- Cosmic acceleration poses two (logically distinct?) problems:
- "Old problem": why does an enormous vacuum energy not gravitate?
- * "New problem": why is there some residual acceleration anyway?
- * Often treated separately! Solve one while ignoring the other
- * This talk: focus on the old problem

Approaches to the old problem

- * There are *many* proposed solutions. I will discuss a small sample. For comprehensive lists, see reviews by
 - * Weinberg, Rev. Mod. Phys. 61 (1989) 1-23
 - * Nobbenhuis, gr-qc/0411093
 - * Martin, 1205.3365
 - * Burgess, 1309.4133
 - * Padilla, 1502.05296

Some approaches

* Anthropics: if Λ were bigger, we wouldn't be around to remark on it

- * Could follow from string landscape + eternal inflation
- * Dimopoulos: danger of "premature application"
- * Modifications of gravity: leave Λ alone, but change how it gravitates
 - Degravitation: weaken gravitational response to long-wavelength sources
 - * Self-tuning: introduce new field(s) which dynamically counteract Λ

Self-tuning and our modest goal

- We will set a modest goal: field equations solved by Minkowski for arbitrary Λ
- Necessary but not sufficient condition for solving old CC problem
- * Other criteria:
 - * UV insensitivity, radiative stability, no pathologies, agreement with experiments, reproduce observed cosmological history, etc.!
- * Self-tuning runs into a famous obstruction due to Weinberg

Weinberg's famous no-go theorem

- * Weinberg (1988); see also Padilla review 1502.05296
- * Assume some fields φ^A "eat up" vacuum energy,

$$T^{\phi}_{\mu\nu} = -T^{\Lambda}_{\mu\nu}$$

* Assume Poincaré-invariant vacua,

$$\phi^A = \text{const}, \qquad g_{\mu\nu} = \eta_{\mu\nu}$$

Weinberg's famous no-go theorem: two paths

- * Add a potential: $\mathcal{L} = -\sqrt{-g}(V(\phi^A) + 2\Lambda) + \text{derivatives}$
 - * Fine-tuning: only cancels out one specific value of Λ
- * Scaling symmetry: $\mathcal{L} = -\sqrt{-g}V_0e^{4\tilde{\phi}} + \text{derivatives}$
 - * Particle masses also vanish; not physical

Evading Weinberg's theorem

- Any no-go theorem has assumptions, pointing the way forward
- * Our (and others') approach: break Poincaré invariance

$$\Phi^A = \Phi^A(x^\mu), \quad g_{\mu\nu} = \eta_{\mu\nu}$$

- * e.g., in cosmology, we might have fields with time dependence
- * This implies, at a minimum, that the fields must be accompanied by derivatives
- * To leading order in EFT, one derivative per field

Warmup: one scalar

- * Can we degravitate with a single scalar?
 - * No.
 - * Why?
- * At leading order in derivatives, most general action is

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R - 2\Lambda + m^2 P(X) \right], \quad X \equiv (\partial \Phi)^2$$

* NB: this is the EFT of a zero-temperature superfluid

* The total stress tensor is

$$\frac{1}{M_{\rm Pl}^2} T_{\mu\nu} = \frac{1}{2} m^2 \left(P g_{\mu\nu} - 2 P_X \partial_{\mu} \Phi \partial_{\nu} \Phi \right) - \Lambda g_{\mu\nu}, \quad P_X \equiv \frac{\partial P}{\partial X}$$

- * In order to have flat solutions for arbitrary Λ , this must vanish:
 - 1. $P_X = 0$
 - 2. $m^2 P = 2\Lambda$
- * The latter requires fine-tuning.
- * e.g., ghost condensate, $P(X) = X + \lambda X^2/2$
 - * Solution: $\Phi = \lambda^{-1/2}t$. But $m^2 P = 2\Lambda$ only if λ is carefully tuned against Λ !

$$\lambda = -\frac{m^2}{4\Lambda}$$

Four scalars

- * Fine-tuning can be alleviated with four scalars Φ^A
 - Can eliminate problem of inhomogeneous term in stress tensor
- * Consider a simple (and trivially wrong) model:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda - m^2 \eta_{AB} \partial_{\mu} \Phi^A \partial^{\mu} \Phi^B \right]$$

* The stress tensor no longer has an inhomogeneous term:

$$\frac{1}{M_{\rm Pl}^2} T_{\mu\nu} = \frac{1}{2} m^2 \left(-\eta_{AB} \partial_\alpha \Phi^A \partial^\alpha \Phi^B g_{\mu\nu} + 2\eta_{AB} \partial_\mu \Phi^A \partial_\nu \Phi^B \right) - \Lambda g_{\mu\nu}$$

* This admits flat solutions $\Phi^A = \alpha x^A$, with

$$\alpha = \frac{\sqrt{-\Lambda}}{m}$$

- ❖ Degravitates any negative Λ without fine-tuning!
 - * Key: instead of tuning theory parameters against Λ , tune integration constant α to Λ
 - * Tuning is achieved dynamically

* Fatal problem: Φ^0 is a **ghost**

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R - 2\Lambda - m^2 \eta_{AB} \partial_{\mu} \Phi^A \partial^{\mu} \Phi^B \right]$$
$$= \frac{M_{\text{Pl}}^2}{2} \left[R - 2\Lambda + m^2 (\partial \Phi^0)^2 - m^2 \sum_{i=1}^3 (\partial \Phi^i)^2 \right]$$

- * Direct result of internal Lorentz symmetry, which is what we used to remove inhomogeneous term!
 - * Blessing and a curse
- * Can we self-tune without a ghost?

Ghosts and massive gravity

- * The ghost is easy to understand if we recognize this is a theory of massive gravity
- * Why? Consider adding to GR a mass term of the form

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda - m^2 g^{\mu\nu} \eta_{\mu\nu} \right]$$

* This breaks diff invariance due to $\eta_{\mu\nu}$. Can restore diffs by introducing Stückelberg fields Φ^A ,

$$\eta_{\mu\nu} \to \eta_{AB} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}$$

* And we recover the action discussed in the previous slides

Massive gravity and degravitation

- * This connects to an old and venerable story:
 - ★ Massive graviton → finite range of gravity → gravity
 acts as "high-pass filter" screening out sources with
 wavelengths >> m-1
 - ❖ Λ is infinite-wavelength source!
- * Massive gravity at linear level: Fierz-Pauli (1939) $h_{\mu\nu}h^{\mu\nu} (h^{\mu}_{\ \mu})^2$
 - * Other linear mass terms have ghosts, just like the example we discussed

Massive gravity and degravitation

- * Non-linear: another ghost! (Boulware-Deser, 1972)
- Unique non-linear, ghost-free, Lorentz-invariant massive gravity: de Rham-Gabadadze-Tolley (dRGT, 2010)
- * dRGT cannot degravitate large Λ without violating solar system tests of GR (1010.1780)
- * This means we cannot use a theory of the form

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 U(\partial_\mu \Phi^A, \eta_{AB}, \varepsilon_{ABCD}) \right]$$

Is Lorentz invariance too strong a requirement?

- * For cosmology, we only need SO(3), not SO(3,1)
- * Idea: break internal boosts

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 U(\partial_\mu \Phi^0, \partial_\mu \Phi^i, \delta_{ij}, \varepsilon_{ijk}) \right]$$

- * Aim: use newfound freedom to avoid ghosts (and other pathologies) while retaining degravitation
- We will analyze this theory for physically sensible degravitating models with

$$\Phi^0 = \alpha t$$
, $\Phi^i = \beta x^i$ such that $T^{\Phi}_{\mu\nu}|_{g=\eta} = M_{\rm Pl}^2 \Lambda \eta_{\mu\nu}$

Interpreting our theory

- * Two physical interpretations of this type of theory:
 - 1. Lorentz-violating massive gravity
 - 2. Low-energy EFT of self-gravitating fluid
- * Difference hinges only on coordinate choice

Lorentz-violating massive gravity as a fluid EFT

- * Consider the fields $\Phi^A = \Phi^A(t,x)$ to be comoving (Lagrangian) coordinates of a fluid
- * Fluid rest frame is a coordinate system in which $\Phi^{A} = \alpha x^{A}$
- * EFT describing excitations of fluid is a derivative expansion in Φ^A obeying any relevant symmetries

Building blocks and symmetry

* At leading order in derivatives, action is built out of

$$C^{AB} \equiv g^{\mu\nu}\partial_{\mu}\Phi^{A}\partial_{\nu}\Phi^{B} \quad \Longrightarrow \quad \mathcal{L} = U(C^{00}, C^{0i}, C^{ij})$$

- * Choice of operators determines symmetry-breaking pattern and hence fluid, e.g.,
 - * Solids: $\mathcal{L} = U(C^{ij})$
 - * Zero-temperature superfluids: $\mathcal{L} = U(C^{00})$
 - * Finite-temperature superfluids:

$$\mathcal{L} = U(C^{00}, \det C^{ij}, \det C^{AB})$$

The importance of coordinates

* If we move to the fluid rest frame, $\Phi^A = \alpha x^A$, then we recover the Lorentz-violating massive gravity picture:

$$U(C^{00}, C^{0i}, C^{ij}) \xrightarrow{\Phi^A = \alpha x^A} U(h_{00}, h_{0i}, h_{ij})$$

* We refer to this as unitary gauge

* e.g.,
$$X = C^{00} = g^{\mu\nu}\partial_{\mu}\Phi^{0}\partial_{\nu}\Phi^{0} \xrightarrow{\Phi^{A} = \alpha x^{A}} C^{00} = \alpha^{2}g^{00}$$

 \Rightarrow Potential for g^{00}

Criteria for degravitation

- * Existence of a Minkowski (degravitating) solution: equations of motion must be solved by $g = \eta$ for arbitrary Λ
- * No fine-tuning: Tune integration constants, not parameters, against Λ
- * Massless tensors: Tensor mass generically is huge, m ~ $O(\Lambda^{1/2})$, unless they are exactly massless. (LIGO: m < 10^{-22} eV)
- * No pathologies: No ghosts, tachyons, gradient instabilities, infinite strong coupling, instantaneous modes
- * **UV insensitivity**: Higher-derivative EFT corrections should not introduce new modes at low energy

Strategy

- 1. Identify parameter space of Lorentz-violating massive gravity which satisfies these criteria
- 2. Look for symmetries that protect our parameter choice
- 3. Determine fluid building blocks
- 4. Solve cosmological constant problem

Analysis

* Work in unitary gauge at linear level,

$$\Phi^A = (\alpha t, \beta x^i), \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

* Most general SO(3)-invariant mass term Dubovsky hep-th/0409124

$$\mathcal{L}_{\text{mass}} = \frac{M_{\text{Pl}}^2}{2} \left(m_0^2 h_{00}^2 + 2m_1^2 h_{0i}^2 - m_2^2 h_{ij}^2 + m_3^2 h_{ii}^2 - 2m_4^2 h_{00} h_{ii} \right)$$

- * Massless tensors: $m_2 = 0$
- * Stability: $m_1 = 0$ (see our paper for gory details! 1805.05937)

Searching for a symmetry

- * With our parameter choice in hand, $m_1 = m_2 = 0$, we need to find a symmetry to protect it
 - Otherwise we're just fine-tuning and not solving anything!
- Several candidate symmetries
 - * Most either don't degravitate or are UV-sensitive
- * Only symmetry that works: time-dependent, volume-preserving spatial diffeomorphism

Time-dependent, volume-preserving spatial diffeomorphisms

* Fluid language:

$$\Phi^i \to \Psi^i(\Phi^0, \Phi^i)$$
 with $\det\left(\frac{\partial \Psi^i}{\partial \Phi^j}\right) = 1$

* Massive gravity language: break diffs while leaving

$$x^i \to x^i + \xi^i(t, x^j)$$
 with $\partial_i \xi^i = 0$

- * Closely related to time-independent volume-preserving spatial diffs, which set $m_2 = 0$ and forbid massive tensors
- * Adding time dependence further restricts $m_1 = 0$, as necessary for stability

Building blocks of degravitation

* The building blocks invariant under our symmetry,

$$X = (\partial \Phi^{0})^{2}$$

$$Yb = \frac{\det(\partial \Phi)}{\sqrt{-g}}$$

* Our degravitating theory is therefore

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R - 2\Lambda + m^2 U(X, Yb) \right]$$

- * Unique theory that satisfies our criteria
- * This describes a finite-temperature superfluid!

Particle content

- * Two massless tensors ($\omega^2 = p^2$)
- No vectors
- * One global scalar ($\omega^2 = 0$)
 - Propagates due to higher-derivative EFT corrections
 - * Sounds weird, but well-known from ghost condensation

Hints from the UV

 Including next-to-leading operators in derivative expansion, scalar dispersion relation becomes

$$\left(m_0^2 - \frac{m_4^4}{m_3^2}\right)\omega^2 = ap^4$$

- * a: dimensionless constant determined by UV physics
- Ghost-free condition: $m_0^2 \frac{m_4^4}{m_3^2} > 0$
- * No gradient instability: a > 0
- * UV insensitive: $\omega^2 \propto \frac{p^4}{\mathcal{M}^2}$, $\mathcal{M} \sim \text{cutoff}$

Aside: relation to unimodular gravity

* Well-known attempt to solve cosmological constant problem: unimodular gravity

$$R_{\mu\nu} - \frac{1}{4} R g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2} \left(T_{\mu\nu} - \frac{1}{4} T g_{\mu\nu} \right)$$

- * Traceless version of Einstein equations: A reintroduced as integration constant
- This is one of a class of theories invariant under transverse diffeomorphisms (TDiff), corresponding to U(Yb)

Aside: relation to unimodular gravity

GR:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} R$$

Unimodular:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R + m^2 U(Yb) \right]$$

Ghost condensate:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R + m^2 U(X) \right]$$

Our theory:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R + m^2 U(X) \right] \qquad \frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R + m^2 U(X, Yb) \right]$$

Our theory is to unimodular as ghost condensate is to GR! Same symmetry-breaking pattern

UV sensitivity of unimodular/TDiff gravity

- * Aside: we find that TDiff theories are UV-sensitive
 - * Not a good solution to the CC problem!
- * TDiff: $m_0 = m_3 = m_4$
- * Lowest order, no mode: $\left(m_0^2 \frac{m_4^4}{m_3^2}\right)\omega^2 = 0 = 0 \times \omega^2$
- * Next order in EFT: Lorentz invariance implies a massless mode, $\frac{ap^4 + b\omega^2p^2 + c\omega^4}{\mathcal{M}^2} = 0 \propto \frac{(\omega^2 p^2)^2}{\mathcal{M}^2}$

Degravitating solutions in practice

* Finally, we can see how this all works! Example:

$$U(X, Yb) = \frac{K_1}{2}(X+1)^2 + \frac{K_2}{2}(Yb)^2$$

Ghost condensate plus term quadratic in Yb

* Has degravitating solutions!

$$g_{\mu\nu} = \eta_{\mu\nu}, \quad \Phi^0 = t, \quad \Phi^i = \left(-\frac{4\Lambda}{K_2 m^2}\right)^{1/6} x^i$$

- * Can degravitate any positive Λ for $K_2 < 0$ and vice versa
- * No ghost: $K_1 > 0$

Degravitating solutions in practice

* Another simple example:

$$U(X, Yb) = -X + \gamma XYb - \frac{\lambda}{2}(Yb)^2$$

* Degravitating solutions:

$$g_{\mu\nu} = \eta_{\mu\nu}, \quad \Phi^0 = \sqrt{\frac{2\Lambda}{m^2} - \frac{\lambda}{2\gamma^2}}t, \quad \Phi^i = \left(\frac{2\gamma^2\Lambda}{m^2} - \frac{\lambda}{2}\right)^{-1/6}x^i$$

- * Can degravitate any $\Lambda > \lambda m^2/4\gamma^2$
- * Ghost-free: $\lambda > 0$

Future directions

- * Cosmology! Embed this model in a realistic scenario
- * Is the Minkowski solution an attractor?
- * Hints we may need to (softly) break shift symmetry

Summary

- ❖ New method for self-tuning Λ by breaking Lorentz
 - * Circumvent Weinberg
- * Unique theory: finite-temperature superfluid
- * Next step: see whether this cancellation can occur dynamically

Bonus slides

Weinberg's famous no-go theorem

- ❖ Weinberg (1988); see also Padilla review 1502.05296
- * Assume some field ϕ "eats up" vacuum energy density for arbitrary Λ , i.e.,

$$T^{\phi}_{\mu\nu} = -T^{\Lambda}_{\mu\nu}$$

- * We'll consider a single scalar field, but proof extends to arbitrary spins/number of fields
- * Assume Poincaré-invariant vacua,

$$\phi = \text{const}, \qquad g_{\mu\nu} = \eta_{\mu\nu}$$

* For constant ϕ and $g_{\mu\nu}$, the field equations are

$$\left. \frac{\partial \mathcal{L}}{\partial \phi} \right|_{g,\phi=\text{const.}} = 0, \qquad \left. \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} \right|_{g,\phi=\text{const.}} = 0$$

Scenario 1: equations of motion hold independently.
 Translation invariance:

$$\delta_M x^\mu = M^\mu_{\ \nu} x^\nu \implies \delta_M g_{\mu\nu} = 2M_{(\mu\nu)}, \quad \delta_M \mathcal{L} = \mathcal{L} \operatorname{Tr} M$$

* General variation of L, assuming φ eom, is

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} \delta g_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi \quad \Longrightarrow \quad \mathcal{L} g^{\mu\nu} M_{\mu\nu} = 2 \frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} M_{\mu\nu}$$

* This implies (on-shell)

$$\frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} = \frac{1}{2} \mathcal{L} g^{\mu\nu} \implies \mathcal{L} = -\sqrt{-g}(V(\phi) + 2\Lambda) + \text{derivatives}$$

* The metric eom requires $V(\phi) = -2\Lambda$ at min; fine-tuning

* Scenario 2: equations of motion imply each other,

$$2g_{\mu\nu}\frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} = f(\phi)\frac{\partial \mathcal{L}}{\partial \phi}$$

$$\equiv \frac{\partial \mathcal{L}}{\partial \tilde{\phi}}, \qquad \tilde{\phi} \equiv \int \frac{\mathrm{d}\phi}{f(\phi)}$$

* For constant fields, this implies scaling symmetry,

$$\delta_{\epsilon}g_{\mu\nu} = 2\epsilon g_{\mu\nu}, \quad \delta_{\epsilon}\tilde{\phi} = -\epsilon \implies \delta_{\epsilon}\mathcal{L} = 0$$

This requires

$$\mathcal{L} = -V_0 \sqrt{-\hat{g}} + \text{derivatives}, \qquad \hat{g}_{\mu\nu} \equiv e^{2\tilde{\phi}} g_{\mu\nu}$$

implying (by g_{μν} equation)

$$V_0 e^{4\tilde{\phi}} = 0$$

* Our equation of motion (dropping tildes),

$$V_0 e^{4\phi} = 0,$$

has two solutions:

- * $V_0 = 0$: fine-tuning again
- \bullet $e^{\phi} = 0$: all particles massless
- * QED