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The cosmological constant 
problem is hard

Old CC problem: why isn’t the CC enormous?
Vacuum energy induces large CC
Universe accelerates long before structure can form

New CC problem: why isn’t it zero?
The Universe is accelerating! Implies tiny but non-zero CC
Require technical naturalness, otherwise reintroduce old CC 
problem
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The CC problem is a problem 
of gravity

Particle physics tells us the vacuum energy, and gravity 
translates that into cosmology

The CC affects gravity at ultra-large distances, where we 
have few complementary probes of GR

Does the CC problem point to IR modifications of GR?

Can address the old problem, new problem, or both
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Modifying gravity is also hard
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Modifying gravity is also hard

It is remarkably tricky to move away from GR in theory 
space

Ghosts/instabilities

Long-range fifth forces
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Massive gravity is a promising 
way forward

Conceptual simplicity
GR: unique theory of a massless spin-2
Mathematical simplicity? Depends on your aesthetics

Has potential to address both CC problems
Old CC problem: degravitation

Yukawa suppression lessens sensitivity of gravity to CC

Degravitation in LV massive gravity: work in progress (with Justin 
Khoury, Jeremy Sakstein)

Technically natural small parameter
Graviton mass protected by broken diffs
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How to build a massive graviton
Step 1: Go linear

Consider a linearized metric

The Einstein-Hilbert action at quadratic order is

with the Lichnerowicz operator defined by

This action is invariant under linearized diffeomorphisms
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How to build a massive graviton
Step 1: Go linear

Unique healthy (ghost-free) mass term
(Fierz and Pauli, 1939):

This massive graviton contains five polarizations:
2 x tensor
2 x vector
1 x scalar

Fierz-Pauli tuning: Any other coefficient between             and      
leads to a ghostly sixth degree of freedom
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dRGT Massive Gravity in a Nutshell
The unique non-linear action for a single massive spin-2 
graviton is

where fµν is a reference metric which must be chosen at the 
start

βn are interaction parameters; the graviton mass is ~m2βn

The en are elementary symmetric polynomials given by…
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For a matrix X, the elementary symmetric 
polynomials are ([] = trace)
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An aesthetic aside

The potentials in the last slide are ugly

Lovely structure in terms of vielbeins and differential 
forms:
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Much ado about a reference 
metric?

There is a simple (heuristic) reason that massive 
gravity needs a second metric: you can’t construct a 
non-trivial interaction term from one metric alone:

We need to introduce a second metric to construct 
interaction terms.

Can be Minkowski, (A)dS, FRW, etc., or even 
dynamical

This points the way to a large family of theories with 
a massive graviton

gµ↵g⌫↵ = �µ⌫ , (gµ⌫)
2 = 4, . . .
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Theories of a massive graviton

Examples of this family of massive gravity theories:

gµν, fµν dynamical: bigravity (Hassan, Rosen: 1109.3515)

One massive graviton, one massless

gµν, f1,µν, f2,µν, …, fn,µν, with various pairs coupling à la 
dRGT: multigravity (Hinterbichler, Rosen: 1203.5783)

n-1 massive gravitons, one massless

Massive graviton coupled to a scalar (e.g., 
quasidilaton, mass-varying)
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The search for viable
massive cosmologies

No stable FLRW solutions in dRGT massive gravity

Way out #1: large-scale inhomogeneites

Way out #2: generalize dRGT
Break translation invariance (de Rham+: 1410.0960)

Generalize matter coupling (de Rham+: 1408.1678)

Way out #3: new degrees of freedom
Scalar (mass-varying, f(R), quasidilaton, etc.)
Tensor (bi/multigravity) (Hassan/Rosen: 1109.3515)
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Massive bigravity has self-
accelerating cosmologies

Consider FRW solutions

NB: g = physical metric (matter couples to it)

Bianchi identity fixes X

New dynamics are entirely controlled by y = Y/a
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Massive bigravity has self-
accelerating cosmologies

The Friedmann equation for g is

The Friedmann equation for f becomes algebraic after 
applying the Bianchi constraint:
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Massive bigravity has self-
accelerating cosmologies

At late times, ρ à 0 and so y à const.

The mass term in the Friedmann equation approaches a 
constant – dynamical dark energy
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Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457]
See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208];

ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061]

Massive bigravity vs. ΛCDM
Bi ⌘
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H2
0

�i⇠ B1 Tr[
p
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Beyond the background

Cosmological perturbation theory in massive bigravity is a 
huge cottage industry and the source of many PhD 
degrees. See:

Cristosomi, Comelli, and Pilo, 1202.1986
ARS, Akrami, and Koivisto, 1404.4061
Könnig, Akrami, Amendola, Motta, and ARS, 1407.4331
Könnig and Amendola, 1402.1988
Lagos and Ferreira, 1410.0207
Cusin, Durrer, Guarato, and Motta, 1412.5979

and many more for more general matter couplings!
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Scalar perturbations in massive 
bigravity

Our approach (1407.4331 and 1404.4061):

Linearize metrics around FRW backgrounds, restrict to 
scalar perturbations {Eg,f, Ag,f, Fg,f, and Bg,f}:

Full linearized Einstein equations (in cosmic or conformal 
time) can be found in ARS, Akrami, and Koivisto, 
arXiv:1404.4061
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Scalar fluctuations can suffer 
from instabilities

Usual story: solve perturbed Einstein equations in 
subhorizon, quasistatic limit:

This is valid only if perturbations vary on Hubble 
timescales

Cannot trust quasistatic limit if perturbations are 
unstable

Check for instability by solving full system of 
perturbation equations
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Scalar fluctuations can suffer 
from instabilities

Degree of freedom count: ten total variables
Four gµν perturbations: Eg, Ag, Bg, Fg

Four fµν perturbations: Ef, Af, Bf, Ff

One perfect fluid perturbation: χ

Eight are redundant:
Four of these are nondynamical/auxiliary (Eg, Fg, Ef, Ff)
Two can be gauged away
After integrating out auxiliary variables, one of the dynamical 
variables becomes auxiliary – related to absence of ghost!

End result: only two independent degrees of freedom

NB: This story is deeply indebted to Lagos and Ferreira
Adam Solomon – UPenn



Scalar fluctuations can suffer 
from instabilities

Choose g-metric Bardeen variables:

Then entire system of 10 perturbed Einstein/fluid 
equations can be reduced to two coupled equations:

where
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Scalar fluctuations can suffer 
from instabilities

Ten perturbed Einstein/fluid equations can be reduced to 
two coupled equations:

where

Under assumption (WKB) that Fij, Sij vary slowly, this is 
solved by

with N = ln a
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Scalar fluctuations can suffer 
from instabilities

B1-only model – simplest allowed by background

Unstable for small y (early times)

NB: Gradient instability
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Scalar fluctuations can suffer 
from instabilities

B1-only model – simplest allowed by background

Unstable for small y (early times)

For realistic parameters, model is only (linearly) stable for 
z <~ 0.5
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Instability does not rule 
models out

Instability à breakdown of linear perturbation theory
Nothing more
Nothing less

Cannot take quasistatic limit

Need nonlinear techniques to make structure 
formation predictions
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Do nonlinearities save us?
Helicity-0 mode of the massive graviton has 
nonlinear derivative terms (cf. galileons)

Linear perturbation theory misses these

Some evidence that the gradient instability is cured 
by these nonlinearities! (Aoki, Maeda, Namba 1506.04543) 

Morally related to the Vainshtein mechanism

How can we study nonlinear perturbations in detail?
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Strategy for “quasilinear” 
perturbations

Bigravity’s degrees of freedom:
1 massive graviton (two helicity-2, two helicity-1, one 
helicity-0)
1 massless graviton (two helicity-2)

Goal: keep nonlinearities in spin-0 mode while leaving 
other fluctuations linear
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Cosmology as a perturbation 
of flat space

Helicity decomposition only well-defined around flat 
background

Q: How can we isolate helicity-0 mode in cosmological 
perturbations?

A: Use Fermi normal coordinates, for which
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Cosmology as a perturbation 
of flat space

Starting from the FRW metric in comoving coordinates,

the coordinate change

yields
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Cosmology as a perturbation 
of flat space

So within the horizon we can write FRW as Minkowski 
space plus a small perturbation,
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Bimetric Fermi normal 
coordinates

In bigravity with two FRW metrics,

we clearly need two different Fermi coordinates.

Fermi coordinates Φa for f metric. Method: start with f-
metric comoving coordinates Φc

a such that

and then build FNC Φa from Φc
a as in previous slide

We identify Φa as the Stückelberg fields associated to 
broken diff invariance
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Bimetric Fermi normal 
coordinates

The FNC for the bimetric FRW backgrounds are related 
by the helicity-0 Stückelberg,
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To the decoupling limit

This is all suggestive of the decoupling limit of bigravity:

with Λ3
3 = m2MPl, and take the scaling limit

while keeping Λ3, MPl/Mf, and βn fixed

DL leaves leading interactions between helicity modes
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The decoupling limit

The action in the DL is

The first two terms are linearized Einstein-Hilbert, and

where
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µ⌫

◆

Xµ⌫ = �1

2

3X

n=1

�n

(3� n)!n!
"µ···"⌫···(⌘ +⇧)n⌘3�n
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Cosmological perturbations in 
the decoupling limit

The DL equations of motion yield correct background 
cosmological equations ✓

Nonlinear subhorizon structure formation by perturbing in 
DL

Can consistently keep χµν and wab linear while retaining 
nonlinearities in φ and ψ!
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Example: β2-only model

The action in the DL is

Perturb to second order:

Can be fully diagonalized:
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Example: β2-only model

This leaves us with (after int by parts, removing dual 
galileon)

where the coefficients of the kinetic and gradient terms 
are

ck>0 is equivalent to the Higuchi bound: useful 
consistency check! NB β2 is not a linearly unstable model
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Summary
Massive gravity is a promising approach to the 
cosmological constant problems

Bimetric massive gravity has cosmological 
backgrounds competitive with ΛCDM

These models have linear instabilities

A deeper look into quasilinear behavior of 
perturbations can shed light on endpoint of 
instability

Resuscitate massive (bi)gravity as a target for 
observations?
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