Cosmology and a Massive Graviton

Adam R. Solomon
Center for Particle Cosmology, University of Pennsylvania

Princeton/IAS Cosmology Lunch April 22 ${ }^{\text {nd }}, 2016$

Collaborators

(1) Yashar Akrami

* Luca Amendola
© Jonas Enander
(Fawad Hassan
© Tomi Koivisto
© Frank Könnig
© Edvard Mörtsell
(*) Mariele Motta
© Malin Renneby
\circledast Angnis Schmidt-May

The cosmological constant problem is hard

(2) Old CC problem: why isn't the CC enormous?
© Vacuum energy induces large CC

* Universe accelerates long before structure can form
© New CC problem: why isn't it zero?
(2) The Universe is accelerating! Implies tiny but non-zero CC
\otimes Require technical naturalness, otherwise reintroduce old CC problem

The CC problem is a problem of gravity

* Particle physics tells us the vacuum energy, and gravity translates that into cosmology
* The CC affects gravity at ultra-large distances, where we have few complementary probes of GR
© Does the CC problem point to IR modifications of GR?
© Can address the old problem, new problem, or both

Modifying gravity is also hard

Einstein-Dilaton-Gauss-Bonnet Cascading gravity Tessa Baker Strings \& Branes Randall-Sundrum I \& II Generalisations

Gauss-Bonnet

Lovelock gravity
arXiv:
1310.1086
1209.2117
1107.0491
1110.3830

Conformal gravity

General $R_{\mu \nu} R^{\mu \nu}$, $\square R$,etc.

Higher dimensions

Some degravitation

Coupled Quintessence
Horndeski theories

Modifying gravity is also hard

(8) It is remarkably tricky to move away from GR in theory space
© Ghosts/instabilities
(1) Long-range fifth forces

Massive gravity is a promising way forward

* Conceptual simplicity
® GR: unique theory of a massless spin-2
\circledast Mathematical simplicity? Depends on your aesthetics
© Has potential to address both CC problems
® Old CC problem: degravitation
\circledast Yukawa suppression lessens sensitivity of gravity to CC
\otimes Degravitation in LV massive gravity: work in progress (with Justin Khoury, Jeremy Sakstein)
© Technically natural small parameter
(Graviton mass protected by broken diffs

How to build a massive graviton Step 1: Go linear

(8) Consider a linearized metric

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu}
$$

The Einstein-Hilbert action at quadratic order is

$$
\mathcal{L}=-\frac{1}{4} h^{\mu \nu}(\mathcal{E} h)_{\mu \nu}+\frac{1}{2 M_{\mathrm{Pl}}} h_{\mu \nu} T^{\mu \nu}
$$

with the Lichnerowicz operator defined by

$$
(\mathcal{E} h)^{\mu \nu}=-\frac{1}{2} \varepsilon^{\mu \alpha \rho \cdot} \varepsilon^{\nu \beta \sigma} \cdot \partial_{\alpha} \partial_{\beta} h_{\rho \sigma}
$$

This action is invariant under linearized diffeomorphisms

$$
h_{\mu \nu} \rightarrow h_{\mu \nu}+2 \partial_{(\mu} \xi_{\nu)}
$$

How to build a massive graviton Step 1: Go linear

(8) Unique healthy (ghost-free) mass term (Fierz and Pauli, 1939):
$\mathcal{L}=-\frac{1}{4} h^{\mu \nu}(\mathcal{E} h)_{\mu \nu}-\frac{1}{8} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)+\frac{1}{2 M_{\mathrm{Pl}}} h_{\mu \nu} T^{\mu \nu}$
(\%) This massive graviton contains five polarizations:
(3) $2 x$ tensor
(8) $2 \times$ vector
(8. $1 \times$ scalar
(18) Fierz-Pauli tuning: Any other coefficient between $h_{\mu \nu} h^{\mu \nu}$ and h^{2} leads to a ghostly sixth degree of freedom

dRGT Massive Gravity in a Nutshell

© The unique non-linear action for a single massive spin-2 graviton is

$$
\begin{aligned}
S= & -\frac{M_{g}^{2}}{2} \int d^{4} x \sqrt{-\operatorname{det} g} R \\
& +m^{2} M_{g}^{2} \int d^{4} x \sqrt{-\operatorname{det} g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
\end{aligned}
$$

where $f_{\mu v}$ is a reference metric which must be chosen at the start
$\otimes \beta_{n}$ are interaction parameters; the graviton mass is $\sim m^{2} \beta_{n}$
\otimes The e_{n} are elementary symmetric polynomials given by...

$$
S=-\frac{M_{g}^{2}}{2} \int d^{4} x \sqrt{-\operatorname{det} g} R+m^{2} M_{g}^{2} \int d^{4} x \sqrt{-\operatorname{det} g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

For a matrix X, the elementary symmetric polynomials are ([] = trace)

$$
\begin{aligned}
e_{0}(X) & \equiv 1 \\
e_{1}(X) & \equiv[X] \\
e_{2}(X) & \equiv \frac{1}{2}\left([X]^{2}-\left[X^{2}\right]\right) \\
e_{3}(X) & \equiv \frac{1}{6}\left([X]^{3}-3[X]\left[X^{2}\right]+2\left[X^{3}\right]\right) \\
e_{4}(X) & \equiv \operatorname{det}(X)
\end{aligned}
$$

An aesthetic aside

(8) The potentials in the last slide are ugly
(18) Lovely structure in terms of vielbeins and differential forms:

$$
\begin{gathered}
g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}, \quad f_{\mu \nu}=\eta_{a b} f^{a}{ }_{\mu} f_{\nu}^{b} \\
e_{1}(X) \sim \varepsilon_{a b c d} e^{a} \wedge e^{b} \wedge e^{c} \wedge f^{d} \\
e_{2}(X) \sim \varepsilon_{a b c d} e^{a} \wedge e^{b} \wedge f^{c} \wedge f^{d} \\
e_{3}(X) \sim \varepsilon_{a b c d} e^{a} \wedge f^{b} \wedge f^{c} \wedge f^{d}
\end{gathered}
$$

Much ado about a reference

 metric?\otimes There is a simple (heuristic) reason that massive gravity needs a second metric: you can't construct a non-trivial interaction term from one metric alone:

$$
g^{\mu \alpha} g_{\nu \alpha}=\delta_{\nu}^{\mu}, \quad\left(g_{\mu \nu}\right)^{2}=4
$$

® We need to introduce a second metric to construct interaction terms.
© Can be Minkowski, (A)dS, FRW, etc., or even dynamical
© This points the way to a large family of theories with a massive graviton

Theories of a massive graviton

Examples of this family of massive gravity theories:
(8) $g_{\mu v} f_{\mu \nu}$ dynamical: bigravity (Hassan, Rosen: 1109.3515)
© One massive graviton, one massless
® $g_{\mu v}, f_{1, \mu v,} f_{2, \mu v \prime} \ldots, f_{n, \mu v \prime}$, with various pairs coupling à la dRGT: multigravity (Hinterbichler, Rosen: 1203.5783)
\& n-1 massive gravitons, one massless
(2) Massive graviton coupled to a scalar (e.g., quasidilaton, mass-varying)

The search for viable massive cosmologies

© No stable FLRW solutions in dRGT massive gravity
© Way out \#1: large-scale inhomogeneites
© Way out \#2: generalize dRGT

* Break translation invariance (de Rham+: 1410.0960)
\oplus Generalize matter coupling (de Rham+: 1408.1678)
© Way out \#3: new degrees of freedom © Scalar (mass-varying, $f(\mathrm{R})$, quasidilaton, etc.)
© Tensor (bi/multigravity) (Hassan/Rosen: 1109.3515)

Massive bigravity has selfaccelerating cosmologies

Consider FRW solutions

$$
\begin{aligned}
& d s_{g}^{2}=a^{2}\left(-d \tau^{2}+d \vec{x}^{2}\right) \\
& d s_{f}^{2}=-X^{2} d \tau^{2}+Y^{2} d \vec{x}^{2}
\end{aligned}
$$

NB: $\mathrm{g}=$ physical metric (matter couples to it) Bianchi identity fixes X

New dynamics are entirely controlled by $y=Y / a$

Massive bigravity has selfaccelerating cosmologies

The Friedmann equation for g is

$$
3 \mathcal{H}^{2}=\frac{a^{2} \rho}{M_{g}^{2}}+m^{2} a^{2}\left(\beta_{0}+3 \beta_{1} y+3 \beta_{2} y^{2}+\beta_{3} y^{3}\right)
$$

The Friedmann equation for f becomes algebraic after applying the Bianchi constraint:

$$
\begin{aligned}
& \beta_{3} y^{4}+\left(3 \beta_{2}-\beta_{4}\right) y^{3}+3\left(\beta_{1}-\beta_{3}\right) y^{2} \\
& +\left(\frac{\rho}{M_{\mathrm{Pl}}^{2} m^{2}}+\beta_{0}-3 \beta_{2}\right) y-\beta_{1}=0
\end{aligned}
$$

Massive bigravity has selfaccelerating cosmologies

$$
\begin{aligned}
& 3 \mathcal{H}^{2}=\frac{a^{2} \rho}{M_{g}^{2}}+m^{2} a^{2}\left(\beta_{0}+3 \beta_{1} y+3 \beta_{2} y^{2}+\beta_{3} y^{3}\right) \\
& \beta_{3} y^{4}+\left(3 \beta_{2}-\beta_{4}\right) y^{3}+3\left(\beta_{1}-\beta_{3}\right) y^{2} \\
& +\left(\frac{\rho}{M_{\mathrm{Pl}}^{2} m^{2}}+\beta_{0}-3 \beta_{2}\right) y-\beta_{1}=0
\end{aligned}
$$

At late times, $\rho \rightarrow 0$ and so $y \rightarrow$ const.
The mass term in the Friedmann equation approaches a constant - dynamical dark energy

Massive bigravity vs. ^CDM

Y. Akrami, T. Koivisto, and M. Sandstad [arXiv:1209.0457] See also F. Könnig, A. Patil, and L. Amendola [arXiv:1312.3208]; ARS, Y. Akrami, and T. Koivisto [arXiv:1404.4061]

Model	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	Ω_{m}	$\chi_{\text {min }}^{2}$	p-value	log-evidence
\CDM	free	0	0	0	0	free	546.54	0.8709	-278.50
$\left(\mathrm{B}_{1}, \Omega_{\mathrm{m}}^{\mathbf{0}}\right.$)	0	free	0	0	0	free	551.60	0.8355	-281.73
$\left(\mathrm{B}_{2}, \mathrm{O}_{\mathrm{m}}^{0}\right)$	0	0	free	0	0	free	804.00	<0,0001	450.25
$\left(\mathrm{B}, \mathrm{O}^{0} \mathrm{O}_{\mathrm{m}}^{0}\right)$	0	0	0	freo	0	free	1700.50	<0.0001	850.26
$\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \Omega_{\mathrm{m}}^{0}\right)$	0	free	free	0	0	free	546.52	0.8646	-279.77
$\left(\mathrm{B}_{1}, \mathrm{~B}_{3}, \Omega_{\mathrm{m}}^{0}\right)$	0	free	0	free	0	free	542.82	0.8878	-280.10
$\left(B_{2}, B_{3}, Q_{0}^{0}{ }_{\text {m }}\right)$	0	0	fre	for	0	free	548.04	0.8548	280.01
$\left(\mathrm{B}_{1}, \mathrm{~B}_{4}, \Omega_{\mathrm{m}}^{0}\right)$	0	free	0	0	free	free	548.86	0.8485	-281.42
$\left(\mathrm{B}_{2}, \mathrm{~B}_{4}, Q_{\text {d }}^{0} \mathbf{0}\right)$	0	0	free	0	free	free	806.82	<0.0001	420.87
$\left(\mathrm{B}_{5}, \mathrm{~B}_{4} \mathrm{O}_{\mathrm{m}}^{0}\right.$)	0	0	0	freo	freo	free	685.30	0.0023	351.14
$\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \Omega_{\mathrm{m}}^{0}\right)$	0	free	free	free	0	free	546.50	0.8582	-279.61
$\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \Omega_{\mathrm{m}}^{0}\right.$)	0	free	free	0	free	free	546.52	0.8581	-279.56
$\left(\mathrm{B}_{1}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \Omega_{\mathrm{m}}^{0}\right.$)	0	free	0	free	free	free	546.78	0.8563	-280.00
$\left(\mathrm{B}_{2}, \mathrm{~B}_{5}, \mathrm{~B}_{4}, Q_{2}^{0}{ }_{\text {m }}^{0}\right)$	0	0	free	free	fre	fre	540.60	0.835	282080
$\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \Omega_{\mathrm{m}}^{0}\right)$	0	free	free	free	free	free	546.50	0.8515	-279.60
fuil bigravicy model	free	free	free	free	free	free	546.50	0.8445	-279.82

Beyond the background

Cosmological perturbation theory in massive bigravity is a huge cottage industry and the source of many PhD degrees. See:

Cristosomi, Comelli, and Pilo, 1202.1986 ARS, Akrami, and Koivisto, 1404.4061
Könnig, Akrami, Amendola, Motta, and ARS, 1407.4331 Könnig and Amendola, 1402.1988
Lagos and Ferreira, 1410.0207
Cusin, Durrer, Guarato, and Motta, 1412.5979
and many more for more general matter couplings!

Scalar perturbations in massive

bigravity

© Our approach (1407.4331 and 1404.4061):
© Linearize metrics around FRW backgrounds, restrict to scalar perturbations $\left\{\mathrm{E}_{\mathrm{g}, \mathrm{f}} \mathrm{A}_{\mathrm{g}, \mathrm{f}}, \mathrm{F}_{\mathrm{g}, \mathrm{f}}\right.$ and $\left.\mathrm{B}_{\mathrm{g}, \mathrm{f}}\right\}$:

$$
\begin{aligned}
d s_{g}^{2} & =a^{2}\left\{-\left(1+E_{g}\right) d \tau^{2}+2 \partial_{i} F_{g} d \tau d x^{i}+\left[\left(1+A_{g}\right) \delta_{i j}+\partial_{i} \partial_{j} B_{g}\right] d x^{i} d x^{j}\right\} \\
d s_{f}^{2} & =-X^{2}\left(1+E_{f}\right) d \tau^{2}+2 X Y \partial_{i} F_{f} d \tau d x^{i}+Y^{2}\left[\left(1+A_{f}\right) \delta_{i j}+\partial_{i} \partial_{j} B_{f}\right] d x^{i} d x^{j}
\end{aligned}
$$

* Full linearized Einstein equations (in cosmic or conformal time) can be found in ARS, Akrami, and Koivisto, arXiv:1404.4061

Scalar fluctuations can suffer from instabilities

\otimes Usual story: solve perturbed Einstein equations in subhorizon, quasistatic limit: $k^{2} \Phi \gg H^{2} \Phi \sim H \dot{\Phi} \sim \ddot{\Phi}$
\oplus This is valid only if perturbations vary on Hubble timescales
© Cannot trust quasistatic limit if perturbations are unstable
\circledast Check for instability by solving full system of perturbation equations

Scalar fluctuations can suffer from instabilities

(3) Degree of freedom count: ten total variables

* Four g_{fv} perturbations: $\mathrm{E}_{\mathrm{g}}, \mathrm{A}_{\mathrm{g}}, \mathrm{B}_{\mathrm{g}}, \mathrm{F}_{\mathrm{g}}$
(2) Four $f_{\mu \nu}$ perturbations: $E_{f}, A_{f}, B_{f}, F_{f}$
\otimes One perfect fluid perturbation: χ
© Eight are redundant:
© Four of these are nondynamical/auxiliary ($\mathrm{E}_{\mathrm{g}}, \mathrm{F}_{\mathrm{g}}, \mathrm{E}_{\mathrm{f}}, \mathrm{F}_{\mathrm{f}}$)
© Two can be gauged away
® After integrating out auxiliary variables, one of the dynamical variables becomes auxiliary - related to absence of ghost!
® End result: only two independent degrees of freedom
※ NB: This story is deeply indebted to Lagos and Ferreira

Scalar fluctuations can suffer from instabilities

\oplus Choose g-metric Bardeen variables:

$$
\begin{aligned}
& \Phi \equiv A_{g}-H\left(F_{g}+B_{g}^{\prime}\right) \\
& \Psi \equiv E_{g}-H\left(F_{g}+B_{g}^{\prime}\right)-F_{g}^{\prime}-B_{g}^{\prime \prime}
\end{aligned}
$$

© Then entire system of 10 perturbed Einstein/fluid equations can be reduced to two coupled equations:

$$
X_{i}^{\prime \prime}+F_{i j} X_{j}^{\prime}+S_{i j} X_{j}=0
$$

where

$$
X_{i}=\{\Phi, \Psi\}
$$

Scalar fluctuations can suffer from instabilities

\oplus Ten perturbed Einstein/fluid equations can be reduced to two coupled equations:

$$
X_{i}^{\prime \prime}+F_{i j} X_{j}^{\prime}+S_{i j} X_{j}=0
$$

where

$$
X_{i}=\{\Phi, \Psi\}
$$

© Under assumption (WKB) that F_{ij}, S_{ij} vary slowly, this is solved by

$$
X_{i}=X_{i}^{0} e^{i \omega N}
$$

with $N=\ln a$

Scalar fluctuations can suffer from instabilities

$\otimes \mathrm{B}_{1}$-only model - simplest allowed by background

$$
\omega_{B_{1}}= \pm \frac{k}{H} \frac{\sqrt{-1+12 y^{2}+9 y^{4}}}{1+3 y^{2}}
$$

© Unstable for small y (early times)
© NB: Gradient instability

Scalar fluctuations can suffer from instabilities

$\otimes \mathrm{B}_{1}$-only model - simplest allowed by background

$$
\omega_{B_{1}}= \pm \frac{k}{H} \frac{\sqrt{-1+12 y^{2}+9 y^{4}}}{1+3 y^{2}}
$$

© Unstable for small y (early times)
\oplus For realistic parameters, model is only (linearly) stable for $z<\sim 0.5$

Instability does not rule models out

© Instability \rightarrow breakdown of linear perturbation theory
© Nothing more
© Nothing less
(2) Cannot take quasistatic limit
© Need nonlinear techniques to make structure formation predictions

Do nonlinearities save us?

© Helicity-0 mode of the massive graviton has nonlinear derivative terms (cf. galileons)

* Linear perturbation theory misses these
\& Some evidence that the gradient instability is cured by these nonlinearities! (Aoki, Maeda, Namba 1506.04543)
© Morally related to the Vainshtein mechanism
(2) How can we study nonlinear perturbations in detail?

Strategy for "quasilinear" perturbations

(2) Bigravity's degrees of freedom:
(1) 1 massive graviton (two helicity-2, two helicity-1, one helicity-0)
© 1 massless graviton (two helicity-2)
(2) Goal: keep nonlinearities in spin-0 mode while leaving other fluctuations linear

Cosmology as a perturbation of flat space

© Helicity decomposition only well-defined around flat background
© Q: How can we isolate helicity-0 mode in cosmological perturbations?
© A: Use Fermi normal coordinates, for which

$$
g_{\mu \nu}^{\mathrm{FRW}}(x)=\eta_{\mu \nu}+\mathcal{O}\left(H^{2} \vec{x}^{2}\right)
$$

Cosmology as a perturbation of flat space

* Starting from the FRW metric in comoving coordinates,

$$
\mathrm{d} s^{2}=-\mathrm{d} t_{\mathrm{c}}^{2}+a^{2}\left(t_{\mathrm{c}}\right) \mathrm{d} \vec{x}_{\mathrm{c}}^{2}
$$

the coordinate change

$$
\begin{aligned}
t_{\mathrm{c}} & =t-\frac{1}{2} H \vec{x}^{2} \\
\vec{x}_{\mathrm{c}} & =\frac{\vec{x}}{a(t)}\left(1+\frac{1}{4} H^{2} \vec{x}^{2}\right)
\end{aligned}
$$

yields

$$
\mathrm{d} s^{2}=-\left[1-\left(\dot{H}+H^{2}\right) \vec{x}^{2}\right] \mathrm{d} t^{2}+\left(1-\frac{1}{2} H^{2} \vec{x}^{2}\right) \mathrm{d} \vec{x}^{2}+\mathcal{O}\left(H^{4} \vec{x}^{4}\right)
$$

Cosmology as a perturbation of flat space

© So within the horizon we can write FRW as Minkowski space plus a small perturbation,

$$
\begin{aligned}
g_{\mu \nu} & =\eta_{\mu \nu}+h_{\mu \nu} \\
h_{\mu \nu} & =\operatorname{diag}\left(\dot{H}+H^{2},-\frac{1}{2} H^{2} \delta_{i j}\right) \vec{x}^{2}
\end{aligned}
$$

Bimetric Fermi normal coordinates

(8) In bigravity with two FRW metrics,

$$
\begin{aligned}
\mathrm{d} s_{g}^{2} & =-\mathrm{d} t_{\mathrm{c}}^{2}+a^{2} \mathrm{~d} \vec{x}_{\mathrm{c}}^{2} \\
\mathrm{~d} s_{f}^{2} & =-X^{2} \mathrm{~d} t_{\mathrm{c}}^{2}+Y^{2} \mathrm{~d} \vec{x}_{\mathrm{c}}^{2}
\end{aligned}
$$

we clearly need two different Fermi coordinates.
(2) Fermi coordinates Φ^{a} for f metric. Method: start with fmetric comoving coordinates $\Phi_{c}{ }^{a}$ such that

$$
\mathrm{d} s_{f}^{2}=-\mathrm{d}\left(\Phi_{\mathrm{c}}^{0}\right)^{2}+Y^{2} \mathrm{~d} \vec{x}_{\mathrm{c}}^{2}
$$

and then build FNC Φ^{a} from $\Phi_{\mathrm{c}}{ }^{\text {a }}$ as in previous slide
(2) We identify Φ^{a} as the Stückelberg fields associated to broken diff invariance

Bimetric Fermi normal coordinates

(2) The FNC for the bimetric FRW backgrounds are related by the helicity-0 Stückelberg,

$$
\begin{aligned}
\Phi^{a} & =x^{a}+\partial^{a} \pi \\
\pi & =\iint(1-X) \mathrm{d} t^{2}+\frac{1}{2}(y-1) \vec{x}^{2}
\end{aligned}
$$

To the decoupling limit

® This is all suggestive of the decoupling limit of bigravity:

$$
\begin{aligned}
g_{\mu \nu}(x) & =\eta_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu} \\
f_{a b}(\Phi) & =\eta_{a b}+\frac{1}{M_{f}} v_{a b} \\
\Phi^{a} & =x^{a}+\Lambda_{3}^{-3} \partial^{a} \pi
\end{aligned}
$$

with $\Lambda_{3}{ }^{3}=\mathrm{m}^{2} \mathrm{M}_{\mathrm{Pl}}$, and take the scaling limit

$$
M_{\mathrm{Pl}}, M_{f} \rightarrow \infty, \quad m \rightarrow 0
$$

while keeping $\Lambda_{3}, M_{P I} / M_{f}$, and β_{n} fixed
(2) DL leaves leading interactions between helicity modes

The decoupling limit

* The action in the DL is

$$
\mathcal{L}=-\frac{1}{4} h^{\mu \nu} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}-\frac{1}{4} v^{\mu \nu} \mathcal{E}_{\mu \nu}^{\alpha \beta} v_{\alpha \beta}+\frac{\Lambda_{3}^{3}}{2}\left(h_{\mu \nu} X^{\mu \nu}+\frac{M_{\mathrm{Pl}}}{M_{f}} v_{\mu \nu} \tilde{Y}^{\mu \nu}\right)
$$

The first two terms are linearized Einstein-Hilbert, and

$$
\begin{aligned}
& X^{\mu \nu}=-\frac{1}{2} \sum_{n=1}^{3} \frac{\beta_{n}}{(3-n)!n!} \varepsilon^{\mu \cdots \cdots} \varepsilon^{\nu \cdots}(\eta+\Pi)^{n} \eta^{3-n} \\
& \tilde{Y}^{\mu \nu}=-\frac{1}{2} \sum_{n=1}^{3} \frac{\beta_{n}}{(4-n)!(n-1)!} \varepsilon^{\mu \cdots} \varepsilon^{\nu \cdots}(\eta+\Sigma)^{4-n} \eta^{n-1}
\end{aligned}
$$

where

$$
\begin{aligned}
\Pi_{\mu \nu} \equiv \Lambda_{3}^{-3} \partial_{\mu} \partial_{\nu} \pi, \quad \Sigma_{\mu \nu} & =\Lambda_{3}^{-3} \partial_{\mu} \partial_{\nu} \rho \\
\frac{\partial \pi(x)}{\partial x^{\mu}} & =-\frac{\partial \rho(\Phi)}{\partial \Phi^{\mu}}
\end{aligned}
$$

Cosmological perturbations in the decoupling limit

\& The DL equations of motion yield correct background cosmological equations \checkmark
© Nonlinear subhorizon structure formation by perturbing in DL

$$
\begin{aligned}
h_{\mu \nu} & =\bar{h}_{\mu \nu}+\chi_{\mu \nu} \\
v_{a b} & =\bar{v}_{a b}+w_{a b} \\
\pi & =\bar{\pi}+\phi \\
\rho & =\bar{\rho}+\psi
\end{aligned}
$$

* Can consistently keep $\chi_{\mu \nu}$ and w_{ab} linear while retaining nonlinearities in φ and ψ !

Example: β_{2}-only model

© The action in the DL is

$$
\mathcal{L}=-\frac{1}{4} h \mathcal{E} h-\frac{1}{4} v \mathcal{E} v-\frac{\Lambda_{3}^{3}}{8} \beta_{2} \varepsilon \varepsilon\left(h(\eta+\Pi)^{2} \eta+v(\eta+\Sigma)^{2} \eta\right)
$$

(8) Perturb to second order:

$$
\begin{aligned}
\mathcal{L}_{2}= & -\frac{1}{4} \chi \mathcal{E} \chi-\frac{1}{4} w \mathcal{E} w- \\
& \frac{\Lambda_{3}^{3}}{8} \beta_{2} \varepsilon \varepsilon\left(\bar{h} \Phi^{2} \eta+2 \chi \Phi(\eta+\bar{\Pi}) \eta+\bar{v} \Psi^{2} \eta+2 w \Psi(\eta+\bar{\Sigma}) \eta\right)
\end{aligned}
$$

Can be fully diagonalized:

$$
\begin{aligned}
\chi_{\mu \nu} & =\hat{\chi}_{\mu \nu}+\beta_{2} \phi(\eta+\bar{\Pi})_{\mu \nu} \\
w_{\mu \nu} & =\hat{w}_{\mu \nu}+\beta_{2} \psi(\eta+\bar{\Sigma})_{\mu \nu}
\end{aligned}
$$

Example: β_{2}-only model

(2) This leaves us with (after int by parts, removing dual galileon)

$$
\mathcal{L}_{2}=-\frac{1}{4} \hat{\chi} \mathcal{E} \hat{\chi}-\frac{1}{4} \hat{w} \mathcal{E} \hat{w}+c_{\mathrm{k}} \dot{\phi}^{2}-c_{\mathrm{g}} \nabla^{2} \phi
$$

where the coefficients of the kinetic and gradient terms are

$$
\begin{aligned}
& c_{\mathrm{k}}=\frac{6}{X}\left[\beta_{2} y(1+X y)-H^{2}(X+y)\right] \\
& c_{\mathrm{g}}=\frac{2}{y}\left[\beta_{2}\left(X+2 y+2 X y^{2}+y^{3}\right)-(X+5 y) H^{2}-4 \dot{H} y\right]
\end{aligned}
$$

$c_{k}>0$ is equivalent to the Higuchi bound: useful consistency check! NB β_{2} is not a linearly unstable model

Summary

(2) Massive gravity is a promising approach to the cosmological constant problems
© Bimetric massive gravity has cosmological backgrounds competitive with Λ CDM
(8) These models have linear instabilities
® A deeper look into quasilinear behavior of perturbations can shed light on endpoint of instability
\circledast Resuscitate massive (bi)gravity as a target for observations?

