
1

Parallel and High Performance Parallel and High Performance 
ComputingComputing

CSE 745CSE 745



2

Outline

• Introduction to HPC computing

– Overview

– Parallel Computer Memory Architectures 

– Parallel Programming Models 

– Designing Parallel Programs 

– Parallel examples

• OpenMP

• MPI



3

Introduction to HPC 
computing



4

Outline

• Introduction to HPC computing

– Overview

– Parallel Computer Memory Architectures 

– Parallel Programming Models 

– Designing Parallel Programs 

– Parallel examples



5

Overview



6

What is Parallel Computing?

• Traditionally, software has been written for serial computation: 
– To be run on a single computer having a single Central Processing Unit 

(CPU); 

– A problem is broken into a discrete series of instructions. 

– Instructions are executed one after another. 

– Only one instruction may execute at any moment in time. 



7



8

• In the simplest sense, parallel computing is the simultaneous use of 
multiple compute resources to solve a computational problem. 
– To be run using multiple CPUs / cores

– A problem is broken into discrete parts that can be solved concurrently 

– Each part is further broken down to a series of instructions 

– Instructions from each part execute simultaneously on different CPUs / 
cores



9



10

• The compute resources can include: 
– A single computer with multiple processors; 
– An arbitrary number of computers connected by a network; 
– A combination of both. 

• The computational problem usually demonstrates characteristics 
such as the ability to: 
– Be broken apart into discrete pieces of work that can be solved 

simultaneously; 
– Execute multiple program instructions at any moment in time; 
– Be solved in less time with multiple compute resources than with a 

single compute resource. 



11

Why Use Parallel Computing?

• The primary reasons for using parallel computing: 
– Save time - wall clock time 
– Solve larger problems 

• Other reasons might include: 
– Taking advantage of non-local resources - using available compute 

resources on a wide area network, or even the Internet when local 
compute resources are scarce. 

– Cost savings - using multiple "cheap" computing resources instead of 
paying for time on a supercomputer. 

– Overcoming memory constraints - single computers have very finite 
memory resources. For large problems, using the memories of multiple 
computers may overcome this obstacle. 



12

• Limits to serial computing - both physical and practical reasons 
pose significant constraints to simply building ever faster serial 
computers: 
– Transmission speeds - the speed of a serial computer is directly 

dependent upon how fast data can move through hardware. Absolute 
limits are the speed of light (30 cm/nanosecond) and the transmission 
limit of copper wire (9 cm/nanosecond). Increasing speeds necessitate 
increasing proximity of processing elements. 

– Limits to miniaturization - processor technology is allowing an 
increasing number of transistors to be placed on a chip. However, even 
with molecular or atomic-level components, a limit will be reached on 
how small components can be. 

– Economic limitations - it is increasingly expensive to make a single 
processor faster. Using a larger number of moderately fast commodity 
processors to achieve the same (or better) performance is less 
expensive. 



13

Moore’s law



14

 During the recent years, the trends indicated by ever faster 
networks, distributed systems, and multi-processor computer 
architectures (even at the desktop level) suggest that 
parallelism is the future of computing. 



15

von Neumann Architecture

• Since 1948, virtually all computers have followed a common 
machine model known as the von Neumann computer. Named 
after the Hungarian mathematician John von Neumann. 

• A von Neumann computer uses the stored-program concept. 
The CPU executes a stored program that specifies a sequence 
of read and write operations on the memory. 



16

von Neumann Architecture (2)
• Basic design: 

– Memory is used to store both program 
and data instructions 

– Program instructions are coded data 
which tell the computer to do something 

– Data is simply information to be used by 
the program 

• A central processing unit (CPU) gets 
instructions and/or data from memory, 
decodes the instructions and then 
sequentially performs them. 



17

Flynn's Classical Taxonomy

• There are different ways to classify parallel computers. One of 
the more widely used classifications, in use since 1966, is 
called Flynn's Taxonomy. 

• Flynn's taxonomy distinguishes multi-processor computer 
architectures according to how they can be classified along the 
two independent dimensions of Instruction and Data. Each of 
these dimensions can have only one of two possible states: 
Single or Multiple. 



18

Flynn's Classical Taxonomy (2)

• The matrix below defines the 4 possible classifications 
according to Flynn. 

S I S D 
Single Instruction, Single Data 

S I M D 
Single Instruction, Multiple Data 

M I S D 
Multiple Instruction, Single Data 

M I M D 
Multiple Instruction, Multiple Data 



19

Single Instruction, Single Data 
• A serial (non-parallel) computer 
• Single instruction: only one instruction stream is being acted on 

by the CPU during any one clock cycle 
• Single data: only one data stream is being used as input during 

any one clock cycle 
• Deterministic execution 
• This is the oldest and until recently, the most prevalent form of 

computer 



20

Single Instruction, Single Data (2)



21

Single Instruction, Multiple Data 

• A type of parallel computer 

• Single instruction: All processing units execute the same 
instruction at any given clock cycle 

• Multiple data: Each processing unit can operate on a different 
data element 

• This type of machine typically has an instruction dispatcher, a 
very high-bandwidth internal network, and a very large array of 
very small-capacity instruction units. 



22

Single Instruction, Multiple Data (2)

• Best suited for specialized problems characterized by a high 
degree of regularity, such as image processing. 

• Synchronous (lockstep) and deterministic execution 

• Examples: 
– Vector Processors: Thinking Machine CM-2, Cray Y-MP etc.
– MMX and SSE extensions to the x86 architecture.
– GPU's multiprocessors (groups of usually 32 cores)



23

Single Instruction, Multiple Data (3)



24

Multiple Instruction, Single Data 

• A single data stream is fed into multiple processing units. 
• Each processing unit operates on the data independently via 

independent instruction streams. 
• Few actual examples of this class of parallel computer have 

ever existed. 
– Space Shuttle flight control computers were built using MISD 

architecture.

• Some conceivable uses might be: 
– multiple frequency filters operating on a single signal stream 
– multiple cryptography algorithms attempting to crack a single coded 

message. 



25

Multiple Instruction, Single Data (2)



26

Multiple Instruction, Multiple Data 

• Currently, the most common type of parallel computer. Most 
modern computers fall into this category. 

• Multiple Instruction: every processor may be executing a 
different instruction stream 

• Multiple Data: every processor may be working with a different 
data stream 

• Execution can be synchronous or asynchronous, deterministic 
or non-deterministic 

• Examples: most current supercomputers, networked parallel 
computer clusters and multi-processor SMP computers; most 
of the current PCs. 



27

Multiple Instruction, Multiple Data 
(2)



28

Parallel Computer Memory 
Architectures 



29

Shared Memory 

General Characteristics: 

• Shared memory parallel computers vary widely, but generally 
have in common the ability for all processors to access all 
memory as global address space. 



30

Shared Memory (2)

• Multiple processors can operate independently but share the 
same memory resources. 

• Changes in a memory location effected by one processor are 
visible to all other processors. 

• Shared memory machines can be divided into two main 
classes based upon memory access times: UMA and NUMA. 



31

Shared Memory (3)
Uniform Memory Access (UMA): 
• Most commonly represented today by Symmetric 

Multiprocessor (SMP) machines 
• Identical processors 
• Equal access and access times to memory 
• Sometimes called CC-UMA - Cache Coherent UMA. Cache 

coherent means if one processor updates a location in shared 
memory, all the other processors know about the update. 
Cache coherency is accomplished at the hardware level. 

(Nearly all CPU architectures use a small amount of very fast non-shared 
memory known as cache to exploit locality of reference in memory 
accesses). 



32

Shared Memory (4)

Non-Uniform Memory Access (NUMA): 

• Often made by physically linking two or more SMPs 

• One SMP can directly access memory of another SMP 

• Not all processors have equal access time to all memories 

• Memory access across link is slower 

• If cache coherency is maintained, then may also be called CC-
NUMA - Cache Coherent NUMA 



33

Shared Memory (5)

UMA

NUMA



34

Shared Memory (6)
• With NUMA, the cache coherence is typically accomplished by 

using inter-processor communication between cache 
controllers to keep a consistent memory image when more 
than one cache stores the same memory location. 

• For this reason, CC-NUMA performs poorly when multiple 
processors attempt to access the same memory area in rapid 
succession. 

• Operating-system support for NUMA attempts to reduce the 
frequency of this kind of access by allocating processors and 
memory in NUMA-friendly ways and by avoiding scheduling 
and locking algorithms that make NUMA-unfriendly accesses 
necessary.



35

Shared Memory (7)
Advantages: 
• Global address space provides a user-friendly programming perspective to 

memory 
• Data sharing between tasks is both fast and uniform due to the proximity of 

memory to CPUs 
Disadvantages: 
• Primary disadvantage is the lack of scalability between memory and CPUs. 

Adding more CPUs can geometrically increases traffic on the shared 
memory-CPU path, and for cache coherent systems, geometrically increase 
traffic associated with cache/memory management. 

• Programmer responsibility for synchronization constructs that insure 
"correct" access of global memory. 

• Expense: it becomes increasingly difficult and expensive to design and 
produce shared memory machines with ever increasing numbers of 
processors. 



36

Distributed Memory

• Like shared memory systems, distributed memory systems 
vary widely but share a common characteristic. Distributed 
memory systems require a communication network to connect 
inter-processor memory. 



37

Distributed Memory (2)
• Processors have their own local memory. Memory addresses in 

one processor do not map to another processor, so there is no 
concept of global address space across all processors. 

• Because each processor has its own local memory, it operates 
independently. Changes it makes to its local memory have no 
effect on the memory of other processors. Hence, the concept of 
cache coherency does not apply. 

• When a processor needs to access data in another processor, it is 
usually the task of the programmer to explicitly define how and 
when data is communicated. Synchronization between tasks is 
likewise the programmer's responsibility. 

• The network "fabric" used for data transfer varies widely, though it 
can can be as simple as Ethernet.



38

Distributed Memory (3)
Advantages: 
• Memory is scalable with number of processors. Increase the number of 

processors and the size of memory increases proportionately. 
• Each processor can rapidly access its own memory without interference 

and without the overhead incurred with trying to maintain cache coherency. 
• Cost effectiveness: can use commodity, off-the-shelf processors and 

networking. 
Disadvantages: 
• The programmer is responsible for many of the details associated with data 

communication between processors. 
• It may be difficult to map existing data structures, based on global memory, 

to this memory organization. 
• Non-uniform memory access (NUMA) times 



39

Hybrid Distributed-Shared Memory

• The largest and fastest computers in the world today employ 
both shared and distributed memory architectures. 



40

Hybrid Distributed-Shared Memory (2)

• The shared memory component is usually a cache coherent 
SMP machine. Processors on a given SMP can address that 
machine's memory as global. 

• The distributed memory component is the networking of 
multiple SMPs. SMPs know only about their own memory - not 
the memory on another SMP. Therefore, network 
communications are required to move data from one SMP to 
another. 

• Current trends seem to indicate that this type of memory 
architecture will continue to prevail and increase at the high 
end of computing for the foreseeable future. 



41

Parallel Programming Models 



42

Overview

• There are several parallel programming models in common 
use: 
– Shared Memory 
– Threads 
– Message Passing 
– Data Parallel 
– Hybrid 

• Parallel programming models exist as an abstraction 
above hardware and memory architectures. 



43

Overview (2)

• Which model to use is often a combination of what is available 
and personal choice. There is no "best" model, although there 
certainly are better implementations of some models over 
others. 

• The following slides will cover each of the models mentioned 
above, and will also discuss some of their actual 
implementations. 



44

Shared Memory Model
• In the shared-memory programming model, tasks share a 

common address space, which they read and write 
asynchronously. 

• Various mechanisms such as locks / semaphores may be used 
to control access to the shared memory. 

• An advantage of this model from the programmer's point of 
view is that the notion of data "ownership" is lacking, so there is 
no need to specify explicitly the communication of data 
between tasks. Program development can often be simplified. 

• An important disadvantage in terms of performance is that it 
becomes more difficult to understand and manage data locality.



45

Shared Memory Model (2)

Implementations: 

• On shared memory platforms, the native compilers translate 
user program variables into actual memory addresses, which 
are global. 

• No common distributed memory platform implementations 
currently exist. 



46

Threads Model 

• In the threads model of parallel programming, a single process 
can have multiple, concurrent execution paths. 

• Perhaps the most simple analogy that can be used to describe 
threads is the concept of a single program that includes a 
number of subroutines: 
– The main program a.out is scheduled to run by the native operating 

system. a.out loads and acquires all of the necessary system and user 
resources to run. 



47

Threads Model (2)
– a.out performs some serial work, and then creates a number of tasks (threads) 

that can be scheduled and run by the operating system concurrently. 
– Each thread has local data, but also, shares the entire resources of a.out. This 

saves the overhead associated with replicating a program's resources for each 
thread. Each thread also benefits from a global memory view because it shares 
the memory space of a.out. 

– A thread's work may best be described as a subroutine within the main program. 
Any thread can execute any subroutine at the same time as other threads.



48

Threads Model (3)
– Threads communicate with each other through global memory (updating 

address locations). This requires synchronization constructs to insure 
that more than one thread is not updating the same global address at 
any time. 

– Threads can come and go, but a.out remains present to provide the 
necessary shared resources until the application has completed. 

• Threads are commonly associated with shared memory 

architectures and operating systems. 



49

Threads: implementations 
• From a programming perspective, threads implementations 

commonly comprise: 
– A library of subroutines that are called from within parallel source code 
– A set of compiler directives embedded in either serial or parallel source 

code 

• In both cases, the programmer is responsible for determining 
all parallelism. 

• Threaded implementations are not new in computing. 
Historically, hardware vendors have implemented their own 
proprietary versions of threads. These implementations differed 
substantially from each other making it difficult for 
programmers to develop portable threaded applications. 



50

Threads: implementations (2)

• Unrelated standardization efforts have resulted in two very 
different implementations of threads: POSIX Threads and 
OpenMP. 

• POSIX Threads 
– Library based; requires parallel coding 
– Specified by the IEEE POSIX 1003.1c standard (1995). 
– C Language only 
– Commonly referred to as Pthreads. 
– Most hardware vendors now offer Pthreads in addition to their 

proprietary threads implementations. 

– Very explicit parallelism; requires significant programmer attention to 

detail. 



51

Threads: implementations (3)

• OpenMP 
– Compiler directive based; can use serial code 
– Jointly defined and endorsed by a group of major computer hardware 

and software vendors. The OpenMP Fortran API was released October 
28, 1997. The C/C++ API was released in late 1998. 

– Portable / multi-platform, including Unix and Windows NT platforms 
– Available in C/C++ and Fortran implementations 
– Can be very easy and simple to use - provides for "incremental 

parallelism" 

• Microsoft has its own implementation for threads, which is not 
related to the UNIX POSIX standard or OpenMP. 



52

Message Passing Model

• The message passing model demonstrates the following 
characteristics: 
– A set of tasks that use their own local memory during computation. 

Multiple tasks can reside on the same physical machine as well across 
an arbitrary number of machines. 

– Tasks exchange data through communications by sending and receiving 
messages. 

– Data transfer usually requires cooperative operations to be performed 
by each process. For example, a send operation must have a matching 
receive operation. 



53

MPI: implementations 

• From a programming perspective, message passing 
implementations commonly comprise a library of subroutines 
that are embedded in source code. The programmer is 
responsible for determining all parallelism. 

• Historically, a variety of message passing libraries have been 
available since the 1980s. These implementations differed 
substantially from each other making it difficult for 
programmers to develop portable applications. 

• In 1992, the MPI Forum was formed with the primary goal of 
establishing a standard interface for message passing 
implementations. 



54

MPI: implementations (2)
• Part 1 of the Message Passing Interface (MPI) was released 

in 1994. Part 2 (MPI-2) was released in 1996. Part 3 was 
released in 2012. All MPI specifications are available on the 
web at
 http://www.mpi-forum.org/docs/. 

• MPI is now the "de facto" industry standard for message 
passing, replacing virtually all other message passing 
implementations used for production work. Most, if not all of the 
popular parallel computing platforms offer at least one 
implementation of MPI. SHARCNET is using Open MPI library 
(open source), which has a full MPI-3.1 standard conformance.

• For shared memory architectures, MPI implementations usually 
don't use a network for task communications. Instead, they use 
shared memory (memory copies) for performance reasons. 



55

Data Parallel Model 



56

Data Parallel Model (2)
• The data parallel model demonstrates the following 

characteristics: 
– Most of the parallel work focuses on performing operations on a data 

set. The data set is typically organized into a common structure, such as 
an array or cube. 

– A set of tasks work collectively on the same data structure, however, 
each task works on a different partition of the same data structure. 

– Tasks perform the same operation on their partition of work, for 
example, "add 4 to every array element". 

• On shared memory architectures, all tasks may have access to 
the data structure through global memory. On distributed 
memory architectures the data structure is split up and resides 
as "chunks" in the local memory of each task. 



57

Implementations 
 Programming with the data parallel model is usually 

accomplished by writing a program with data parallel 
constructs. The constructs can be calls to a data parallel 
subroutine library or compiler directives recognized by a data 
parallel compiler. 

• High Performance Fortran (HPF): Extensions to Fortran 90 to 
support data parallel programming. 
– Contains everything in Fortran 90 
– Directives to tell compiler how to distribute data added 
– Assertions that can improve optimization of generated code added 
– Data parallel constructs added (now part of Fortran 95) 
– Implementations are available for most common parallel platforms



58

Implementations (2)

Coarray Fortran:
• An extension of Fortran 95/2003 for parallel processing created 

by Robert Numrich and John Reid. 
• A Coarray Fortran program is interpreted as if it were replicated 

a number of times and all copies were executed 
asynchronously. Each copy has its own set of data objects and 
is termed an image. The array syntax of Fortran 95 is extended 
with additional trailing subscripts in square brackets to provide 
a concise representation of references to data that is spread 
across images.

• The Fortran 2008 standard now includes coarrays, as decided 
at the May 2005 meeting of the ISO Fortran Committee.



59

Implementations (3)

UPC (Unified Parallel C):
• an extension of the C programming language designed for 

high-performance computing on large-scale parallel machines, 
including those with a common global address space (SMP 
and NUMA) and those with distributed memory (e.g. clusters).

• The programmer is presented with a single shared, partitioned 
address space, where variables may be directly read and 
written by any processor, but each variable is physically 
associated with a single processor. 



60

Implementations (4)

• In order to express parallelism, UPC extends ISO C 99 with the 
following constructs:
– An explicitly parallel execution model 
– A shared address space 
– Synchronization primitives and a memory consistency 

model 
– Memory management primitives 



61

Hybrid 
• In this model, any two or more parallel programming models 

are combined. 
• Currently, a common example of a hybrid model is the 

combination of the message passing model (MPI) with either 
the threads model (POSIX threads) or the shared memory 
model (OpenMP). This hybrid model lends itself well to the 
increasingly common hardware environment of networked SMP 
machines. 

• CUDA programming model (for GPU programming) is another 
example. It combines elements of the data parallel model (at 
the lower, block level), shared memory model (at the higher, 
inter-block level), and distributed memory model (between CPU 
and GPUs, and between separate GPUs). 



62

Single Program Multiple Data (SPMD): 

• SPMD is actually a "high level" programming model that can be built upon 
any combination of the previously mentioned parallel programming models. 

• A single program is executed by all tasks simultaneously. 
• At any moment in time, tasks can be executing the same or different 

instructions within the same program. 
• SPMD programs usually have the necessary logic programmed into them to 

allow different tasks to branch or conditionally execute only those parts of 
the program they are designed to execute. That is, tasks do not necessarily 
have to execute the entire program - perhaps only a portion of it. 

• All tasks may use different data 



63

Multiple Program Multiple Data (MPMD) 

• Like SPMD, MPMD is actually a "high level" programming 
model that can be built upon any combination of the previously 
mentioned parallel programming models. 

• MPMD applications typically have multiple executable object 
files (programs). While the application is being run in parallel, 
each task can be executing the same or different program as 
other tasks. 

• All tasks may use different data. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

