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Designing Parallel Programs 
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Automatic vs. Manual 
Parallelization 

• Designing and developing parallel programs has 
characteristically been a very manual process. The 
programmer is typically responsible for both identifying and 
actually implementing parallelism. 

• Very often, manually developing parallel codes is a time 
consuming, complex, error-prone and iterative process. 

• For a number of years now, various tools have been available 
to assist the programmer with converting serial programs into 
parallel programs. The most common type of tool used to 
automatically parallelize a serial program is a parallelizing 
compiler or pre-processor. 
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Automatic vs. Manual Parallelization (2)
• A parallelizing compiler generally works in two different ways: 

– Fully Automatic 
• The compiler analyzes the source code and identifies opportunities for 

parallelism. 
• The analysis includes identifying inhibitors to parallelism and possibly a cost 

weighting on whether or not the parallelism would actually improve 
performance. 

• Loops (do, for) are the most frequent target for automatic parallelization. 

• Example: Intel compilers (default in SHARCNET), with the “-parallel” 
switch.

– Programmer Directed 
• Using "compiler directives" or possibly compiler flags, the programmer 

explicitly tells the compiler how to parallelize the code. 
• May be able to be used in conjunction with some degree of automatic 

parallelization also.
• Intel compilers: C pragma (#pragma parallel) or Fortran directive 

(!DIR$ PARALLEL)
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Automatic vs. Manual Parallelization (3)

• If you are beginning with an existing serial code and have time 
or budget constraints, then automatic parallelization may be the 
answer. However, there are several important caveats that 
apply to automatic parallelization: 
– Wrong results may be produced 
– Performance may actually degrade 
– Much less flexible than manual parallelization 
– Limited to a subset (mostly loops) of code 
– May actually not parallelize code if the analysis suggests there are 

inhibitors or the code is too complex 

• The remainder of this section applies to the manual method of 
developing parallel codes. 
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Understand the Problem and the Program 

• Undoubtedly, the first step in developing parallel software is to first 
understand the problem that you wish to solve in parallel. If you are 
starting with a serial program, this necessitates understanding the 
existing code also. 

• Before spending time in an attempt to develop a parallel solution for 
a problem, determine whether or not the problem is one that can 
actually be parallelized. 
– Example of Parallelizable Problem: 

Calculate the potential energy for each of several thousand independent 
conformations of a molecule. When done, find the minimum energy 
conformation. 

– This problem can be solved in parallel. Each of the molecular 
conformations is independently determinable. The calculation of the 
minimum energy conformation is also a parallelizable problem. 
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Molecule conformations



70

Understand the Problem and the Program (2)

– Example of a Non-parallelizable Problem: 

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the 
formula:
     

F(k + 2) = F(k + 1) + F(k)     

– This is a non-parallelizable problem because the calculation of the 
Fibonacci sequence as shown would entail dependent calculations 
rather than independent ones. The calculation of the k + 2 value uses 
those of both k + 1 and k. These three terms cannot be calculated 
independently and therefore, not in parallel. 
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Understand the Problem and the Program (3)

• Identify the program's hotspots: 
– Know where most of the real work is being done. The 

majority of scientific and technical programs usually 
accomplish most of their work in a few places. 

– Profilers and performance analysis tools can help here 

– Focus on parallelizing the hotspots and ignore those 
sections of the program that account for little CPU usage. 
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Understand the Problem and the Program (4)

• Identify bottlenecks in the program 
– Are there areas that are disproportionately slow, or cause parallelizable 

work to halt or be deferred? For example, I/O (Input/Output) is usually 
something that slows a program down. 

– May be possible to restructure the program or use a different algorithm 
to reduce or eliminate unnecessary slow areas 

• Identify inhibitors to parallelism. One common class of inhibitor 
is data dependence, as demonstrated by the Fibonacci 
sequence above. 

• Investigate other algorithms if possible. This may be the single 
most important consideration when designing a parallel 
application. 
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Partitioning

• One of the first steps in designing a parallel 
program is to break the problem into discrete 
"chunks" of work that can be distributed to 
multiple tasks. This is known as decomposition 
or partitioning. 

• There are two basic ways to partition 
computational work among parallel tasks: 
domain decomposition and functional 
decomposition. 
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Domain Decomposition 

 In this type of partitioning, the data associated 
with a problem is decomposed. Each parallel 
task then works on a portion of of the data. 
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Domain Decomposition (2)
 There are different ways to partition data: 
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Functional Decomposition 
 In this approach, the focus is on the computation that is to be 

performed rather than on the data manipulated by the 
computation. The problem is decomposed according to the 
work that must be done. Each task then performs a portion of 
the overall work. 
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Functional Decomposition (2)
• Functional decomposition lends itself well to problems that can be split into different 

tasks. For example: 

Ecosystem Modeling 
Each program calculates the population of a given group, where each group's 
growth depends on that of its neighbors. As time progresses, each process 
calculates its current state, then exchanges information with the neighbor 
populations. All tasks then progress to calculate the state at the next time step. 
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Functional Decomposition (3)

Signal Processing 

An audio signal data set is passed through four distinct computational filters. Each 
filter is a separate process. The first segment of data must pass through the first 
filter before progressing to the second. When it does, the second segment of data 
passes through the first filter. By the time the fourth segment of data is in the first 
filter, all four tasks are busy. 
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Functional Decomposition (4)
Climate Modeling 
Each model component can be thought of as a separate task. Arrows represent 
exchanges of data between components during computation: the atmosphere model 
generates wind velocity data that are used by the ocean model, the ocean model 
generates sea surface temperature data that are used by the atmosphere model, 
and so on. 

Combining these two types 
of problem decomposition is 
common and natural. 
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Designing Parallel Programs:

Communications
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Who Needs Communications? 
• The need for communications between tasks depends upon 

your problem: 
• You DON'T need communications 

– Some types of problems can be decomposed and executed in parallel 
with virtually no need for tasks to share data. For example, imagine an 
image processing operation where every pixel in a black and white 
image needs to have its color reversed. The image data can easily be 
distributed to multiple tasks that then act independently of each other to 
do their portion of the work. 

– These types of problems are often called embarrassingly parallel 
because they are so straight-forward. Very little inter-task 
communication is required. 

• You DO need communications 
– Most parallel applications are not quite so simple, and do require tasks 

to share data with each other. For example, a 3-D heat diffusion 
problem requires a task to know the temperatures calculated by the 
tasks that have neighboring data. Changes to neighboring data has a 
direct effect on that task's data. 
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Factors to Consider
• Cost of communications 

– Inter-task communication virtually always implies overhead. 
– Machine cycles and resources that could be used for computation are 

instead used to package and transmit data. 
– Communications frequently require some type of synchronization 

between tasks, which can result in tasks spending time "waiting" instead 
of doing work. 

– Competing communication traffic can saturate the available network 
bandwidth, further aggravating performance problems. 

• Latency vs. Bandwidth 
– latency is the time it takes to send a minimal (0 byte) message from 

point A to point B. Commonly expressed as microseconds. 
– bandwidth is the amount of data that can be communicated per unit of 

time. Commonly expressed as megabytes/sec. 
– Sending many small messages can cause latency to dominate 

communication overheads. Often it is more efficient to package small 
messages into a larger message, thus increasing the effective 
communications bandwidth. 
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Factors to Consider (2)

• Visibility of communications 
– With the Message Passing Model, communications are explicit and 

generally quite visible and under the control of the programmer. 
– With the Data Parallel Model, communications often occur transparently 

to the programmer, particularly on distributed memory architectures. The 
programmer may not even be able to know exactly how inter-task 
communications are being accomplished. 
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Factors to Consider (3)
• Synchronous vs. asynchronous communications 

– Synchronous communications require some type of "handshaking" 
between tasks that are sharing data. This can be explicitly structured in 
code by the programmer, or it may happen at a lower level unknown to 
the programmer. 

– Synchronous communications are often referred to as blocking 
communications since other work must wait until the communications 
have completed. 

– Asynchronous communications allow tasks to transfer data 
independently from one another. For example, task 1 can prepare and 
send a message to task 2, and then immediately begin doing other 
work. When task 2 actually receives the data doesn't matter. 

– Asynchronous communications are often referred to as non-blocking 
communications since other work can be done while the 
communications are taking place. 

– Interleaving computation with communication is the single greatest 
benefit for using asynchronous communications. 
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Factors to Consider (4)

• Scope of communications 
– Knowing which tasks must communicate with each other is critical 

during the design stage of a parallel code. Both of the two scopings 
described below can be implemented synchronously or asynchronously. 

– Point-to-point - involves two tasks with one task acting as the 
sender/producer of data, and the other acting as the receiver/consumer. 

– Collective - involves data sharing between more than two tasks, which 
are often specified as being members in a common group, or collective. 
Some common variations (there are more): 
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Factors to Consider (5)



87

Factors to Consider (6)

• Efficiency of communications 
– Very often, the programmer will have a choice with regard to factors that 

can affect communications performance. Only a few are mentioned 
here. 

– Which implementation for a given model should be used? Using the 
Message Passing Model as an example, one MPI implementation may 
be faster on a given hardware platform than another. 

– What type of communication operations should be used? As mentioned 
previously, asynchronous communication operations can improve 
overall program performance. 

– Network media - some platforms may offer more than one network for 
communications. Which one is best? 
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Designing Parallel Programs:

Synchronization 
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Types of Synchronization 

• Barrier 
– Usually implies that all tasks are involved 
– Each task performs its work until it reaches the barrier. It then stops, or 

"blocks". 
– When the last task reaches the barrier, all tasks are synchronized. 
– What happens from here varies. Often, a serial section of work must be 

done. In other cases, the tasks are automatically released to continue 
their work. 

• Lock / semaphore 
– Can involve any number of tasks 
– Typically used to serialize (protect) access to global data or a section of 

code. Only one task at a time may use (own) the lock / semaphore / 
flag. 
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Types of Synchronization (2)
– The first task to acquire the lock "sets" it. This task can then safely 

(serially) access the protected data or code. 
– Other tasks can attempt to acquire the lock but must wait until the task 

that owns the lock releases it. 
– Can be blocking or non-blocking 

• Synchronous communication operations 
– Involves only those tasks executing a communication operation 
– When a task performs a communication operation, some form of 

coordination is required with the other task(s) participating in the 
communication. For example, before a task can perform a send 
operation, it must first receive an acknowledgment from the receiving 
task that it is OK to send. 
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Designing Parallel Programs: 

Data Dependencies



Loop carried dependency

• Dependency between statements executed in different iterations of 
the loop. 

• Dependencies are always associated with a particular memory 
location, we can detect them by analyzing how each variable is 
used within the loop

– Is the variable only read and never assigned within the loop 
body? If so, there are no dependencies involving it

– Otherwise, consider the memory locations that make up the 
variable and that are assigned within the loop. For each such 
location, is there  exactly one iteration that accesses the location? 
If so, there are no  dependencies involving the variable. If not, 
there is a dependency.



1 for (i=1; i<n; i++)

                a[i] = a[i] + a[i-1];

          

2 for (i=1; i<n; i=i+2)

                a[i] = a[i] + a[i-1];

3     for (i=0; i<n/2; i++)

                a[i] = a[i] + a[i + n/2];

4     for (i=0; i<=n/2; i++)

                a[i] = a[i] + a[i + n/2];

Loops with or without data dependency

1 yes

          each iteration writes an element of a 
that is read by the next iteration

2      no

          loop has a stride of 2, it writes every 
other element

3     no

          each iteration reads only the element it 
writes to plus an element that is not 
written to by the loop since it has a 
subscript greater than n/2

4     yes

          the first iteration reads a(n/2+1), while 
that last iteration writes to this element



Classification

● Data-flow dependency

Data-flow relation between two dependent statements, i.e., 
whether or not the two statements communicate values through 
the memory location.

S1 – earlier statement, writes to a memory location
S2 – later statement, reads the memory location

The value read by S2 in a serial execution is the same as that 
written by S1. In this case, the result of a computation by S1 is 
communicated, or ‘flows’ to S2, hence called “flow dependency”.

S1 must execute first to produce the value that is read by S2.

Generally, it’s hard to remove this dependency.



Classification: continue

Two other kinds of dependencies which can be removed; they are not 
communication of data between S1 and S2, but reuse of the memory for different 
purposes at different points in the program.

● Anti dependency
S1 reads the location
S2 writes to the location

Solution: make a private copy of the location and use it to initialize S1.

●  Output dependency
Both S1 and S2 write to the location

Solution: make the memory location private (to a thread) and in addition copy the 
last value back to the shared copy of the location.



A loop containing multiple data dependencies

     for (i=1; i<n-1; i++)  {
10     x = d[i] + 1;
20     a[i] = a[i + 1] + x;
30     b[i] = b[i] + b[i - 1] + d[i – 1];
40     c[2] = 2 * i;
         }

Memory 
location

Line Iteration Access Line Iteration Access Loop 
carried?

Kind of 
dependency

x 10 i w 20 i r n flow

x 10 i w 10 i+1 w y output

x 20 i r 10 i+1 w y anti

a[i+1] 20 i r 20 i+1 w y anti

b[i] 30 i w 30 i+1 r y flow

c[2] 40 i w 40 i+1 w y output



97

Designing Parallel Programs: 

Load Balancing
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Definition
• Load balancing refers to the practice of distributing work among tasks so 

that all tasks are kept busy all of the time. It can be considered a 
minimization of task idle time. 

• Load balancing is important to parallel programs for performance reasons. 
For example, if all tasks are subject to a barrier synchronization point, the 
slowest task will determine the overall performance. 
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How to Achieve Load Balance 

• Equally partition the work each task 
receives 
– For array/matrix operations where each task 

performs similar work, evenly distribute the data set 
among the tasks. 

– For loop iterations where the work done in each 
iteration is similar, evenly distribute the iterations 
across the tasks. 

– If a heterogeneous mix of machines with varying 
performance characteristics are being used, be 
sure to use some type of performance analysis tool 
to detect any load imbalances. Adjust work 
accordingly. 
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How to Achieve Load Balance (2)

• Use dynamic work assignment 
– Certain classes of problems result in load 

imbalances even if data is evenly distributed among 
tasks: 

• Sparse arrays - some tasks will have actual data to work 
on while others have mostly "zeros". 

• Adaptive grid methods - some tasks may need to refine 
their mesh while others don't. 

• N-body simulations - where some particles may migrate 
to/from their original task domain to another task's; where 
the particles owned by some tasks require more work 
than those owned by other tasks; where particles can be 
created inside some tasks.
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How to Achieve Load Balance (3)

– When the amount of work each task will perform is 
intentionally variable, or is unable to be predicted, it 
may be helpful to use a scheduler - task pool 
approach. As each task finishes its work, it queues 
to get a new piece of work. 

– It may become necessary to design an algorithm 
which detects and handles load imbalances as they 
occur dynamically within the code. 
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Designing Parallel Programs:

Granularity
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Computation / Communication 
Ratio 

• In parallel computing, granularity is a 
qualitative measure of the ratio of computation 
to communication. 

• Periods of computation are typically separated 
from periods of communication by 
synchronization events. 
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Fine-grain Parallelism 
• Relatively small amounts of computational 

work are done between communication 
events 

• Facilitates load balancing 
• Implies high communication overhead and 

less opportunity for performance 
enhancement 

• Low computation to communication ratio 
(because of the high communication 
overhead)

• If granularity is too fine it is possible that 
the overhead required for communications 
and synchronization between tasks takes 
longer than the computation. 
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Coarse-grain Parallelism 

• Relatively large amounts of computational 
work are done between communication / 
synchronization events 

• High computation to communication ratio 
• Implies more opportunity for performance 

increase 
• Harder to load balance efficiently 
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Which is Best? 

• The most efficient granularity is dependent on 
the algorithm and the hardware environment in 
which it runs. 

• In most cases the overhead associated with 
communications and synchronization is high 
relative to execution speed so it is 
advantageous to have coarse granularity. 

• Fine-grain parallelism can help reduce 
overheads due to load imbalance. 
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Designing Parallel Programs:

Limits and Costs of Parallel 
Programming
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Amdahl's Law 
• Amdahl's Law states that potential 

program speedup is defined by the 
fraction of code (P) that can be 
parallelized: 

 1    
 speedup   =   ———————                    

   1 - P

• If none of the code can be parallelized, P = 0 and the speedup 
= 1 (no speedup). If all of the code is parallelized, P = 1 and the 
speedup is infinite (in theory). 

• If 50% of the code can be parallelized, maximum speedup = 2, 
meaning the code will run twice as fast. 
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Amdahl's Law (2)
• Introducing the number of processors performing the parallel 

fraction of work, the relationship can be modeled by: 

                                     1      
speedup   =   —————————          

                   P
            ——— + S           
                   N
                             

where P = parallel fraction, N = number of processors and S = 
serial fraction. 
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Amdahl's Law (3)

• It soon becomes obvious that there are
limits to the scalability of parallelism. For
example, at P = .50, .90 and .99 (50%,
90% and 99% of the code is
parallelizable): 

                          speedup         
                   ——————————————————  
     N        P = .50      P = .90     P = .99  
   ————   —————    ————    —————  
     10         1.82         5.26        9.17  
     100        1.98         9.17       50.25    
     1000       1.99         9.91       90.99   
     10000      1.99         9.91       99.02



111

Gustafson's law
• Gustafson's Law is a law in computer engineering which states 

that any sufficiently large problem can be efficiently 
parallelized. 

• Gustafson's Law is closely related to Amdahl's law, which gives 
a limit to the degree to which a program can be sped up due to 
parallelization. It was first described by John Gustafson in 
1988.

Speedup(N) = N − S  (N − 1).

N... number of processors, S ... non-parallelizable part of 
process

• Gustafson's law addresses the shortcomings of Amdahl's law 
which cannot scale to match availability of computing power as 
the machine size increases.
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Gustafson's law (2)

• It removes the fixed problem size or fixed computation load on the 
parallel processors, instead he proposed a fixed time concept which 
leads to scaled speed up.

• Amdahl's law is based on fixed workload or fixed problem size. It 
implies that the sequential part of a program does not change with 
respect to machine size (i.e, the number of processors). However the 
parallel part is evenly distributed by N processors.

• The impact of the law was the shift in research to develop 
parallelizing compilers and reduction in the serial part of the solution 
to boost the performance of parallel systems.

• Both Amdahl's and Gustafson's laws assume that communication 
overheads are negligible. In real systems, bandwidth limits and non-
zero latency will prevent efficient scaling of most numerical codes to 
arbitrarily large numbers of CPUs.
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Strong and Weak Scaling

• Strong Scaling: describes how does the time to solution vary 
with the number of processors for a fixed system size. Related 
to Amdahl’s law.

• Weak Scaling: is how the time to solution varies with processor 
count with a fixed system size per processor. Related to 
Gustafson’s law.
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Parallel Examples 

Array Processing
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Setup
• This example demonstrates calculations on 

2-dimensional array elements, with the 
computation on each array element being 
independent from other array elements. 

• The serial program calculates one element at 
a time in sequential order. 

• Serial code could be of the form: 

        for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    A[i][j] = fcn(i,j);
   

• The calculation of elements is independent of 
one another - leads to an embarrassingly 
parallel situation. 

• The problem should be computationally 
intensive. 
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Solution 1 
• Arrays elements are distributed so that each 

processor owns a portion of an array (subarray). 
• Independent calculation of array elements 

insures there is no need for communication 
between tasks. 

• Distribution scheme is chosen by other criteria, 
e.g. unit stride (stride of 1) through the 
subarrays. Unit stride maximizes cache/memory 
usage. 

• Since it is desirable to have unit stride through 
the subarrays, the choice of a distribution 
scheme depends on the programming language. 
See the  Block - Cyclic Distributions Diagram for 
the options. 
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Solution 1 (2)

• After the array is distributed, each task executes the portion of 
the loop corresponding to the data it owns. For example, with C 
block distribution: 

for (i=mystart; i<myend; i++) 
       for (j=0; j<n; j++)

               A[i][j] = fcn(i,j);

• Notice that only the outer loop variables are different from the 
serial solution.
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Solution 1 (3)

• One Possible Solution: 
– Implement as SPMD model. 
– Master process initializes array, sends info to worker 

processes and receives results. 
– Worker process receives info, performs its share of 

computation and sends results to master. 
– Using the C storage scheme, perform block distribution of 

the array. 
– Pseudo code solution: red highlights changes for 

parallelism. 
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Solution 1 (4)
find out if I am MASTER or WORKER   

if I am MASTER     

initialize the array  
send each WORKER info on part of array it owns  
send each WORKER its portion of initial array     

receive from each WORKER results    

else if I am WORKER  
receive from MASTER info on part of array I own  
receive from MASTER my portion of initial array  

# calculate my portion of array  
              for (i=my_first_column; i<my_last_column; i++) 

   for (j=0; j<n; j++)
             A[i][j] = fcn(i,j); 

send MASTER results 

endif 
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Solution 2: Pool of Tasks 
• The previous array solution demonstrated static load balancing: 

– Each task has a fixed amount of work to do. 
– May be significant idle time for faster or more lightly loaded 

processors - slowest task determines overall performance. 
• Static load balancing is not usually a major concern if all tasks 

are performing the same amount of work on identical 
machines. 

• If you have a load balance problem (some tasks work faster 
than others), you may benefit by using a "pool of tasks" 
scheme. 
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Solution 2: Pool of Tasks (2)
Pool of Tasks Scheme: 

• Two kinds of processes are employed 

Master Process: 
– Holds pool of tasks for worker processes to do 
– Sends worker a task when requested 
– Collects results from workers 

Worker Process: repeatedly does the following 
– Gets task from master process 
– Performs computation 
– Sends results to master 

• Worker processes do not know before runtime which portion of array they 
will handle or how many tasks they will perform. 

• Dynamic load balancing occurs at run time: the faster tasks will get more 
work to do. 

• Pseudo code solution: red highlights changes for parallelism. 
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Solution 2: Pool of Tasks (3)
find out if I am MASTER or WORKER

if I am MASTER  

do until no more jobs    
     receive prev. results from WORKER  
     send to WORKER next job    
end do  

tell WORKER no more jobs

else if I am WORKER  

do until no more jobs    
     send prev. results to MASTER  
     receive from MASTER next job    

     calculate array element: a[i][j]=fcn(i,j)    

end do

endif 
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Solution 2: Pool of Tasks (4)

Discussion: 
• In the above pool of tasks example, each task calculated an 

individual array element as a job. The computation to 
communication ratio is finely granular. 

• Finely granular solutions incur more communication overhead 
in order to reduce task idle time. 

• A more optimal solution might be to distribute more work with 
each job. The "right" amount of work is problem dependent. 
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Parallel Examples 

Simple Heat Equation
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Setup
• Most problems in parallel computing require communication 

among the tasks. A number of common problems require 
communication with "neighbor" tasks. 

• The heat equation describes the temperature change over 
time, given initial temperature distribution and boundary 
conditions. 

• A finite differencing scheme is employed to solve the heat 
equation numerically on a square region. 

• The initial temperature is zero on the boundaries and high in 
the middle. 

• The boundary temperature is held at zero. 
• For the fully explicit problem, a time stepping algorithm is used. 

The elements of a 2-dimensional array represent the 
temperature at points on the square. 

• Video: https://www.youtube.com/watch?v=ucI6KfxeZ7E 

https://www.youtube.com/watch?v=ucI6KfxeZ7E
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Setup (2)
• The calculation of an element is dependent upon neighbor 

element values. 
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Setup (3)
• A serial program would contain code like: 

for (ix=1; ix<nx – 1; ix++)
  for (iy=1; iy<ny – 1; iy++)

u2[ix][iy] =    
     u1[ix][iy]  +      
          cx * (u1[ix+1][iy] + u1[ix-1][iy] - 2*u1[i][iy]) +      
          cy * (u1[ix][iy+1] + u1[ix][iy-1] - 2*u1[ix][iy]);
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Parallel Solution 1 
• Implement as an SPMD model 
• The entire array is partitioned and distributed as subarrays to 

all tasks. Each task owns a portion of the total array. 
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Parallel Solution 1 (2)

• Determine data dependencies 
– interior elements belonging to a 

task are independent of other tasks 

– border elements are dependent 
upon a neighbor task's data, 
necessitating communication. 
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Parallel Solution 1 (3)
• Master process sends initial info to workers, checks for convergence and 

collects results 
• Worker process calculates solution, communicating as necessary with 

neighbor processes 
• Pseudo code solution: red highlights changes for parallelism. 

find out if I am MASTER or WORKER

if I am MASTER  
initialize array  
send each WORKER starting info and subarray     

do until all WORKERS converge    
      gather from all WORKERS convergence data

          broadcast to all WORKERS convergence signal  
end do  

receive results from each WORKER 



131

Parallel Solution 1 (4)
else if I am WORKER  

receive from MASTER starting info and subarray  

do until solution converged    
     update time    
     send neighbors my border info    
     receive from neighbors their border info     

     update my portion of solution array         

     determine if my solution has converged      
send MASTER convergence data      
receive from MASTER convergence signal  

end do   

send MASTER results      

endif 
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Solution 2

• In the previous solution, it was assumed that blocking communications were 
used by the worker tasks. Blocking communications wait for the 
communication process to complete before continuing to the next program 
instruction. 

• In the previous solution, neighbor tasks communicated border data, then 
each process updated its portion of the array. 

• Computing times can often be reduced by using non-blocking 
(asynchronous) communication. Non-blocking communications allow work 
to be performed while communication is in progress. 

• Each task could update the interior of its part of the solution array while the 
communication of border data is occurring, and update its border after 
communication has completed. 

• Pseudo code for the second solution: red highlights changes for non-
blocking communications. 
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Solution 2 (2)
find out if I am MASTER or WORKER 

if I am MASTER  
initialize array  
send each WORKER starting info and subarray      

do until all WORKERS converge    
     gather from all WORKERS convergence data

         broadcast to all WORKERS convergence signal  
end do   

receive results from each WORKER 
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Solution 2 (3)
else if I am WORKER  

receive from MASTER starting info and subarray   

do until solution converged    
     update time        

     non-blocking send neighbors my border info    
     non-blocking receive neighbors border info    

     update interior of my portion of solution array    
     wait for non-blocking communication complete 

        update border of my portion of solution array

             determine if my solution has converged      
send MASTER convergence data      
receive from MASTER convergence signal  

end do    

send MASTER results       

endif 
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