
64

Designing Parallel Programs

65

Automatic vs. Manual
Parallelization

• Designing and developing parallel programs has
characteristically been a very manual process. The
programmer is typically responsible for both identifying and
actually implementing parallelism.

• Very often, manually developing parallel codes is a time
consuming, complex, error-prone and iterative process.

• For a number of years now, various tools have been available
to assist the programmer with converting serial programs into
parallel programs. The most common type of tool used to
automatically parallelize a serial program is a parallelizing
compiler or pre-processor.

66

Automatic vs. Manual Parallelization (2)
• A parallelizing compiler generally works in two different ways:

– Fully Automatic
• The compiler analyzes the source code and identifies opportunities for

parallelism.
• The analysis includes identifying inhibitors to parallelism and possibly a cost

weighting on whether or not the parallelism would actually improve
performance.

• Loops (do, for) are the most frequent target for automatic parallelization.

• Example: Intel compilers (default in SHARCNET), with the “-parallel”
switch.

– Programmer Directed
• Using "compiler directives" or possibly compiler flags, the programmer

explicitly tells the compiler how to parallelize the code.
• May be able to be used in conjunction with some degree of automatic

parallelization also.
• Intel compilers: C pragma (#pragma parallel) or Fortran directive

(!DIR$ PARALLEL)

67

Automatic vs. Manual Parallelization (3)

• If you are beginning with an existing serial code and have time
or budget constraints, then automatic parallelization may be the
answer. However, there are several important caveats that
apply to automatic parallelization:
– Wrong results may be produced
– Performance may actually degrade
– Much less flexible than manual parallelization
– Limited to a subset (mostly loops) of code
– May actually not parallelize code if the analysis suggests there are

inhibitors or the code is too complex

• The remainder of this section applies to the manual method of
developing parallel codes.

68

Understand the Problem and the Program

• Undoubtedly, the first step in developing parallel software is to first
understand the problem that you wish to solve in parallel. If you are
starting with a serial program, this necessitates understanding the
existing code also.

• Before spending time in an attempt to develop a parallel solution for
a problem, determine whether or not the problem is one that can
actually be parallelized.
– Example of Parallelizable Problem:

Calculate the potential energy for each of several thousand independent
conformations of a molecule. When done, find the minimum energy
conformation.

– This problem can be solved in parallel. Each of the molecular
conformations is independently determinable. The calculation of the
minimum energy conformation is also a parallelizable problem.

69

Molecule conformations

70

Understand the Problem and the Program (2)

– Example of a Non-parallelizable Problem:

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the
formula:

F(k + 2) = F(k + 1) + F(k)

– This is a non-parallelizable problem because the calculation of the
Fibonacci sequence as shown would entail dependent calculations
rather than independent ones. The calculation of the k + 2 value uses
those of both k + 1 and k. These three terms cannot be calculated
independently and therefore, not in parallel.

71

Understand the Problem and the Program (3)

• Identify the program's hotspots:
– Know where most of the real work is being done. The

majority of scientific and technical programs usually
accomplish most of their work in a few places.

– Profilers and performance analysis tools can help here

– Focus on parallelizing the hotspots and ignore those
sections of the program that account for little CPU usage.

72

Understand the Problem and the Program (4)

• Identify bottlenecks in the program
– Are there areas that are disproportionately slow, or cause parallelizable

work to halt or be deferred? For example, I/O (Input/Output) is usually
something that slows a program down.

– May be possible to restructure the program or use a different algorithm
to reduce or eliminate unnecessary slow areas

• Identify inhibitors to parallelism. One common class of inhibitor
is data dependence, as demonstrated by the Fibonacci
sequence above.

• Investigate other algorithms if possible. This may be the single
most important consideration when designing a parallel
application.

73

Partitioning

• One of the first steps in designing a parallel
program is to break the problem into discrete
"chunks" of work that can be distributed to
multiple tasks. This is known as decomposition
or partitioning.

• There are two basic ways to partition
computational work among parallel tasks:
domain decomposition and functional
decomposition.

74

Domain Decomposition

 In this type of partitioning, the data associated
with a problem is decomposed. Each parallel
task then works on a portion of of the data.

75

Domain Decomposition (2)
 There are different ways to partition data:

76

Functional Decomposition
 In this approach, the focus is on the computation that is to be

performed rather than on the data manipulated by the
computation. The problem is decomposed according to the
work that must be done. Each task then performs a portion of
the overall work.

77

Functional Decomposition (2)
• Functional decomposition lends itself well to problems that can be split into different

tasks. For example:

Ecosystem Modeling
Each program calculates the population of a given group, where each group's
growth depends on that of its neighbors. As time progresses, each process
calculates its current state, then exchanges information with the neighbor
populations. All tasks then progress to calculate the state at the next time step.

78

Functional Decomposition (3)

Signal Processing

An audio signal data set is passed through four distinct computational filters. Each
filter is a separate process. The first segment of data must pass through the first
filter before progressing to the second. When it does, the second segment of data
passes through the first filter. By the time the fourth segment of data is in the first
filter, all four tasks are busy.

79

Functional Decomposition (4)
Climate Modeling
Each model component can be thought of as a separate task. Arrows represent
exchanges of data between components during computation: the atmosphere model
generates wind velocity data that are used by the ocean model, the ocean model
generates sea surface temperature data that are used by the atmosphere model,
and so on.

Combining these two types
of problem decomposition is
common and natural.

80

Designing Parallel Programs:

Communications

81

Who Needs Communications?
• The need for communications between tasks depends upon

your problem:
• You DON'T need communications

– Some types of problems can be decomposed and executed in parallel
with virtually no need for tasks to share data. For example, imagine an
image processing operation where every pixel in a black and white
image needs to have its color reversed. The image data can easily be
distributed to multiple tasks that then act independently of each other to
do their portion of the work.

– These types of problems are often called embarrassingly parallel
because they are so straight-forward. Very little inter-task
communication is required.

• You DO need communications
– Most parallel applications are not quite so simple, and do require tasks

to share data with each other. For example, a 3-D heat diffusion
problem requires a task to know the temperatures calculated by the
tasks that have neighboring data. Changes to neighboring data has a
direct effect on that task's data.

82

Factors to Consider
• Cost of communications

– Inter-task communication virtually always implies overhead.
– Machine cycles and resources that could be used for computation are

instead used to package and transmit data.
– Communications frequently require some type of synchronization

between tasks, which can result in tasks spending time "waiting" instead
of doing work.

– Competing communication traffic can saturate the available network
bandwidth, further aggravating performance problems.

• Latency vs. Bandwidth
– latency is the time it takes to send a minimal (0 byte) message from

point A to point B. Commonly expressed as microseconds.
– bandwidth is the amount of data that can be communicated per unit of

time. Commonly expressed as megabytes/sec.
– Sending many small messages can cause latency to dominate

communication overheads. Often it is more efficient to package small
messages into a larger message, thus increasing the effective
communications bandwidth.

83

Factors to Consider (2)

• Visibility of communications
– With the Message Passing Model, communications are explicit and

generally quite visible and under the control of the programmer.
– With the Data Parallel Model, communications often occur transparently

to the programmer, particularly on distributed memory architectures. The
programmer may not even be able to know exactly how inter-task
communications are being accomplished.

84

Factors to Consider (3)
• Synchronous vs. asynchronous communications

– Synchronous communications require some type of "handshaking"
between tasks that are sharing data. This can be explicitly structured in
code by the programmer, or it may happen at a lower level unknown to
the programmer.

– Synchronous communications are often referred to as blocking
communications since other work must wait until the communications
have completed.

– Asynchronous communications allow tasks to transfer data
independently from one another. For example, task 1 can prepare and
send a message to task 2, and then immediately begin doing other
work. When task 2 actually receives the data doesn't matter.

– Asynchronous communications are often referred to as non-blocking
communications since other work can be done while the
communications are taking place.

– Interleaving computation with communication is the single greatest
benefit for using asynchronous communications.

85

Factors to Consider (4)

• Scope of communications
– Knowing which tasks must communicate with each other is critical

during the design stage of a parallel code. Both of the two scopings
described below can be implemented synchronously or asynchronously.

– Point-to-point - involves two tasks with one task acting as the
sender/producer of data, and the other acting as the receiver/consumer.

– Collective - involves data sharing between more than two tasks, which
are often specified as being members in a common group, or collective.
Some common variations (there are more):

86

Factors to Consider (5)

87

Factors to Consider (6)

• Efficiency of communications
– Very often, the programmer will have a choice with regard to factors that

can affect communications performance. Only a few are mentioned
here.

– Which implementation for a given model should be used? Using the
Message Passing Model as an example, one MPI implementation may
be faster on a given hardware platform than another.

– What type of communication operations should be used? As mentioned
previously, asynchronous communication operations can improve
overall program performance.

– Network media - some platforms may offer more than one network for
communications. Which one is best?

88

Designing Parallel Programs:

Synchronization

89

Types of Synchronization

• Barrier
– Usually implies that all tasks are involved
– Each task performs its work until it reaches the barrier. It then stops, or

"blocks".
– When the last task reaches the barrier, all tasks are synchronized.
– What happens from here varies. Often, a serial section of work must be

done. In other cases, the tasks are automatically released to continue
their work.

• Lock / semaphore
– Can involve any number of tasks
– Typically used to serialize (protect) access to global data or a section of

code. Only one task at a time may use (own) the lock / semaphore /
flag.

90

Types of Synchronization (2)
– The first task to acquire the lock "sets" it. This task can then safely

(serially) access the protected data or code.
– Other tasks can attempt to acquire the lock but must wait until the task

that owns the lock releases it.
– Can be blocking or non-blocking

• Synchronous communication operations
– Involves only those tasks executing a communication operation
– When a task performs a communication operation, some form of

coordination is required with the other task(s) participating in the
communication. For example, before a task can perform a send
operation, it must first receive an acknowledgment from the receiving
task that it is OK to send.

91

Designing Parallel Programs:

Data Dependencies

Loop carried dependency

• Dependency between statements executed in different iterations of
the loop.

• Dependencies are always associated with a particular memory
location, we can detect them by analyzing how each variable is
used within the loop

– Is the variable only read and never assigned within the loop
body? If so, there are no dependencies involving it

– Otherwise, consider the memory locations that make up the
variable and that are assigned within the loop. For each such
location, is there exactly one iteration that accesses the location?
If so, there are no dependencies involving the variable. If not,
there is a dependency.

1 for (i=1; i<n; i++)

 a[i] = a[i] + a[i-1];

2 for (i=1; i<n; i=i+2)

 a[i] = a[i] + a[i-1];

3 for (i=0; i<n/2; i++)

 a[i] = a[i] + a[i + n/2];

4 for (i=0; i<=n/2; i++)

 a[i] = a[i] + a[i + n/2];

Loops with or without data dependency

1 yes

 each iteration writes an element of a
that is read by the next iteration

2 no

 loop has a stride of 2, it writes every
other element

3 no

 each iteration reads only the element it
writes to plus an element that is not
written to by the loop since it has a
subscript greater than n/2

4 yes

 the first iteration reads a(n/2+1), while
that last iteration writes to this element

Classification

● Data-flow dependency

Data-flow relation between two dependent statements, i.e.,
whether or not the two statements communicate values through
the memory location.

S1 – earlier statement, writes to a memory location
S2 – later statement, reads the memory location

The value read by S2 in a serial execution is the same as that
written by S1. In this case, the result of a computation by S1 is
communicated, or ‘flows’ to S2, hence called “flow dependency”.

S1 must execute first to produce the value that is read by S2.

Generally, it’s hard to remove this dependency.

Classification: continue

Two other kinds of dependencies which can be removed; they are not
communication of data between S1 and S2, but reuse of the memory for different
purposes at different points in the program.

● Anti dependency
S1 reads the location
S2 writes to the location

Solution: make a private copy of the location and use it to initialize S1.

● Output dependency
Both S1 and S2 write to the location

Solution: make the memory location private (to a thread) and in addition copy the
last value back to the shared copy of the location.

A loop containing multiple data dependencies

 for (i=1; i<n-1; i++) {
10 x = d[i] + 1;
20 a[i] = a[i + 1] + x;
30 b[i] = b[i] + b[i - 1] + d[i – 1];
40 c[2] = 2 * i;
 }

Memory
location

Line Iteration Access Line Iteration Access Loop
carried?

Kind of
dependency

x 10 i w 20 i r n flow

x 10 i w 10 i+1 w y output

x 20 i r 10 i+1 w y anti

a[i+1] 20 i r 20 i+1 w y anti

b[i] 30 i w 30 i+1 r y flow

c[2] 40 i w 40 i+1 w y output

97

Designing Parallel Programs:

Load Balancing

98

Definition
• Load balancing refers to the practice of distributing work among tasks so

that all tasks are kept busy all of the time. It can be considered a
minimization of task idle time.

• Load balancing is important to parallel programs for performance reasons.
For example, if all tasks are subject to a barrier synchronization point, the
slowest task will determine the overall performance.

99

How to Achieve Load Balance

• Equally partition the work each task
receives
– For array/matrix operations where each task

performs similar work, evenly distribute the data set
among the tasks.

– For loop iterations where the work done in each
iteration is similar, evenly distribute the iterations
across the tasks.

– If a heterogeneous mix of machines with varying
performance characteristics are being used, be
sure to use some type of performance analysis tool
to detect any load imbalances. Adjust work
accordingly.

100

How to Achieve Load Balance (2)

• Use dynamic work assignment
– Certain classes of problems result in load

imbalances even if data is evenly distributed among
tasks:

• Sparse arrays - some tasks will have actual data to work
on while others have mostly "zeros".

• Adaptive grid methods - some tasks may need to refine
their mesh while others don't.

• N-body simulations - where some particles may migrate
to/from their original task domain to another task's; where
the particles owned by some tasks require more work
than those owned by other tasks; where particles can be
created inside some tasks.

101

How to Achieve Load Balance (3)

– When the amount of work each task will perform is
intentionally variable, or is unable to be predicted, it
may be helpful to use a scheduler - task pool
approach. As each task finishes its work, it queues
to get a new piece of work.

– It may become necessary to design an algorithm
which detects and handles load imbalances as they
occur dynamically within the code.

102

Designing Parallel Programs:

Granularity

103

Computation / Communication
Ratio

• In parallel computing, granularity is a
qualitative measure of the ratio of computation
to communication.

• Periods of computation are typically separated
from periods of communication by
synchronization events.

104

Fine-grain Parallelism
• Relatively small amounts of computational

work are done between communication
events

• Facilitates load balancing
• Implies high communication overhead and

less opportunity for performance
enhancement

• Low computation to communication ratio
(because of the high communication
overhead)

• If granularity is too fine it is possible that
the overhead required for communications
and synchronization between tasks takes
longer than the computation.

105

Coarse-grain Parallelism

• Relatively large amounts of computational
work are done between communication /
synchronization events

• High computation to communication ratio
• Implies more opportunity for performance

increase
• Harder to load balance efficiently

106

Which is Best?

• The most efficient granularity is dependent on
the algorithm and the hardware environment in
which it runs.

• In most cases the overhead associated with
communications and synchronization is high
relative to execution speed so it is
advantageous to have coarse granularity.

• Fine-grain parallelism can help reduce
overheads due to load imbalance.

107

Designing Parallel Programs:

Limits and Costs of Parallel
Programming

108

Amdahl's Law
• Amdahl's Law states that potential

program speedup is defined by the
fraction of code (P) that can be
parallelized:

 1
 speedup = ———————

 1 - P

• If none of the code can be parallelized, P = 0 and the speedup
= 1 (no speedup). If all of the code is parallelized, P = 1 and the
speedup is infinite (in theory).

• If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.

109

Amdahl's Law (2)
• Introducing the number of processors performing the parallel

fraction of work, the relationship can be modeled by:

 1
speedup = —————————

 P
 ——— + S
 N

where P = parallel fraction, N = number of processors and S =
serial fraction.

110

Amdahl's Law (3)

• It soon becomes obvious that there are
limits to the scalability of parallelism. For
example, at P = .50, .90 and .99 (50%,
90% and 99% of the code is
parallelizable):

 speedup
 ——————————————————
 N P = .50 P = .90 P = .99
 ———— ————— ———— —————
 10 1.82 5.26 9.17
 100 1.98 9.17 50.25
 1000 1.99 9.91 90.99
 10000 1.99 9.91 99.02

111

Gustafson's law
• Gustafson's Law is a law in computer engineering which states

that any sufficiently large problem can be efficiently
parallelized.

• Gustafson's Law is closely related to Amdahl's law, which gives
a limit to the degree to which a program can be sped up due to
parallelization. It was first described by John Gustafson in
1988.

Speedup(N) = N − S (N − 1).

N... number of processors, S ... non-parallelizable part of
process

• Gustafson's law addresses the shortcomings of Amdahl's law
which cannot scale to match availability of computing power as
the machine size increases.

112

Gustafson's law (2)

• It removes the fixed problem size or fixed computation load on the
parallel processors, instead he proposed a fixed time concept which
leads to scaled speed up.

• Amdahl's law is based on fixed workload or fixed problem size. It
implies that the sequential part of a program does not change with
respect to machine size (i.e, the number of processors). However the
parallel part is evenly distributed by N processors.

• The impact of the law was the shift in research to develop
parallelizing compilers and reduction in the serial part of the solution
to boost the performance of parallel systems.

• Both Amdahl's and Gustafson's laws assume that communication
overheads are negligible. In real systems, bandwidth limits and non-
zero latency will prevent efficient scaling of most numerical codes to
arbitrarily large numbers of CPUs.

113

Strong and Weak Scaling

• Strong Scaling: describes how does the time to solution vary
with the number of processors for a fixed system size. Related
to Amdahl’s law.

• Weak Scaling: is how the time to solution varies with processor
count with a fixed system size per processor. Related to
Gustafson’s law.

114

Parallel Examples

Array Processing

115

Setup
• This example demonstrates calculations on

2-dimensional array elements, with the
computation on each array element being
independent from other array elements.

• The serial program calculates one element at
a time in sequential order.

• Serial code could be of the form:

 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[i][j] = fcn(i,j);

• The calculation of elements is independent of
one another - leads to an embarrassingly
parallel situation.

• The problem should be computationally
intensive.

116

Solution 1
• Arrays elements are distributed so that each

processor owns a portion of an array (subarray).
• Independent calculation of array elements

insures there is no need for communication
between tasks.

• Distribution scheme is chosen by other criteria,
e.g. unit stride (stride of 1) through the
subarrays. Unit stride maximizes cache/memory
usage.

• Since it is desirable to have unit stride through
the subarrays, the choice of a distribution
scheme depends on the programming language.
See the Block - Cyclic Distributions Diagram for
the options.

117

Solution 1 (2)

• After the array is distributed, each task executes the portion of
the loop corresponding to the data it owns. For example, with C
block distribution:

for (i=mystart; i<myend; i++)
 for (j=0; j<n; j++)

 A[i][j] = fcn(i,j);

• Notice that only the outer loop variables are different from the
serial solution.

118

Solution 1 (3)

• One Possible Solution:
– Implement as SPMD model.
– Master process initializes array, sends info to worker

processes and receives results.
– Worker process receives info, performs its share of

computation and sends results to master.
– Using the C storage scheme, perform block distribution of

the array.
– Pseudo code solution: red highlights changes for

parallelism.

119

Solution 1 (4)
find out if I am MASTER or WORKER

if I am MASTER

initialize the array
send each WORKER info on part of array it owns
send each WORKER its portion of initial array

receive from each WORKER results

else if I am WORKER
receive from MASTER info on part of array I own
receive from MASTER my portion of initial array

calculate my portion of array
 for (i=my_first_column; i<my_last_column; i++)

 for (j=0; j<n; j++)
 A[i][j] = fcn(i,j);

send MASTER results

endif

120

Solution 2: Pool of Tasks
• The previous array solution demonstrated static load balancing:

– Each task has a fixed amount of work to do.
– May be significant idle time for faster or more lightly loaded

processors - slowest task determines overall performance.
• Static load balancing is not usually a major concern if all tasks

are performing the same amount of work on identical
machines.

• If you have a load balance problem (some tasks work faster
than others), you may benefit by using a "pool of tasks"
scheme.

121

Solution 2: Pool of Tasks (2)
Pool of Tasks Scheme:

• Two kinds of processes are employed

Master Process:
– Holds pool of tasks for worker processes to do
– Sends worker a task when requested
– Collects results from workers

Worker Process: repeatedly does the following
– Gets task from master process
– Performs computation
– Sends results to master

• Worker processes do not know before runtime which portion of array they
will handle or how many tasks they will perform.

• Dynamic load balancing occurs at run time: the faster tasks will get more
work to do.

• Pseudo code solution: red highlights changes for parallelism.

122

Solution 2: Pool of Tasks (3)
find out if I am MASTER or WORKER

if I am MASTER

do until no more jobs
 receive prev. results from WORKER
 send to WORKER next job
end do

tell WORKER no more jobs

else if I am WORKER

do until no more jobs
 send prev. results to MASTER
 receive from MASTER next job

 calculate array element: a[i][j]=fcn(i,j)

end do

endif

123

Solution 2: Pool of Tasks (4)

Discussion:
• In the above pool of tasks example, each task calculated an

individual array element as a job. The computation to
communication ratio is finely granular.

• Finely granular solutions incur more communication overhead
in order to reduce task idle time.

• A more optimal solution might be to distribute more work with
each job. The "right" amount of work is problem dependent.

124

Parallel Examples

Simple Heat Equation

125

Setup
• Most problems in parallel computing require communication

among the tasks. A number of common problems require
communication with "neighbor" tasks.

• The heat equation describes the temperature change over
time, given initial temperature distribution and boundary
conditions.

• A finite differencing scheme is employed to solve the heat
equation numerically on a square region.

• The initial temperature is zero on the boundaries and high in
the middle.

• The boundary temperature is held at zero.
• For the fully explicit problem, a time stepping algorithm is used.

The elements of a 2-dimensional array represent the
temperature at points on the square.

• Video: https://www.youtube.com/watch?v=ucI6KfxeZ7E

https://www.youtube.com/watch?v=ucI6KfxeZ7E

126

Setup (2)
• The calculation of an element is dependent upon neighbor

element values.

127

Setup (3)
• A serial program would contain code like:

for (ix=1; ix<nx – 1; ix++)
 for (iy=1; iy<ny – 1; iy++)

u2[ix][iy] =
 u1[ix][iy] +
 cx * (u1[ix+1][iy] + u1[ix-1][iy] - 2*u1[i][iy]) +
 cy * (u1[ix][iy+1] + u1[ix][iy-1] - 2*u1[ix][iy]);

128

Parallel Solution 1
• Implement as an SPMD model
• The entire array is partitioned and distributed as subarrays to

all tasks. Each task owns a portion of the total array.

129

Parallel Solution 1 (2)

• Determine data dependencies
– interior elements belonging to a

task are independent of other tasks

– border elements are dependent
upon a neighbor task's data,
necessitating communication.

130

Parallel Solution 1 (3)
• Master process sends initial info to workers, checks for convergence and

collects results
• Worker process calculates solution, communicating as necessary with

neighbor processes
• Pseudo code solution: red highlights changes for parallelism.

find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray

do until all WORKERS converge
 gather from all WORKERS convergence data

 broadcast to all WORKERS convergence signal
end do

receive results from each WORKER

131

Parallel Solution 1 (4)
else if I am WORKER

receive from MASTER starting info and subarray

do until solution converged
 update time
 send neighbors my border info
 receive from neighbors their border info

 update my portion of solution array

 determine if my solution has converged
send MASTER convergence data
receive from MASTER convergence signal

end do

send MASTER results

endif

132

Solution 2

• In the previous solution, it was assumed that blocking communications were
used by the worker tasks. Blocking communications wait for the
communication process to complete before continuing to the next program
instruction.

• In the previous solution, neighbor tasks communicated border data, then
each process updated its portion of the array.

• Computing times can often be reduced by using non-blocking
(asynchronous) communication. Non-blocking communications allow work
to be performed while communication is in progress.

• Each task could update the interior of its part of the solution array while the
communication of border data is occurring, and update its border after
communication has completed.

• Pseudo code for the second solution: red highlights changes for non-
blocking communications.

133

Solution 2 (2)
find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray

do until all WORKERS converge
 gather from all WORKERS convergence data

 broadcast to all WORKERS convergence signal
end do

receive results from each WORKER

134

Solution 2 (3)
else if I am WORKER

receive from MASTER starting info and subarray

do until solution converged
 update time

 non-blocking send neighbors my border info
 non-blocking receive neighbors border info

 update interior of my portion of solution array
 wait for non-blocking communication complete

 update border of my portion of solution array

 determine if my solution has converged
send MASTER convergence data
receive from MASTER convergence signal

end do

send MASTER results

endif

	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

