
Lecture 11

CUDA LIBRARIES

Linear algebra on the GPU

● Linear algebra on the CPU: BLAS, LAPACK
● GPU analogues: CUBLAS, MAGMA
● CUSPARSE library for sparse matrices
● Use of highly optimised libraries is usually better than writing

your own code
● Writing efficient GPU code requires special care and

understanding the peculiarities of underlying hardware

CUBLAS

● Implementation of BLAS (Basic Linear Algebra Subprograms)
on top of CUDA

● Included with CUDA (hence free)
● Workflow:

1. allocate vectors and matrices in GPU memory

2. fill them with data

3. call sequence of CUBLAS functions

4. transfer results from GPU memory to host
● Helper functions to transfer data to/from GPU provided

Error checks

● In following example most error checks were removed for
clarity

● Each CUBLAS function returns a status object containing
information about possible errors

● It’s possible to catch errors via calls like this:

if (status != CUBLAS_STATUS_SUCCESS) {
print diagnostic information and exit}

Initialize program

#include <cuda.h> /* CUDA runtime API */
#include <cstdio>
#include <cublas_v2.h>
int main(int argc, char *argv[])
{
 float *x_host, *y_host; /* arrays for computation on host*/
 float *x_dev, *y_dev; /* arrays for computation on device */
 int n = 32*1024*1024;
 float alpha = 0.5f;
 int nerror;
 size_t memsize;
 int i;
 /* could add device detection here */
 memsize = n * sizeof(float);

Allocate memory on host and device

 /* allocate arrays on host */
 x_host = (float *)malloc(memsize);
 y_host = (float *)malloc(memsize);
/* allocate arrays on device */
 cudaMalloc((void **) &x_dev, memsize);
 cudaMalloc((void **) &y_dev, memsize);
 /* initialize arrays on host */
 for (i = 0; i < n; i++)
 {
 x_host[i] = rand() / (float)RAND_MAX;
 y_host[i] = rand() / (float)RAND_MAX;
 }
 /* copy arrays to device memory (synchronous) */
 cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
 cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);

Call CUBLAS function

 cublasHandle_t handle;
 cublasStatus_t status;
 status = cublasCreate(&handle);
 int stride = 1;
 status = cublasSaxpy(handle,n,&alpha,x_dev,stride,y_dev,stride);
 /* check if cublasSaxpy launched succesfully */
 if (status != CUBLAS_STATUS_SUCCESS)
 {
 printf ("Error in launching CUBLAS routine \n");
 exit (20);
 }
 status = cublasDestroy(handle);

Retrieve computed data and finish

 /* retrieve results from device (synchronous) */
 cudaMemcpy(y_host, y_dev, memsize, cudaMemcpyDeviceToHost);
 /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */
 cudaDeviceSynchronize();
 /* use data in y_host*/
 /* free memory */
 cudaFree(x_dev);
 cudaFree(y_dev);
 free(x_host);
 free(y_host);
 return 0;
}

CUBLAS exercise

● Time the cublasSaxpy() operation in the CUBLAS version
of the SAXPY code,
~syam/CSE746/saxpy/saxpy_cublas.cu (use GPU based
timers, from saxpy_cuda_timed.cu).

● Compare that to the timing of the CUDA version,
saxpy_cuda_timed.cu .

NEW CUDA FEATURES

From Fermi to Pascal

● Important HPC GPU generations
(https://en.wikipedia.org/wiki/Nvidia_Tesla):

● Fermi: 2010
● Kepler: 2012
● Pascal: 2016
● Volta: 2017
● Turing: 2018
● Ampere: May 2020
● Hopper: October 2022

Evolutionary changes

Specification Fermi Pascal

CUDA cores: 448 3584

SP flops: 1.03 TFlops 9.3 TFlops

Device
memory:

5.2 GB 12 GB

Memory
bandwidth:

148 GB/s 549 GB/s

Revolutionary changes

● CUDA Dynamic Parallelism (CDP): new hard/software
feature allowing for dynamic workload generation on GPU
(kernels launched from kernels). Makes GPU much more
general purpose computing device. First appeared in
Kepler GPUs.

● Hyper-Q / MPS (multi-process service): in previous
generations, multiple CPU threads could only access the
GPU sequentially (one queue); Kepler and later expand
that to 16+ parallel queues. This should significantly
accelerate mixed MPI/CUDA and OpenMP/CUDA codes,
without any code modifications. Also great for GPU
farming.

Dynamic Parallelism

Dynamic Parallelism

● Dynamic parallelism (DP) is available in CUDA 5.0 and
later on devices of Compute Capability 3.5 or higher
(sm_35 for Kepler; sm_60 for Pascal).

● Under DP, an application can launch a coarse-grained
kernel which in turn launches finer-grained kernels to do
work where needed.

Dynamic Parallelism

● DP is perfect for adaptive grid codes and
codes with recursion.

DP: simple example

// On device:
// Second level kernels (multi-threaded):
__global__ void kernel1 (){}
__global__ void kernel2 (){}

// Top level kernel (single-threaded):
__global__ void main_kernel (){
 if (threadIdx.x == 0) {
// These second level kernels will run sequentially (would need streams for
concurrency)
 kernel1<<<Nblocks, Nthreads>>>();
 kernel2<<<Nblocks, Nthreads>>>();
 ...
 }}
// On host:
int main() {
 main_kernel<<<1,1>>>();}

● DP allows one to move almost everything to
GPU.

Dynamic parallelism
● Permits kernel launches from inside kernels
● Kernels no longer have to be launched exclusively from host
● Relaxing this restriction permits more independence of GPU

code from the CPU host, less device/host synchronization
required

● Opens possibilities for clearer, less complicated code
● True kernel recursion is now possible
● Allows much more efficient parallelization for some

problems
● Without this GPUs lacked a feature which has been available

on CPUs for decades, making GPUs harder to program
compared to CPUs

Calling kernel inside kernel has same syntax as
calling on host

● in this example, Kernel2 launches K*J threads when called in
the main function

● each thread in Kernel2 that calls Kernel1 will launch N*M
new threads

● up to K*J*N*M threads in total can be launched in this case

__global void Kernel1(){
 ... //kernel code
 }
__global__ void Kernel2(){
 ... //kernel code
 Kernel1<<<N,M>>>() // call kernel inside kernel
 ... //more kernel code
 }
int main(){
 ... //host code
 Kernel2<<K,J>>() // call kernel from host
 ... //more host code
 }

Program easy to write as an efficient GPU kernel

● Perfect target for 2D thread decomposition
● N*M threads will be launched
● All threads call the same function

for (int i=0; i<N){
 for (int j=0; j<M;j++){
 some_convolution_function(i,j);
 }
}

N

M

Program harder to write as an efficient GPU
kernel

● The i,j values no longer fit a regular grid
● Cannot decompose straightforwardly into 2D array of threads
● Can consider a series of bad options

for (int i=0; i<N){
 for (int j=0; j<M[i];j++){
 some_convolution_function(i,j);
 }
}

More threads?

● Could try oversubscription, have N*max(M[i]) threads, some
do no work

● This is wasteful, threads which do nothing have to be created

__global__ oversubscribed_kernel(){
 i=threadIdx.x + blockDim.x * blockIdx.x;
 j=threadIdx.y + blockDim.y * blockIdx.y;
 if(j<M[i]){
 some_convolution_function(i,j);
 }
 }

N

max(M[i])

Fewer threads?

● Could have just N threads
● In this case all threads would do work, but N might be

too small to create enough threads for efficient use of
GPU

● Different threads would likely have very different
amounts of work to do

● Warp divergence can become a serious issue

__global__ void fewer_threads_kernel(){
 i=threadIdx.x + blockDim.x * blockIdx.x;
 for (int j=0; j<M[i];j++){
 some_convolution_function(i,j);
 }
 }

Multiple kernels from host

● Could call kernel from host N times
● Individual kernels become much smaller → efficiency can drop

dramatically
● Default kernels execute in series, previous must finish before

next one starts, even if independent
● Could use streams to avoid this, but number of streams working

asynchronously is limited
● Having a limited number of streams, each running multiple kernels,

can be a reasonable solution

__global__ void multi_kernel(i){

 j=threadIdx.x + blockDim.x * blockIdx.x;
 some_convolution_function(i,j);
 }
//on host
...
for(i=0;i<N;i++){
 multi_kernel<<<(enough threads to handle M[i] evaluations)>>>(i)
}

New option with CC 3.5: more kernels from GPU

● First kernel call creates N blocks with 1 thread each, so
N threads

● Each thread i of the N threads launches M[i] kernels,
each containing one thread

● Another possibility: have each thread i launch a kernel
with M[i] threads, but work done by each kernel not
equal

__global__ void convolution_kernel(int i,int j){
 some_convolution_function(i,j);
 }
__global__ void dynamic_parallelism_kernel(int *M){

 for(j=0;j<M[blockIdx.x];j++){
 convolution_kernel<<1,1>>>(blockIdx.x,j);
 }
 }
//on host
 ...
 dynamic_parallelism_kernel<<<N,1>>>(M)

New option with CC 3.5: more kernels from GPU

● Overhead of launching kernels on GPU much lower
than on host

● These kernels will execute asynchronously, as they are
launched by different threads

__global__ void convolution_kernel(int i,int j){
 some_convolution_function(i,j);
 }
__global__ void dynamic_parallelism_kernel(int *M){
 for(j=0;j<M[blockIdx.x];j++){
 convolution_kernel<<1,1>>>(blockIdx.x,j);
 }
 }
//on host
...
dynamic_parallelism_kernel<<<N,1>>>(M)

Synchronization is an issue, just like on host

● Threads will launch kernels and keep on going, just like
the host

● If you need for the thread to wait until Kernel1 is
finished before continuing, use cudaDeviceSynchronize
just like on host

● In this case cudaDeviceSynchronize ensures
synchronization only within that 1 GPU thread (!!)

__global__ void Kernel2(){
... //kernel code
 Kernel1<<<N,M>>>(); // thread will launch kernel and keep going
 cudaDeviceSynchronize(); // make thread wait for Kernel1 to complete
... //code that needs data generated by Kernel1
}

Synchronization is an issue, just like on host

● cudaDeviceSynchronize will not synchronize threads in
a block, it only works within thread when inside kernel

● If you want all threads in a block to wait for kernel to
finish, use cudaDeviceSynchronize() followed by
__syncthreads

__global__ void Kernel2(){
 ... //kernel code
 if(threadIdx.x==0){
 Kernel1<<<N,M>>>(); // thread will launch kernel and keep going
 cudaDeviceSynchronize(); // make thread wait for Kernel1 to complete
 }
 __syncthreads(); // if all threads in block need Kernel1 to complete
 ... //code that needs data generated by Kernel1
}

Hyper-Q (MPS)

Recall: Amdahl's Law
• Amdahl's Law states that potential

program speedup is defined by the
fraction of code (P) that can be
parallelized:

 1
 speedup = ———————
 1 - P

• If none of the code can be parallelized, P = 0 and the
speedup = 1 (no speedup). If all of the code is
parallelized, P = 1 and the speedup is infinite (in theory).

• If 50% of the code can be parallelized, maximum speedup
= 2, meaning the code will run twice as fast.

Hyper-Q/MPS: why is it important?

● GPUs work well when you saturate them with
data-parallel threads.

● P100 GPU has 8 times more cores (so need 8x
more threads to get saturated) than Fermi GPU.

● From the Amdahl's law, a code which runs well on
Fermi will likely perform poorly on P100.

● Hyper-Q helps to mitigate this, by allowing to
share one GPU between different CPU threads.

Exercise: Hyper-Q

● Write a simple CUDA code which has one kernel which
uses only one block of threads. (Make the kernel long –
say 10 seconds or so; use a serial loop inside for that.)

● This mimics a realistic code which doesn't have enough of
parallelism to saturate a modern GPU.

● Time the code without, then with Hyper-Q / MPS. Place the
following lines before your code in the job script (or run this
manually if using salloc) to use Hyper-Q:

 mkdir -p $HOME/tmp
 export CUDA_MPS_LOG_DIRECTORY=$HOME/tmp
 nvidia-cuda-mps-control -d

Multi-threaded script HQ.sh

● Use the bash script ~syam/CSE746/MPS/HQ.sh
to test MPS

#!/bin/bash

for ((i=0; i<$1; i++))
 do
 echo $i
 ./a.out &>out &
 done

wait

Profiling CUDA

Profiling

● Profiling is examining code during its execution, to better
understand its performance and find ways to improve it

● Essential when developing computationally intensive codes
● As parallel codes are generally computationally intensive, they

almost always benefit from profiling
● So far, to develop a fundamental understanding, we have used

explicit timing calls, both from CUDA and standard C
● For more complex codes this would become very inconvenient
● Fortunately, CUDA provides a set of powerful profiling tools
● Profiling tools can provide significantly more information than just

timings

Profiling tools in CUDA

● Command line profiler: nvprof
● very fast and convenient

● Nsight IDE
● has profiler built in
● diverged into two separate products – ncu-ui for low level profiling

of individual kernels, and nsys-ui for whole code profiling (higher
level).

● NVIDIA announced that after Volta there will be no support for nvprof.
For Amper and newer, only Nsight will work.

Running nsight

● Comes bundled up with “cuda” module. Should use the most
recent module available. On graham the following command will
load the most recent version of cuda*:

$ module load StdEnv/2023 cuda

● You have to add “-Y” when ssh to the cluster (not needed when
using MobaXterm under Windows; for Mac, install Xquartz first).

● In your salloc command, add “--x11” switch.
● Such method (X11 forwarding) can be rather laggy. It is possible

(though it’s more complicated) to use VNC method to a compute
node on our clusters: https://docs.computecanada.ca/wiki/VNC

https://docs.computecanada.ca/wiki/VNC

nvprof

● Documentation at:http://docs.nvidia.com/cuda/profiler-users-guide/

● Available from command line (after loading a cuda module)
● Will work on standard CUDA executable generated with nvcc, no

special flags need to be supplied to nvcc to enable profiling
● Basic usage (here test.x is the executable to be profiled):

nvprof test.x
● more detailed output listing events on GPU in order of execution

nvprof --print-gpu-trace test.x
● more detailed output listing CUDA calls on host

nvprof --print-api-trace test.x

http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview

Important: compile for right architecture

● It’s especially important when profiling to use the right -arch flag
when compiling with nvcc, so it matches the architecture that the
executable will be profiled on

● Clearly, since performance optimization is important when
profiling, one does not want to introduce any inefficiency by
using executable targeted at wrong architecture

● Also, if wrong architecture is selected, some of the profiling
diagnostics will be inconsistent

CUDA concepts for today’s lecture

● Thread occupancy : getting the most out of the GPU by getting
the optimum number of threads actively running on it at any
given time

● Register pressure : limitations on occupancy and memory
efficiency when kernel requires a significant number of registers

Occupancy

● When you execute a CUDA kernel with N threads, generally only
a subset of these N threads are resident i.e. have their instructions
actively executed at any one time. The remainder have either
already finished executing their instructions or are still waiting to
begin executing their instructions

● Each multiprocessor inside a CUDA GPU has a hardware limit on
the maximum number of threads which can be resident at any one
time

● This limit is one of the properties which can be queried at runtime
(with maxThreadsPerMultiProcessor)

Device diagnostic output

from device_diagnostic.cu in lecture code

output on P100
Name: Tesla P100-PCIE-12GB
Compute capability: 6.0
Clock rate: 1328500
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 12790923264
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 56
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per multi processor: 2048
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

Device diagnostic output

from device_diagnostic.cu in lecture code

output on V100

Name: Tesla V100-PCIE-16GB
Compute capability: 7.0
Clock rate: 1380000
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 16945512448
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 80
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per multi processor: 2048
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

Device diagnostic output

from device_diagnostic.cu in lecture code

output on A100 (narval)

Name: NVIDIA A100-SXM4-40GB
Compute capability: 8.0
Clock rate: 1410000
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 42285268992
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 108
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per multi processor: 2048
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

Occupancy

● The ratio between the actual number of threads that are resident
during execution and the theoretical maximum number of threads
that could be resident on the GPU

● Broadly speaking, if your occupancy is too low, that indicates
inefficiency in your code and should be remedied. Low
occupancy may indicate:

● not all available CUDA cores being used
● insufficient number of threads for latency hiding (i.e.

compensating for slow global memory access by threads)
● On the other hand, for many codes you should not aim to

achieve occupancy close to 1.0, as code will run sufficiently well
even at lower occupancy as it is bound by other limitations

Occupancy - blocks and warps

● It’s also important to note that there is a similar limit on how
many blocks of threads can be resident at any given time
(maxBlocksPerMultiProcessor). This limit is:

● 32 on P100 / V100 / A100
● 16 on T4

● Your occupancy will be low if your blocks are too small.
● The maximum number of resident warps is 64 for

P100/V100/A100 and 32 for T4.
● It may be more natural to look at warp occupancy i.e. how many

warps are resident relative to the maximum

Reasons for occupancy < 1.0

● Blocks are too small, so that (maximum number of possible
resident blocks) times (block size) is less than the theoretical limit

● (number of threads in block) does not divide the theoretical limit
evenly (eg. block of 1024 threads on GPU with limit 1536)

● Thread blocks consume too much of limited resources (shared
memory and registers) so that not enough blocks can be resident
to achieve full occupancy

● Note: in all this we assumed for simplicity only one kernel is
running at any one time. Multiple concurrent kernels would
reduce occupancy per kernel, though possibly enhance it overall.

Estimating occupancy

● Occupancy can be estimated even before you run your code. This
can often allow the programmer to pick the optimum grid and
block dimensions

● Nvidia used to provide an occupancy calculator in the form of
spreadsheet. It is now deprecated (Nsight Compute ncu-ui should
be used instead)

● The occupancy calculated this way is the upper limit possible for
your code - the actual measured occupancy will be slightly lower,
due to overheads associated with launching threads

Limited multiprocessor resources

● The amount of shared memory in a multiprocessor is limited
● If each block of a kernel uses some shared memory, then the total

amount used by resident blocks at any one time cannot exceed the
total shared memory available

● So, the use of shared memory may reduce the number of resident
blocks and hence the number of resident threads, reducing the
occupancy

● If number of resident blocks is too low (worst case: just one),
then this can put a fundamental limit on occupancy. Thus on
P100 this would mean maximum possible occupancy of 0.5, as
only 1024 threads (block maximum) can be resident at once if
only one block is resident, and that is only half of the theoretical
limit

Registers

● Registers constitute the fastest possible memory located right on
the multiprocessors. All memory data must go through them.

● Unfortunately, the number of (32-bit) registers on a
multiprocessor is limited (64 K on P100, V100, and A100) and
they must be shared by all resident threads.

● So the number of registers each individual thread can get is
limited to total number divided by number of resident threads.
Additionally, there is an upper limit set by Compute Capability
(255 on P100/V100/A100).

Register spills

● What happens when the thread-local data is too big to fit in
registers allocated to a thread?

● The data will then be “spilled” i.e. moved out from register to
local memory

● The “spill” first attempts to store in L1 (24 kB/mp), if that’s not
possible, it stores in L2 (4096 kB = 64 kB/mp), and if that’s not
possible, it stores in global (device) memory

● When thread tries to get back “spilled” data, it will first try to find
it in L1, if it’s not there, it will try L2, and if it’s not there, it will
try global memory

● While accesses to L1 are fast, since is located right on the
multiprocessor in same space as shared memory, accesses to L2
and global memory are slow

Register usage

● Number of registers per thread is determined by compiler -
compiler can output register usage if invoked with

nvcc -Xptxas -v

● Compiler decides how many registers to use. Typically it tries to
keep the number used to a minimum, in order to increase
occupancy

Register usage

● You can try to force the compiler to use fewer registers with the
flag

nvcc -maxrregcount=Nmax

where Nmax is the maximum number of registers. This is a
rather crude way to attempt to optimize as one should usually let
the compiler decide, but it can be used for testing

● There is a better way which gives compiler hints on how many
registers should be used, by adding to kernel definitions the
parameters:

__launch_bounds__(maxThreadsPerBlock,minBlocksPerMultiprocessor)

Register spilling

● The compiler will report how many times it has to spill registers
for each thread, and how much local memory it is using

● The number of registers used will also be reported by the profiler
● Be sure you profile with right architecture to get these numbers to

match with each other
● But just knowing the number of register spills is not sufficient

to indicate just how bad they are for performance, as that will
depend on whether the spill goes only to L1, or further to L2, or
furthest to global memory

● The nature of the spilling can be determined during profiling

Impact of register spilling

● Some small amount of register spilling may not be so bad,
especially if spills only go to fast L1 cache

● Problem arises if significant number of spills go to L2 cache. Not
only is L2 cache slow, it is need for accesses to global memory, so
having it spend a significant amount of time handling spills will
impact the effective bandwidth to global memory

● Also, spilling data and then recovering it requires additional
instructions in compiled code. More instructions means kernel
runs slower. This is only likely to matter in codes which execute
a lot of instructions per thread.

Impact of register spilling on L2 cache

● nvprof profiler can provide very specific counts for many events.
To see all available, execute:

nvprof --query-events

● To count events describing L1 cache access, you can run:

nvprof –events
l1_local_load_hit,l1_local_load_miss,l1_local_store_m
iss,l1_local_store_hit

● The ratio of hits and misses indicates how often data is located in
fast L1 cache, and how often data is not found in L1 cache (and
so has to be looked for in slow L2 cache)

● If you have lots of misses relative to hits, that is bad for
performance

Reducing impact of spilling to L2

● Try increasing register count at compile stage (occupancy
decrease)

● Can try non-caching loads, with -Xptxas -dlcm=cg . This means
global memory accesses will avoid using L1 cache. The tradeoff
is that access to global memory is slower, but there is more L1
cache to handle register spilling.

● (as an aside, non-caching load brings in data in 32-byte chunks,
caching in 128-byte chunks. Sometimes one is better than other.)

The end

	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303

