Online materials

* In the next 2 lectures, we will also be using
online materials hosted here:

gtltps://training.sharcnet.ca/courses/course/view.php?idzl

(You need to use your Alliance credentials
to gain an access to the materials.)

https://training.sharcnet.ca/courses/course/view.php?id=171
https://training.sharcnet.ca/courses/course/view.php?id=171

INTRODUCTION TO GPUS

The appeal of GPGPU
* GPGPU = General Purpose Graphical Processing Units

* “Supercomputing for the masses”
* significant computational horsepower at an attractive price point
* readily accessible hardware

* Scalability

* programs can execute without modification on a run-of-the-mill
PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

* Bright future — the computational capability of GPUs
doubles each year

* more thread processors, faster clocks, faster DRAM, ...
* “GPUs are getting faster, faster”

GPU computing timeline (early history)

GFLOPS

- GBOGL = Quadro 5600 FX SESGL
B GEB0 = GeForce 8200 GTX
300 _: G71 = GeForoe 7500 GTX)
3 G70 = GeFarce 7800 GTX G71
. . . NVAD = GeForce 6800 Ul G70
Before 2003 - Calculations on GPU, using graphics AP] i |l
2003 - Brook “C with streams” e
. . 3 e 3.0 GHz
2005 - Steady increase in CPU clock speed comes to | nvas NV | el Corgd Duo
. . . NWV3 e
a halt, switch to multicore chips to compensate. At the ER —= : , —— |
: : : Jan Jun Apr May Nov Mar Nov
same time, computational power of GPUs increases o b Sns M,

November, 2006 - CUDA released by NVIDIA

November, 2006 - CTM (Close to Metal) from ATT

December 2007 - Succeeded by AMD Stream SDK

December, 2008 - Technical specification for OpenCL1.0 released

April, 2009 - First OpenCL 1.0 GPU drivers released by NVIDIA

August, 2009 - Mac OS X 10.6 Snow Leopard released, with OpenCL 1.0 included
September 2009 - Public release of OpenCL by NVIDIA

December 2009 - AMD release of ATI Stream SDK 2.0 with OpenCL support
March 2010 - CUDA 3.0 released, incorporating OpenCL

May 2011 - CUDA 4.0 released, better multi-GPU support

Mid-2012 - CUDA 5.0

Late-2012 - NVIDIA K20 Kepler cards

Historical performance for Tesla GPUs

1g(SP), Gflops

o
o

o

2.5

4.5

L40]

2020

How to get running on the GPU?

* FEasiest case: the package you are using already has a GPU-
accelerated version. No programming needed.

* Medium case: your program spends most of its time in library
routines which have GPU accelerated versions. Use libraries
that take advantage of GPU acceleration. Small programming
effort required.

* Hard case: You cannot take advantage of the easier two

possibilities, so you must convert some of your code to an
explicit GPU code — OpenACC, CUDA or OpenCL.

GPU-enabled software

A growing number of popular scientific software packages
have now been accelerated for the GPU

Using a GPU accelerated package requires no programming
effort for the user

Acceleration of Molecular Dynamics and Al software has been
particularly successful, with all major packages offering the
GPU acceleration option

Many of these software packages use a combination of GPUs
and CPUs in parallel. The resources used must be carefully
chosen so that the program is running efficiently:.

Performance may depend on problem size.

GPU applications

* The GPU can be utilized in different capacities

* One 1s to use the GPU as a massively parallel coprocessor
for number crunching applications

* upload data and kernel to GPU

* execute kernel

* download results

* CPU and GPU can execute asynchronously

* Some applications use the GPU for both data crunching
and visualization

* CUDA has bindings for OpenGL and Direct3D

Output of device diagnostic program - graham

$ module load cuda
$ nvcc device_diagnostic.cu
$./a.out
found 1 CUDA devices
--- General Information for device 0 ---
Name: Tesla P100-PCIE-12GB
Compute capability: 6.0
Clock rate: 1328500
Device copy overlap: Enabled
Kernel execution timeout : Disabled
--- Memory Information for device 0 ---
Total global mem: 12786073600
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
--- MP Information for device 0 ---
Multiprocessor count: 56
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

Which GPU to use?

Common now to have different generation GPUs within a
cluster. Graham has Pascal P100, Volta V100, Turing T4
GPUs

To submit a job to gpu queue on graham
#!/bin/bash

#SBATCH --gres=gpu:1 # Use P100 (default)
. Oor ..

#SBATCH --gres=gpu:v100:1 # Use V100

. Or ..

#SBATCH --gres=gpu:t4:1 # Use T4

High Bandwidth Memory 2 High Bandwidth Memory 2

¢ 1 H I

Memory Controller Memory Controller Memary Controller Mamory Controller

Lad
o
]

ssssmss=

Sssmss=s § sEss=ss=

LLas
i
i

TP
aa
s

TR
Al
an

[minaion Cacka [l Psdnaiion Cacks. [l deaion Cacha [l wieaion Cacha il Fwincion Cacks |

TEC
Al
o]

RC
ET]
ET

s

Lad
]
]

LLa
i
wu

:
5
E
g
=
&
frr
g

PC
A

[Cacte [l sinaton Cure Jl| ratraton Cura | | [rnanos G i rstraon Cahe J rairacion Cusa J] Fuinacnn Casa Qo Cacks I J | Fainase Care] e Gt [l s Cate W] rsiracton Cota J rmaracion Cacta |

CErrrer e

TRC
Aani

CLEECCLL

bLid
]
]

BC
i
i

e
msssmmmn sEssmmns

TRC
A
A

sEssmsE

[“mirtion Cacra | rairuction Caka [l droston Cacha | iraton Cara]| siraton Cacta | i"-w—ra--. [“rtracton Cactw Jl] Fieacton Cacka ||| wwiruchon Caka] o Cave |

o
Q
N
<

al

<t

e

-

e

>

Z.

|
O
L -

2
)
O

=

<=
)
—
S
o
<
S

)
—
<

T

-

A

O

JOPOIIUG Y Arouwaw SO0 D Aidusigy 0o D Lty OGOy

i i H 1]

z Asowasy yipimpueg ybing z Asowoy yipespueg ybiM

GPU Hardware architecture - NVIDIA Pascal

Dispatch Unit Dispateh Unit Dispatch Unit Dispatch Unit
B RS | B A

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

Core

]

Core Core SFU

Core Core SFU Core

Core Core SFU Core

Core SFU
Core SFU
SFU
SFU Core

SFU Core

Texture / L1 Cache

Hardware basics

* The compute device 1s composed of a number of
multiprocessors, each of which contains a number of
SIMD processors

* Tesla P100 has 56 multiprocessors (each with 64 SP CUDA
cores and 32 DP CUDA cores)

* A multiprocessor can execute K threads in parallel
physically, where K 1s called the warp size

* thread = instance of kernel
* warp size on current hardware 1s 32 threads

* Each multiprocessor contains a large number of 32-bit
registers which are divided among the active threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

