
Online materials

● In the next 2 lectures, we will also be using
online materials hosted here:

https://training.sharcnet.ca/courses/course/view.php?id=1
71

(You need to use your Alliance credentials
to gain an access to the materials.)

https://training.sharcnet.ca/courses/course/view.php?id=171
https://training.sharcnet.ca/courses/course/view.php?id=171

INTRODUCTION TO GPUS

The appeal of GPGPU
● GPGPU = General Purpose Graphical Processing Units

● “Supercomputing for the masses”
● significant computational horsepower at an attractive price point
● readily accessible hardware

● Scalability
● programs can execute without modification on a run-of-the-mill

PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

● Bright future – the computational capability of GPUs
doubles each year

● more thread processors, faster clocks, faster DRAM, …
● “GPUs are getting faster, faster”

● Before 2003 - Calculations on GPU, using graphics API
● 2003 - Brook “C with streams”
● 2005 - Steady increase in CPU clock speed comes to

a halt, switch to multicore chips to compensate. At the
same time, computational power of GPUs increases

● November, 2006 - CUDA released by NVIDIA
● November, 2006 - CTM (Close to Metal) from ATI
● December 2007 - Succeeded by AMD Stream SDK
● December, 2008 - Technical specification for OpenCL1.0 released
● April, 2009 - First OpenCL 1.0 GPU drivers released by NVIDIA
● August, 2009 - Mac OS X 10.6 Snow Leopard released, with OpenCL 1.0 included
● September 2009 - Public release of OpenCL by NVIDIA
● December 2009 - AMD release of ATI Stream SDK 2.0 with OpenCL support
● March 2010 - CUDA 3.0 released, incorporating OpenCL
● May 2011 - CUDA 4.0 released, better multi-GPU support
● Mid-2012 - CUDA 5.0
● Late-2012 - NVIDIA K20 Kepler cards

GPU computing timeline (early history)

Historical performance for Tesla GPUs

How to get running on the GPU?

● Easiest case: the package you are using already has a GPU-
accelerated version. No programming needed.

● Medium case: your program spends most of its time in library
routines which have GPU accelerated versions. Use libraries
that take advantage of GPU acceleration. Small programming
effort required.

● Hard case: You cannot take advantage of the easier two
possibilities, so you must convert some of your code to an
explicit GPU code – OpenACC, CUDA or OpenCL.

GPU-enabled software

• A growing number of popular scientific software packages
have now been accelerated for the GPU

• Using a GPU accelerated package requires no programming
effort for the user

• Acceleration of Molecular Dynamics and AI software has been
particularly successful, with all major packages offering the
GPU acceleration option

• Many of these software packages use a combination of GPUs
and CPUs in parallel. The resources used must be carefully
chosen so that the program is running efficiently.

• Performance may depend on problem size.

GPU applications

● The GPU can be utilized in different capacities

● One is to use the GPU as a massively parallel coprocessor
for number crunching applications

● upload data and kernel to GPU
● execute kernel
● download results
● CPU and GPU can execute asynchronously

● Some applications use the GPU for both data crunching
and visualization

● CUDA has bindings for OpenGL and Direct3D

Output of device diagnostic program - graham

$ module load cuda
$ nvcc device_diagnostic.cu
$./a.out
found 1 CUDA devices
 --- General Information for device 0 ---
Name: Tesla P100-PCIE-12GB
Compute capability: 6.0
Clock rate: 1328500
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 12786073600
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 56
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

Which GPU to use?

Common now to have different generation GPUs within a
cluster. Graham has Pascal P100, Volta V100, Turing T4
GPUs
To submit a job to gpu queue on graham

#!/bin/bash

…

#SBATCH --gres=gpu:1 # Use P100 (default)

… or …

#SBATCH --gres=gpu:v100:1 # Use V100

… or …

#SBATCH --gres=gpu:t4:1 # Use T4

GPU Hardware architecture - NVIDIA Pascal

Each multiprocessor has:

registers (on-chip)

shared memory (16KB on-
chip)

access to fast DRAM
local memory
global memory
constant memory
texture memory

GPU Hardware architecture - NVIDIA Pascal

Each multiprocessor has:

registers (on-chip)

shared memory (16KB on-
chip)

access to fast DRAM
local memory
global memory
constant memory
texture memory

Hardware basics
● The compute device is composed of a number of

multiprocessors, each of which contains a number of
SIMD processors

● Tesla P100 has 56 multiprocessors (each with 64 SP CUDA
cores and 32 DP CUDA cores)

● A multiprocessor can execute K threads in parallel
physically, where K is called the warp size

● thread = instance of kernel
● warp size on current hardware is 32 threads

● Each multiprocessor contains a large number of 32-bit
registers which are divided among the active threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

