
Lecture 5

INTRODUCTION TO CUDA

CUDA

● “Compute Unified Device Architecture

● A platform that exposes NVIDIA GPUs as
general purpose compute devices

● Is CUDA considered GPGPU?
● yes and no

● CUDA can execute on devices with no graphics
output capabilities (the NVIDIA Tesla product
line) – these are not “GPUs”, per se

● however, if you are using CUDA to run some
generic algorithms on your graphics card, you are
indeed performing some General Purpose
computation on your Graphics Processing Unit…

CUDA programming model
● The main CPU is referred to as the host

● The compute device is viewed as a coprocessor capable of
executing a large number of lightweight threads in parallel

● Computation on the device is performed by kernels, functions
executed in parallel on each data element

● Both the host and the device have their own memory
● the host and device cannot directly access each other’s memory, but

data can be transferred using the runtime API

● The host manages all memory allocations on the device, data
transfers, and the invocation of kernels on the device

Stream computing
● A parallel processing model where a computational

kernel is applied to a set of data (a stream)
● the kernel is applied to stream elements in parallel

● GPUs excel at this thanks to a large number of processing
units and a parallel architecture

Beyond stream computing

● Current GPUs offer functionality that goes beyond
mere stream computing

● Shared memory and thread synchronization primitives
eliminate the need for data independence

● Gather and scatter operations allow kernels to read
and write data at arbitrary locations

Language and compiler

● CUDA provides a set of extensions to the C programming
language

● new storage quantifiers, kernel invocation syntax, intrinsics, vector
types, etc.

● CUDA source code saved in .cu files
● host and device code coexist in the same file
● storage qualifiers determine type of code

● Compiled to object files using nvcc compiler
● object files contain executable host and device code

● Can be linked with object files generated by other C/C++
compilers

Thread batching

● To take advantage of the multiple multiprocessors,
kernels are executed as a grid of threaded blocks

● All threads in a thread block are executed by a single
multiprocessor

● The resources of a multiprocessor are divided among
the threads in a block (registers, shared memory, etc.)
● this has several important implications that will be

discussed later

Q

Thread batching: 1D example

Thread batching: 2D example

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Thread batching (cont.)

● At runtime, a thread can determine the block that it
belongs to, the block dimensions, and the thread
index within the block

● These values can be used to compute indices into
input and output arrays

SAXPY

● SAXPY (Scalar Alpha X Plus Y) is a common linear
algebra operation. It is a combination of scalar
multiplication and vector addition:

 y = α ∙ x + y

● x and y are vectors, α is a scalar
● x and y can be arbitrarily large

SAXPY: CPU version

● Here is SAXPY in vanilla C:

● the CPU processes vector components sequentially using a
for loop

● note that vecY is an in-out parameter here

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
 int i;
 for (i = 0; i < n; i++)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

SAXPY: CUDA version

● CUDA kernel function implementing SAXPY

● The __global__ qualifier identifies this function as a kernel
that executes on the device

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

SAXPY: CUDA version (cont.)

● blockIdx, blockDim and threadIdx are built-in
variables that uniquely identify a thread’s position in the
execution environment

● they are used to compute an offset into the data array

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

SAXPY: CUDA version (cont.)

● The host specifies the number of blocks and block size during
kernel invocation:

saxpy_gpu<<<numBlocks, blockSize>>>(y_d, x_d, alpha, n);

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Computing the index

...

...

vecX

vecY

 blockIdx.x = 3
 blockDim.x = 8
 threadIdx.x = 5

Block 0 Block 1 Block 2 Block 3 Block 4

i = 3 * 8 + 5 = 29

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];

Key differences

● No need to explicitly loop over array elements – each element is
processed in a separate thread

● The element index is computed based on block index, block width and
thread index within the block

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
 int i;
 for (i = 0; i < n; i++)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Key differences

● Could avoid testing whether i < n if we knew n is a multiple of block size (e.g. use
padded arrays)

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Host code: overview

The host performs the following operations:
1. initialize device
2. allocate and initialize input arrays in host DRAM
3. allocate memory on device
4. upload input data to device
5. execute kernel on device
6. download results
7. check results
8. clean-up

Q

Host code: initialization

#include <cuda.h> /* CUDA runtime API */
#include <cstdio>

int main(int argc, char *argv[])
{
 float *x_host, *y_host; /* arrays for computation on host*/
 float *x_dev, *y_dev; /* arrays for computation on device */
 float *y_shadow; /* host-side copy of device results */
 int n = 1024*1024;
 float alpha = 0.5f;
 int nerror;
 size_t memsize;
 int i, blockSize, nBlocks;

/* here could add some code to check if GPU device is present */
...

Host code: memory allocation

 ...
 memsize = n * sizeof(float);

 /* allocate arrays on host */
 x_host = (float *)malloc(memsize);
 y_host = (float *)malloc(memsize);
 y_shadow = (float *)malloc(memsize);

 /* allocate arrays on device */
 cudaMalloc((void **) &x_dev, memsize);
 cudaMalloc((void **) &y_dev, memsize);

 /* add checks to catch any errors */
 ...

Host code: upload data

 ...
 /* initialize arrays on host */
 for (i = 0; i < n; i++)
 {
 x_host[i] = rand() / (float)RAND_MAX;
 y_host[i] = rand() / (float)RAND_MAX;
 }

 /* copy arrays to device memory (synchronous) */
 cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
 cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);
 ...

Host code: kernel execution

 ...
 /* set up device execution configuration */
 blockSize = 512;
 nBlocks = n / blockSize + (n % blockSize > 0);

 /* execute kernel (asynchronous!) */
 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
 /* could add check if this succeeded */

 /* execute host version (i.e. baseline reference results) */
 saxpy_cpu(y_host, x_host, alpha, n);
 ...

Host code: download results

 ...
 /* retrieve results from device (synchronous) */
 cudaMemcpy(y_shadow, y_dev, memsize, cudaMemcpyDeviceToHost);

 /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */
 cudaDeviceSynchronize();

 /* check results */
 nerror=0;
 for(i=0; i < n; i++)
 {
 if(y_shadow[i]!=y_host[i]) nerror=nerror+1;
 }
 printf("test comparison shows %d errors\n",nerror);

 ...

Host code: clean-up

 ...
 /* free memory on device*/
 cudaFree(x_dev);
 cudaFree(y_dev);

 /* free memory on host */
 free(x_host);
 free(y_host);
 free(y_shadow);

 return 0;
} /* main */

Checking for errors in CUDA calls

 ...
 /* check CUDA API function call for possible error */
 if (error = cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice))
 {
 printf ("Error %d\n", error);
 exit (error);
 }

 ...
 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
 /* make sure kernel has completed*/
 cudaDeviceSynchronize();
 /* check for any error generated by kernel call*/
 if(error = cudaGetLastError())
 {
 printf ("Error detected after kernel %d\n", error);
 exit (error);
 }

● CUDA is rich with opportunities for creating hard-to-track-
down bugs.

● Hence it is highly desirable to implement custom error
handling from the get-go.

● One convenient implementation: header file cuda_errors.h
(provided with the exercises).

Error handling

#include "../cuda_errors.h"
…
int main (int argc,char **argv)
{
 Is_GPU_present(); // Tests for GPU presence; exits if none found
 …
 ERR(cudaDeviceSynchronize()) // All error-returning CUDA functions
 // should be wrapped like this

 // (No semi-column!)

● Dynamic global device arrays
// Host code:

// Host array allocation (usually cudaHostAlloc() is a better way):
size_t size = N * sizeof(float);
float* h_A = (float*) malloc (size);

// Device array allocation:
float* d_A;
cudaMalloc(&d_A, size);

// Host to device copying:
cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);

// Device to host copying:
cudaMemcpy (h_A, d_A, size, cudaMemcpyDeviceToHost);

Q

// Device code (outside of any function):
__device__ float d_A[10][50];

// Host code (outside of any function):
float h_A[10][50];

// Host to device copying:
cudaMemcpyToSymbol (d_A, &h_A, sizeof(h_A), 0, cudaMemcpyHostToDevice);

// Device to host copying:
cudaMemcpyFromSymbol (&h_A, d_A, sizeof(h_A), 0, cudaMemcpyDeviceToHost);

● Static global device arrays

Replaces two function calls:
cudaGetSymbolAddress();
cudaMemcpy();

● Device functions
// Device code

// Function:
__device__ double my_function (double x)
{
double f;
...
return f;
}

// Kernel:
__global__ void my_kernel ();
{
double f1, x1;
f1 = my_function (x1);
}

Compiling

● nvcc -arch=sm_60 -O2 program.cu -o program.x
● -arch=sm_60 means code is targeted at Compute

Capability 6.0 architecture (on graham and cedar)
● -O2 optimizes the CPU portion of the program
● There are no flags to optimize CUDA code
● Various fine tuning switches possible
● Cluster have module installed to provide CUDA

environment. See what it does by executing:
module show cuda

● add -lcublas to link with CUBLAS libraries

Be aware of memory bandwidth bottlenecks

● The connection between CPU and GPU has low
bandwidth

● need to minimize data transfers
● important to use asynchronous transfers if possible (overlap

computation and transfer)
● good idea to test bandwidth (with tool from SDK)

128 GB
 RAM

CPU

12 GB
RAM

GPU
~5.3
TF

~100
GB/s

~380
GB/s

PCI 3/4/5:
~16/32/64
GB/s

Using pinned memory

● The transfer between host and device is very slow compared to
access to memory within either the CPU or the GPU

● One possibility to speed it up relatively easily is to use pinned
memory on the host for memory allocation of array that will
be transferred to the GPU

● Remember to free this memory correctly

cudaMallocHost((void **) &a_host, memsize_input)

…

cudaFree(a_host);

cudaMallocHost

● Will allocate CPU memory in a special way which makes it
easier for GPU to access

● If both arrays were created with cudaMalloc call, one can use
cudaMemcpyDefault keyword in cudaMemcpy, CUDA will
figure out where the data is actually located

cudaMallocHost((void **) &x_host, memsize_input);
cudaMalloc((void **) &x_dev, memsize);

cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyDefault);

...

cudaFree(a_host);

Unified Address Space

● Presents CPU and GPU memory as a single space.
● This does not actually remove the penalty for accessing CPU

memory from GPU, and the programmer must be aware of
this.

● Capability evolves, you have to check which generation of
card you have to see if these features are supported.

● If your Compute Capability is 2.0 or above, the kernel can
access data allocated with cudaMallocHost.

● Sometimes using CPU data in kernel makes the code faster,
due to automatic overlapping of computation and memory
transfer (of course, the same or better performance can be
achieved by explicit asynchronous programming).

Timing GPU accelerated codes

● Presents specific difficulties because the CPU and GPU
can be computing independently in parallel, i.e.
asynchronously.

● On the cpu can use standard function gettimeofday(...)
(microsecond precision) and process the result.

● If trying to time events on GPU with this function, must
ensure synchronization.

● This can be done with a call to cudaDeviceSynchronize().
● Memory copies to/from device are synchronized, so can

be used for timing.
● Timing GPU kernels on the CPU may be insufficiently

accurate.

Q

Using mechanisms on the GPU for timing

● This is highly accurate on the GPU side, and very useful
for optimizing individual kernels.

...
 cudaEvent_t start, stop;
 float kernel_timer;
...
 cudaEventCreate(&start);
 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);
 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&kernel_timer, start, stop);
 printf("Test Kernel took %f ms\n",kernel_timer);
 cudaEventDestroy(start);
 cudaEventDestroy(stop);

Difficulties with timing properly

● There is overhead to “spinning up” a GPU.
● The very first function call which involves the device

may be quite slow as it incorporates the initialization of
the GPU.

● The first memory transfer to device is likely to be slower
than subsequent ones. The first kernel execution will
likely be slower. This will be especially significant if you
are trying to time events of short duration.

● A good strategy is to have a “warmup” run: execute your
kernel a few times and only then start timing.

● To get really good timing, running your kernels
repeatedly and obtaining average runtime is essential.

Profiling CUDA - nvprof

● Fortunately, there is a good profiler that comes with
CUDA (works only up to P100; not for V100 and newer).

● It will work on any compiled CUDA executable

$ nvcc test.cu -o test.x
$ nvprof ./test.x

● By default it will only time functions involving the GPU.
● To time CPU-only codes, add flag

“--cpu-profiling on” to the nvprof command.

Exercise - convert SAXPY code to use
cudaMallocHost

● Time both the original and converted code
● Estimate what the performance gain is

	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

