
Lecture 6



CUDA  BASICS



Storage class qualifiers

__global__ Device kernels callable from host

__device__ Device functions (only callable from device)

__host__ Host functions (only callable from host)

__shared__ Memory shared by a block of threads executing on a 
multiprocessor.

__constant__ Special memory for constants (cached)

Functions

Data



CUDA data types
● C primitives:

● char, int, float, double, …

● Short vectors:
● int2, int3, int4, uchar2, uchar4, float2, float3, float4, …
● no built-in vector math (although a utility header, cutil_math.h, defines some 

common operations)

● Special type used to represent dimensions
● dim3

● Support for user-defined structures, e.g.:
 struct particle
 {
     float3 position, velocity, acceleration;
     float mass;
 };



Library functions available to kernels

● Math library functions:
● sin, cos, tan, sqrt, pow, log, …
● sinf, cosf, tanf, sqrtf, powf, logf, …

● ISA intrinsics
● __sinf, __cosf, __tanf, __powf, __logf, …
● __mul24, __umul24, …

● Intrinsic versions of math functions are faster but less 
precise



Built-in kernel variables

dim3 gridDim

● number of blocks in grid

dim3 blockDim

● number of threads per block

dim3 blockIdx

● number of current block within grid

dim3 threadIdx

● index of current thread within block



CUDA kernels: limitations

● No variable argument lists

● No dynamic memory allocation*
● It is possible since Kepler generation, but only when Dynamic 

Parallelism is enabled (it’s off by default)

● No pointers-to-functions



Launching kernels

● Launchable kernels must be declared as ‘__global__ void’

__global__ void myKernel(paramList);

● Kernel calls must specify device execution environment
● grid definition – number of blocks in grid
● block definition – number of threads per block
● optionally, may specify amount of allocatable shared memory per block (more 

on that later)

● Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramList);



● Kernels (one block)
// Kernel definition
__global__ void VecAdd (float* d_A, float* d_B, float* 
d_C)
{
int i = threadIdx.x;
d_C[i] = d_A[i] + d_B[i];
}

int main()
{
...

// Kernel invocation with N threads
VecAdd <<<1, N>>> (d_A, d_B, d_C);

...
}

Pointers to 
device 
addresses!



● Kernels (multi-block)
// Kernel definition
__global__ void VecAdd (float* d_A, float* d_B, float* 
d_C)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
d_C[i] = d_A[i] + d_B[i];
}

int main()
{
...

// M blocks with N threads each:
VecAdd <<<M, N>>> (d_A, d_B, d_C);
...
}



Thread addressing
● Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramlist);

● GridDef and BlockDef can be specified as dim3 
objects

● grids can be 1D, 2D or 3D
● blocks can be 1D, 2D or 3D

● This makes it easy to set up different memory addressing 
for multi-dimensional data.

Q



Thread addressing (cont.)
● 1D addressing example: 100 blocks with 256 threads per block:

 dim3 gridDef1(100,1,1);
 dim3 blockDef1(256,1,1);
 kernel1<<<gridDef1, blockDef1>>>(paramList);

 

 

● 2D addressing example: 10x10 blocks with 16x16 threads per block:

 dim3 gridDef2(10,10,1);
 dim3 blockDef2(16,16,1);
 kernel2<<<gridDef2, blockDef2>>>(paramList);

 

 

● Both examples launch the same number of threads, but block and thread 
indexing is different

● kernel1 uses blockIdx.x, blockDim.x and threadIdx.x
● kernel2 uses blockIdx.[xy], blockDim.[xy], threadIdx.[xy]



Thread addressing (cont.)

● One-dimensional addressing example:

● Two-dimensional addressing example (dynamic arrays):

__global__ void kernel1(float *idata, float *odata)
{
   int i;
   i = blockIdx.x * blockDim.x + threadIdx.x;
   odata[i] = func(idata[i]);
}
  

__global__ void kernel2(float *idata, float *odata, int pitch)
{
   int x, y, i;
   x = blockIdx.x * blockDim.x + threadIdx.x;
   y = blockIdx.y * blockDim.y + threadIdx.y;
   i = y * pitch + x;
   odata[i] = func(idata[i]);
}
  



Thread addressing (cont.)

● Two-dimensional addressing example (static arrays):

__global__ void kernel3()
{
   int x, y, i;
   x = blockIdx.x * blockDim.x + threadIdx.x;
   y = blockIdx.y * blockDim.y + threadIdx.y;
   odata[y][x] = func(idata[y][x]);
}
  



Thread addressing (cont.)
__global__ void kernel1(float *idata, float *odata)
{
   int i;
   i = blockIdx.x * blockDim.x + threadIdx.x;
   odata[i] = func(idata[i]);
}
...
dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);
  



Thread addressing (cont.)
__global__ void kernel2(float *idata, float *odata, int pitch)
{
   int x, y, i;
   x = blockIdx.x * blockDim.x + threadIdx.x;
   y = blockIdx.y * blockDim.y + threadIdx.y;
   i = y * pitch + x;
   odata[i] = func(idata[i]);
}
...
dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);
kernel2<<<gridDef2, blockDef2>>>(paramList);
  

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)



Exercise: compute Julia set on GPU

You have been provided with a code that runs on the 
CPU.  It has a .cu extension and should be compiled 
with nvcc.

Julia set is defined as the set of points in the complex 
plane for which the sequence generated via repeated 
iterations does not diverge.

Q



Julia set (DIM=1000, scaling=1.5)

Visualized with gnuplot: 

$ module load gnuplot
$ gnuplot
gnuplot> plot 'julia.dat' with points pointsize 0.1



Julia set (DIM=2000, scaling=1.5)



Julia set (DIM=2000, scaling=0.5)



Shared memory

– Much faster than global (device) memory
– Shared across the threads in a single block
– The amount is very limited, so it is often a limiting 

factor for CUDA optimization
– Typically statically defined, like in the following 

example:

// Device code

__shared__  double  A_loc[BLOCK_SIZE];



Shared memory (cont.)

● Shared memory can also be dynamically 
allocated, via an optional third argument inside the 
kernels triple angular brackets.

// Device code

__global__ myKernel ()
{
  extern __shared__  double  A[];
}

// Host code

MyKernel <<< N, M, SM_bytes >>> ();



Execution synchronization on device

● Can only be done within a single block.
● As a result, only up to 1024 threads can be 

synchronized.
● Used when a data dependence exists between 

different parts of a kernel.

// Device code

__syncthreads();



Execution synchronization on device (cont)

● Handling a data dependence between different 
parts of a kernel

// Kernel code
__shared__ float A[BLOCK_SIZE];

// Initializing all threads in a block:
A[threadIdx.x] = 1;

// This is needed as the previous section is executed by sequential groups of
// 32 (warp size) threads, in an undetermined order
  __syncthreads();

// A primitive example of a data dependence:
if (threadIdx.x == 0)

for (i=0; i<BLOCK_SIZE; i++)
sum = sum + A[i];



Kernel execution model

// Kernel code
Void MyKernel()
{

 Line1;
 Line2;
 Line3;
 …

 __syncthreads();

 Line10;
 Line11;
 Line12;
 …

 __syncthreads();

 Line20;
 Line21;
 Line22;
 …

 return;
}

Step 1: all warps in the block of threads execute 
             this region sequentially, one warp at a time

Step 2: all warps in the block of threads execute 
             this region sequentially, one warp at a time

Step 3: all warps in the block of threads execute 
             this region sequentially, one warp at a time



Synchronization between host and device (cont)

● Kernel calls and some CUDA memory 
operations are executed asynchronously on 
host

● But in some cases you need host-device 
synchronization, e.g. before using a host timer, 
for profiling:

// Host code

CudaDeviceSynchronize ();



● Example: when profiling the code

// Host code
struct timeval  tdr0, tdr1;

gettimeofday (&tdr0, NULL);

my_kernel <<<M, N>>> ();

// Without synchronization, tdr1-tdr0 will not measure time spent inside the kernel
// (it will be much smaller):
CudaDeviceSynchronize ();
gettimeofday (&tdr1, NULL);

Synchronization between host and device (cont)



Reductions in CUDA

● Reductions: min/max, average, sum, ...
● Can be a significant bottleneck for the 

performance, because it breaks pure data 
parallelism.

● There is no perfect way to do reductions in CUDA. 
The two commonly used approaches (each with its 
own set of constraints) are
– Binary reductions
– Atomic reductions Q



Binary reductions

● The most universal type of reductions (e.g., the 
only way to do floating point min or max)

● Even when using single precision (which is faster 
than double precision), binary summation will be 
more accurate than atomic summation, because it 
employs more accurate pairwise summation.

● Usually the more efficient way to do reductions: 
time scales as log2(N) as long as there are 
enough of free GPU cores.



Binary reductions (cont)



● But: typically relies on (very limited) shared memory – placing 
constraints on how many reductions per kernel one can do

● Relies on thread synchronization, which can only be done within a 
single block – places constraints on how many threads can 
participate in a binary reduction (maximum 1024)

● For a large number of data elements (>1024), this leads to the 
need to do multi-level binary reductions, with storing the 
intermediate data in device memory; this can reduce the 
performance

● Can be less efficient for small number of data elements (<64)

● Significantly complicates the code

Binary reductions (cont)



● Examples: binary summation with the number of elements 
being a power of two. The result is in sum[0].

__shared__ double  sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x;  // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1)
{
  int halfPoint = nTotalThreads / 2;  // Number of active threads
 
  if (threadIdx.x < halfPoint)
  {
    int thread2 = threadIdx.x + halfPoint; // the second element index
    sum[threadIdx.x] += sum[thread2];  // Pairwise summation
  }
  __syncthreads();
  nTotalThreads = halfPoint;  // Reducing the binary tree size by two
}
// The result is in sum[0]



● Examples: binary min/max with the number of 
elements being a power of two.

__shared__ double  min[BLOCK_SIZE];
...
__syncthreads(); // To make sure all min[] elements were initialized 
int nTotalThreads = blockDim.x;
 
while(nTotalThreads > 1)
{
  int halfPoint = nTotalThreads / 2;  // Number of active threads
  if (threadIdx.x < halfPoint)  {
    int thread2 = threadIdx.x + halfPoint; // the second element index
    double temp = min[thread2];
    if (temp < min[threadIdx.x]) 
       min[threadIdx.x] = temp;
    }
  __syncthreads();
  nTotalThreads = halfPoint;  // Reducing the binary tree size by two

// The result is in min[0]
}



● Examples: multiple binary reductions.

__shared__ double  min[BLOCK_SIZE], sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all array elements were initialized
int nTotalThreads = blockDim.x;
 
while(nTotalThreads > 1)
{
  int halfPoint = nTotalThreads / 2;  // Number of active threads
  if (threadIdx.x < halfPoint)  {
    int thread2 = threadIdx.x + halfPoint;
    sum[threadIdx.x] += sum[thread2];  // First reduction

    double temp = min[thread2];
    if (temp < min[threadIdx.x]) 
       min[threadIdx.x] = temp;   // Second reduction
    }
  __syncthreads();
  nTotalThreads = halfPoint;  // Reducing the binary tree size by two
}

// The result is in sum[0], min[0]



● Examples: two-level binary reduction

// Host code
#define  BSIZE  1024  // Always use a power of two; can be 32...1024
// Total number of elements to process: 1024 < Ntotal < 1024^2

int Nblocks = (Ntotal + BSIZE - 1) / BSIZE;

// Low level (the results should be stored in global device memory):
x_prereduce <<< Nblocks, BSIZE >>> ();

// High level (will read the input from global device memory):
x_reduce <<< 1, Nblocks >>> ();



● Examples: binary reduction with an arbitrary number of 
elements (BLOCK_SIZE).

__shared__ double  sum[BLOCK_SIZE];
 ...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim_2; // Total number of threads, rounded up to the next power of two
 
while(nTotalThreads > 1)
{
  int halfPoint = nTotalThreads / 2; // Number of active threads

  if (threadIdx.x < halfPoint)
  {
    int thread2 = threadIdx.x + halfPoint;
    if (thread2 < blockDim.x)  // Skipping the fictitious threads blockDim.x ... blockDim_2-1
          sum[threadIdx.x] += sum[thread2];  // Pairwise summation
  }
  __syncthreads();
  nTotalThreads = halfPoint;  // Reducing the binary tree size by two
}
// The result is in sum[0]



● Continued: binary reduction with an arbitrary 
number of elements.

● You will have to compute blockDim_2 (blockDim.x rounded 
up to the next power of two), either on device or on host 
(and then copy it to device). One could use the following 
function to compute blockDim_2, valid for 32-bit integers: 

int NearestPowerOf2 (int n)
{
  if (!n) return n;  // (0 == 2^0)
 
  int x = 1;
  while(x < n)
    {
      x <<= 1;
    }
  return x;
} 



Atomic reductions

● Very simple code
– Almost no change compared to the serial code
– A single line code: much better for code 

development and maintenance
– No need for multiple intermediate kernels (saves on 

overheads related to multiple kernel launches)
– Requires no code changes when dealing with any 

number of data elements – from 2 to millions
● Can be more efficient when the number of data 

elements is small (<64)

Q



● But: atomic operations are serialized, which usually means 
much worse performance

● No atomic functionality for some basic reductions (like 
floating point min / max)

● A commonly employed good compromise is to use binary 
reduction at the lower level, and then use atomic reduction at 
the higher level.

● All the above means that to find the right way to carry out a 
reduction in CUDA, with the right balance between code 
readability, efficiency, and accuracy, one often has to try 
different approaches, and choose the most efficient. 

Atomic reductions (cont)



● Examples: atomic reductions.

● Some other atomic operations:
– atomicExch, atomicAnd, atomicOr

// In global device memory:
__device__  float xsum;
__device__  int isum, imax;

// In a kernel:
float x;
int i;
__shared__  imin;
...
atomicAdd (&xsum, x);
atomicAdd (&isum, i);
atomicMax (&imax, i);
atomicMin (&imin, i);



● Binary at the lower level, atomic at the higher level
__shared__ float  sum[BLOCK_SIZE];
// Initialize sum[] array here
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x;  // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1){
  int halfPoint = nTotalThreads / 2; // Number of active threads
 
  if (threadIdx.x < halfPoint)
  {
    int thread2 = threadIdx.x + halfPoint; // the second element index
    sum[threadIdx.x] += sum[thread2];  // Pairwise summation
  }
  __syncthreads();
  nTotalThreads = halfPoint;  // Reducing the binary tree size by two
}
if (threadIdx.x == 0)

atomicAdd (&xsum, sum[0]); // Atomic reduction



Hands on exercise

● Reduction: implementing hybrid reduction scheme

Q


	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

