
Lecture 7

OPTIMIZATION STRATEGIES

CUDA code optimization

● Converting a code to CUDA can be considered an
advanced exercise in code optimization

● You should start profiling CUDA code from the very
beginning, from the first kernel you write

● You should start the conversion from the most CPU-
intensive parts of the code

● You often have to play with different approaches until
you get the best performance in a given part of the
code

● We will consider a few common optimization
strategies

Kernels: how many?

● You have to start a new kernel every time there is a
global (across multiple blocks) data dependence
– Example: two-level binary reduction shown previously
– Another example: you need a separate kernel to initialize

variables used to store an atomic reduction result:

// In global device memory:
__device__ double d_sum;

// On host:
// Initializing d_sum to zero:
init_sum <<<1, 1>>> ();

// Here d_sum is used to store atomic summation result from multiple
blocks
compute_sum <<<Nblocks, BSIZE>>> ();

Kernels: how many? (cont.)

● You can try to split a kernel if it uses too many registers
(register pressure)

– It happens e.g. if the kernel has many complex algebraic
expressions using lots of parameters

– Register pressure can be identified when profiling the code
with NVIDIA CUDA profilers (e.g., it will manifest itself via low
occupancy number)

– It is very non-intuitive: sometimes the register pressure can be
decreased by making the kernel longer (presumably, because
sometimes adding more lines of code gives CUDA compiler
more flexibility to re-arrange register usage across the kernel)

CUDA code optimization

● Kernels: how many?
● You should end a kernel when there is a

device-host dependence
– Example:

// On host:

kernel1 <<<N, M>>> (d_A);
cudaMemcpy (h_A, d_A, size, cudaMemcpyDeviceToHost);

// Host code dependent on kernel1 results:
library_function1 ();

Kernels: how many? (cont.)

● Otherwise, you should try to make kernels as large
as possible
– Because each kernel launch has an overhead, in part

because one has to store and then read the intermediate
results from a slow (device or host) memory

– You shouldn't worry that the kernel code won't fit on
GPU: modern GPUs have large a limit of 512 million
instructions per kernel

– To improve readability, parts of the kernel can be
modularized into device functions

What should be computed on GPU?

● You start with the obvious targets: CPU-intensive data-parallel
parts of the code

● What should you do with the leftover code (not data-parallel and/or
not very CPU-intensive)?

– If not a lot of data needs to be copied from device to host and
vice versa for the leftover code, it may be beneficial to leave
these parts of the code on host.

– If on the other hand the leftover code needs an access to a lot
of intermediate results from CUDA kernels, then it may be
more efficient to move everything to the GPU – even purely
serial (single-thread) computations. This way, no intermediate
(scratch) data will ever need to leave GPU.

Q

Moving leftover code to GPU

// On host:

// First chunk of data-parallel code goes here:
kernel1 <<<N, M>>> ();

// Copying kernel1 results to host:
cudaMemcpy (h_A, d_A, size,
 cudaMemcpyDeviceToHost);

// Non-parallelizable part of the code:
serial_computation (h_A, h_B);

// Copying serial_computation results to device:
cudaMemcpy (d_B, h_B,size,
 cudaMemcpyHostToDevice);

// Second chunk of data parallel code which
depends on d_B:
kernel2 <<<N, M>>>

// On host:

// First chunk of data-parallel code
goes here:
kernel1 <<<N, M>>> ();

// Now it is executed on GPU, serially:
serial_computation_kernel <<<1, 1>>> ();

// Second chunk of data parallel code
which depends on d_B:
kernel2 <<<N, M>>>

Memory spaces on GPU

Optimizing memory access on GPU

● Registers <-> “Local” memory are not under your
direct control, making it harder to optimize

● Global and shared memory, on the other hand, are
under direct programmer's control, so they are
easier to optimize.

● Main strategies for optimization:
– Global memory: coalescence of memory accesses
– Shared memory: minimizing bank conflicts

Exploiting fully the parallelism of the problem

● A GPU has a large number of cores, to take full advantage
of the GPU they must all be given something to do.

● It is hence beneficial to have the work to be done
decomposed among a large number of threads.

● GPU architecture can easily handle large numbers of threads
without overhead (unlike CPU)

● for this to work optimally threads belonging to the same block
must be executing similar (ideally exactly the same) instructions,
operating on different data

● this means one must avoid divergent branches within a block
● size of block should be multiple of 32 (warp size), must not

exceed the maximum for device

Important caveat: is more threads always useful?

● Each thread consumes some resources, mainly registers
and shared memory. Given that these resources are
limited, the number of threads “alive” at any one time (i.e.
actively running on the hardware) is also limited.

● Hence the benefit of adding more threads tends to plateau.
● one can optimize around the resources needed, especially

registers, to improve performance

Avoiding transfers between GPU and CPU

● That is a huge bottleneck, but unavoidable since GPU has
limited capabilities, most significantly no access to file
system (note: AMD’s APU Fusion avoids this problem)

● CPU essential because GPU cannot be independent. All
kernels must be launched from the CPU which is the
overall controller

● changed on Kepler architecture released in late 2012 on which
kernels can launch other kernels

● Using pinned memory helps a bit
● Using asynchronous transfers (overlapping computation

and transfer) also helps

Q

Optimizing access to global memory
● A GPU has a large number of cores with great

computational power, but they must be “fed” with data
from global memory

● If too little computation done on core relative to memory
transfer, then it becomes the bottleneck.

● most of the time is spent moving data in memory rather than
number crunching

● for many problems this is unavoidable

● Utilizing the memory architecture effectively tends to be
the biggest challenge in CUDA-fying algorithms

GPU memory is high bandwidth/high latency

● A GPU has potentially high bandwidth for data transfer
from global memory to cores. However, the latency for
this transfer for any individual thread is also high
(hundreds of cycles)

● Using many threads, latency can be overcome by hiding it
among many threads.

● group of threads requests some memory, while it is waiting for it
to arrive, another group is computing

● the more threads you have, the better this works
● The pattern of global memory access is also very

important, as cache size of the GPU is very limited.

Global memory access is fast when coalesced

● It is best for adjacent threads belonging to the same warp
(group of 32 threads) to be accessing locations adjacent in
memory (or as close as possible)

● Good access pattern: thread i accesses global memory
array member a[i]

● Inferior access pattern: thread i accesses global memory
array member as a[i*nstride] where nstride>1

● Clearly, random access of memory is a particularly bad
paradigm on the GPU

Memory bandwidth decreases as stride increases

It is best for adjacent threads belonging to the same warp
(group of 32 threads) to be accessing locations adjacent in
memory (or as close as possible)
Good access pattern: thread i accesses global memory
array member a[i]
Inferior access pattern: thread i accesses global memory
array member as a[i*nstride] where nstride >1
Clearly, random access of memory is a particularly bad
paradigm on the GPU

Global memory: coalescence of memory accesses

● Global memory loads and stores by threads of a warp are coalesced by
the device into as few as one transaction when certain access
requirements are met

● By default, all accesses are cached through L1 as 128-byte lines

● Coalescence is the best when accessing flat arrays (unit stride)
consecutively.

Global memory: coalescence of memory accesses (2)

– Misaligned access degrades the performance, but not
dramatically

Global memory: coalescence of memory accesses (3)

– Any kind of non-sequential memory access (not just
stride>1) is bad*

Global memory: coalescence of memory accesses (4)

– The strategy with multi-D arrays is to either
● flatten them yourself (the only way if >3 dimensions), or
● use special CUDA functions cudaMallocPitch() and

cudaMalloc3D() to allocate properly aligned 2D and 3D
arrays, respectively, or

● at the very least, convert row-major arrays to column-major
ones

Q

2D arrays

// Using cudaMallocPitch, 2D case
// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;

cudaMallocPitch (&devPtr, &pitch, width * sizeof(float), height);
MyKernel <<<64, 64>>> (devPtr, pitch);

// Device code
__global__ void MyKernel (float* devPtr, size_t pitch)
{
 int ix = blockIdx.x;
 int iy = threadIdx.x;
 float* row = (float*)((char*)devPtr + ix * pitch);
 float element = row[iy]; // Coalesced access
}

Multi-D arrays

// Flattened, good for any D; individual dimensions can be arbitrary
// On device:
#define N_TOTAL N1*N2*N3*N4
__device__ float d_A[N_TOTAL];
__global__ void mykernel (){
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i < N_TOTAL) {
 d_A[i] = ...
 // You compute individual indexes only if they are needed for the
computations:
 int i1 = i % N1; int m = i / N1;
 int i2 = m % N2; m = m / N2;
 int i3 = m % N3;
 int i4 = m / N3;
 }
}
// On host:
int Nblocks = (N_TOTAL + BLOCK_SIZE - 1) / BLOCK_SIZE;
mykernel <<<Nblocks, BLOCK_SIZE>>> ();

Multi-D arrays (2)

● If you have to use non-flattened static multi-D arrays, transpose
them to “column-major” if they are “row-major”:

// Row-major (non coalesced)

float A[N][30];
...
A[threadIdx.x][0]=...;
A[threadIdx.x][1]=...;

// Column-major (coalesced)

float A[30][N];
...
A[0][threadIdx.x]=...;
A[1][threadIdx.x]=...;

Structures of arrays

● For the same reason, use structures of arrays instead of arrays of
structures (the latter results in a memory access with a large stride)

// Array of structures behaves like row major accesses (non coalesced)
struct Point { double x; double y; double z; double w; } A[N];
...
A[threadIdx.x].x = ...

// Structure of arrays behaves like column major accesses (coalesced)
struct PointList { double *x; double *y; double *z; double *w; } A;
...
A.x[threadIdx.x] = ...

Shared memory

● Each multiprocessor has some fast
on-chip shared memory

● Threads within a thread block can
communicate using the shared
memory

● Each thread in a thread block has
R/W access to all of the shared
memory allocated to a block

● Threads can synchronize using the
intrinsic

 __syncthreads();

Using shared memory to optimize access to global memory

– Shared memory is much faster than global memory; also,
access to shared memory doesn't need to be coalesced

– Shared memory can be viewed as a “user-managed
cache for global memory”

● One can store in shared memory frequently used global data
● One can use shared memory to make reading data from global

memory coalesced

Linear algebra example

// Straightforward and inefficient way

__global__ void simpleMultiply(float *a,
float* b, float *c, int N)
 {
 int row = blockIdx.y * blockDim.y +
 threadIdx.y;
 int col = blockIdx.x * blockDim.x +
 threadIdx.x;
 float sum = 0.0f;
 for (int i = 0; i < TILE_DIM; i++) {
 sum += a[row*TILE_DIM+i] * b[i*N+col];
 }
 c[row*N+col] = sum;
 }

// Using shared memory to both store frequently used global
// data and to make the access coalesced – 2.3x faster on
K20

__global__ void sharedABMultiply(float *a, float* b, float
*c, int N)
 {
 __shared__ float aTile[TILE_DIM][TILE_DIM],
 bTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 aTile[threadIdx.y][threadIdx.x] =
 a[row*TILE_DIM+threadIdx.x];
 bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];
 __syncthreads();
 for (int i = 0; i < TILE_DIM; i++) {
 sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];
 }
 c[row*N+col] = sum;
 }

For some problems coalesced access is hard

● Example: matrix transpose
● A bandwidth-limited problem that is dominated by

memory access

The naive matrix tranpose

__global__ void transpose_naive(float *odata, float *idata, int width,int height)
{

int xIndex, yIndex, index_in, index_out;
xIndex = blockDim.x * blockIdx.x + threadIdx.x;
yIndex = blockDim.y * blockIdx.y + threadIdx.y;

if (xIndex < width && yIndex < height)
{

index_in = xIndex + width * yIndex;
index_out = yIndex + height * xIndex;
odata[index_out] = idata[index_in];

}
}

Naive matrix transpose (cont.)

Can this problem be a avoided?
● Yes, by using a special memory which does not have a

penalty when accessed in a non-coalesced way

● On the GPU this is the shared memory

● Shared memory accesses are faster than even coalesced
global memory accesses. If accessing same data multiple
times, try to put it in shared memory.

● Unfortunately, it is very small (64 KB)

● Must be managed by the programmer

Using shared memory
● To coalesce the writes, we will partition the matrix into

32x32 tiles, each processed by a different thread block

● A thread block will temporarily stage its tile in shared
memory by copying ti from the input matrix using
coalesced reads

● Each tile is then transposed as it is written out to its
proper location in the output matrix

● The main difference here is that the tile is written out
using coalesced writes

Optimized matrix transpose

Optimized matrix transpose (cont.)

__global__ void transpose(float *odata, float *idata,
 int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM];
 unsigned int xIndex, yIndex, index_in, index_out;

 /* read the matrix tile into shared memory */
 xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 if ((xIndex < width) && (yIndex < height))
 {
 index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];
 }
 __syncthreads();
 /* write the transposed matrix tile to global memory */
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 if ((xIndex < height) && (yIndex < width))
 {
 index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
 }
}

Optimized matrix transpose (cont.)

Optimized matrix transpose (cont.)

One additional complication: bank conflicts

● Not a big concern but something to keep in mind
● Shared memory bank conflicts occur when the tile in

shared memory is accessed column-wise
● Illustration of the need to really know the hardware

when coding for GPU
● Bank conflicts matter only in highly optimised code

where other sources of inefficiency have been
eliminated

Q

Shared memory banks

● To facilitate high memory bandwidth, the shared memory
on each multiprocessor is organized into equally-sized
banks which can be accessed simultaneously

● However, if more than one thread tries to access the same
bank, the accesses must be serialized, causing delays

● this situation is called a bank conflict

● The banks are organized such that consecutive 32-bit
words are assigned to consecutive banks

Shared memory banks (cont.)
● There are 32 banks, thus:

bank# = (index in floating point array) % 32

● The number of shared memory banks is equal to warp size

Bank conflict solution

● In the matrix transpose example, bank conflicts occur when
the shared memory is accessed column-wise as the tile is being
written

● The threads in each warp access addresses which are offset
from each other by BLOCK_DIM elements (with
BLOCK_DIM = 32)

● Given 32 shared memory banks, that means that all accesses
hit the same bank!

Bank conflict solution

● The solution is surprisingly simple – instead of allocating a
BLOCK_DIM x BLOCK_DIM shared memory tile, we
allocate a BLOCK_DIM x (BLOCK_DIM+1) tile

● The extra padding breaks the pattern and forces concurrent
threads to access different banks of shared memory

● the columns are no longer aligned on 32-word offsets
● no additional changes to the device code are needed

Optimized matrix transpose (2)
__global__ void transpose(float *odata, float *idata,
 int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM + 1];
 unsigned int xIndex, yIndex, index_in, index_out;

 /* read the matrix tile into shared memory */
 xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 if ((xIndex < width) && (yIndex < height))
 {
 index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];
 }
 __syncthreads();
 /* write the transposed matrix tile to global memory */
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 if ((xIndex < height) && (yIndex < width))
 {
 index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
 }
}

Performance

● Tesla P100 GPU on graham, transpose of 8192x8192
matrix of SP floats

● Averaged over 100 runs:

● timings don’t include data transfers!!!

Size time (ms) Speedup

simple memory copy 1.30 —

 simple memory copy +shared 1.32 —

naive 7.51 x 1.0

coalesced 1.77 x 4.2

coalesced, bank optimized 1.61 x 4.7

CUBLAS 1.46 x 5.1

Cache effects

● Access to main memory is relatively slow
● Computers get around this by trying to put variables

that are used multiple times into cache, a small but
very fast region of memory

● If a program tries to access a variable, it first tries to
find it in the cache. If it does not find it there, it gets
it from main memory which takes much longer. That
is called a cache miss.

● Minimizing cache misses is crucial to improving
program performance, both on GPUs and CPUs

Q

Cache hierarchy

Cache is fast but expensive. The faster
it is, the less you have.

Cache hierarchy

L1 - right on multiprocessor, very fast
but very small (24 KB on P100)

L2 - shared between multiprocessors
(4096 KB on P100)

Random numbers in CUDA

Random numbers in parallel

● Pseudo random number generation is not
trivial in parallel.

● The best approach is to instruct each
thread
– to start with a unique initial state

● In the simplest case, one can just set the initial
“seed” number to the global thread ID

– to continue along the chosen (unique)
sequence by means of saving/restoring the
current thread-specific state.

cuRAND
● In CUDA, all these tasks are handled by a special library

cuRAND, bundled with CUDA.
● It has all the components one would need for parallel

pseudo-random number generation:
– Parallel initialization of unique (per-thread) random number

generator states, via curand_init()

– Ability for threads to read (usually at the beginning of a kernel)
and write (usually at the end of the kernel) the current state of
the generator, which is thread specific.

– A number of functions to generate random numbers following
different distributions (uniform, normal, poisson etc.)

cuRAND (2)
● To use the library, one has to include the relevant header file:

#include <curand_kernel.h>

● Load the “cuda” module:

$ module load cuda

● If you compile the code with nvcc, there is no need to provide
library specific -I, -L and -l flags:

$ nvcc -O3 your_curand_code.cu

Random states vector

● The first step is to allocate a vector which will
contain the states of the random number generator
– Number of elements is equal to the total number of

threads which will be generating random numbers
(typically all threads in a kernel)

Here N_BLOCKS is the number of blocks, and BSIZE is
the block size (number of threads in each block).

● You can skip this step if in your code random
number generation takes place only in one kernel.

 // Initializing the device random number generator:
 curandState* d_states;
 cudaMalloc (&d_states, N_BLOCKS*BSIZE*sizeof(curandState));

Initializing the states

● Next, we need to initialize all the random
states. This can be accomplished in a
separate kernel:

__global__ void initialize_states (curandState * globalState, int seed)
{
 // Global thread index:
 unsigned long long id = blockIdx.x*blockDim.x + threadIdx.x;

 // Generating initial states for all threads in a kernel:
 curand_init ((unsigned long long)seed, id, 0, &globalState[id]);
 return;
}

Generating random numbers

● Now we can write one or more kernels
which will generate random numbers

● Each kernel will look like this:

__global__ void my_kernel (curandState* globalState)
{
 // Global thread index:
 int id = threadIdx.x + blockDim.x*blockIdx.x;
 // Reading global states from device memory at the start of the kernel:
 curandState localState = globalState[id];
 …
 // Generating random numbers (as many times as needed):
 float r = curand_uniform(&localState);
 …
 // Writing the global states to device memory at the end of the kernel:
 globalState[id] = localState;
 return;
}

Distributions
unsigned int curand (curandState_t *state)

float curand_uniform (curandState_t *state)

float curand_normal (curandState_t *state)

float curand_log_normal (curandState_t *state)

unsigned int curand_poisson (curandState_t *state, double lambda)

double curand_uniform_double (curandState_t *state)

double curand_normal_double (curandState_t *state)

double curand_log_normal_double (curandState_t *state)

Single kernel example

● If only one kernel needs to generate
random numbers, we can fit everything into
that kernel:

__global__ void my_kernel (int seed)
{
 // Global thread index:
 int id = threadIdx.x + blockDim.x*blockIdx.x;
 curandState localState;
 // Generating initial per-thread state:
 curand_init ((unsigned long long)seed, id, 0, &localState);
 …
 // Generating random numbers (as many times as needed):
 float r = curand_uniform(&localState);
 …
 return;
}

Q

In-class exercise
● Write from scratch a single-kernel CUDA code to

compute π number using random numbers.

● Use 56 blocks (for P100) of 256 threads, with each thread
generating NLOOP=10^5 random points sequentially.

● Each computation consists of generating random x and y
(double type) in the interval [-1,1]. If (x^2+y^2)<1, we
increment the “inner points” counter, N_inner.

● At the end of the kernel, use atomicAdd()
to compute the total N_inner, which we
copy to the host (cudaMemcpyFromSymbol).

● Then we compute π as:
Pi = 4*N_inner/(56*256*NLOOP)

Tips
● Header:

– #include <stdio.h>

– #include <cuda.h>

– #include <curand_kernel.h>

● Inside the (only) kernel, use
– curand_init

– curand_uniform_double

– atomicAdd

● In the host code, use
– cudaMemcpyFromSymbol

– cudaDeviceSynchronize

	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161

