
Lecture 8



Matrix multiplication

=X

A x B = C



Naive matrix multiplication - CPU

void simpleMultiply_cpu(float *a, float *b, float *c ,int N)
{
float sum;
for (int row=0; row < N ; row++ ){
  for (int col=0; col < N ; col++ ){
    sum = 0.0f;
    for (int i=0; i < N; i++) {
       sum+= a[row*N+i]*b[i*N+col];
    }
    c[row*N+col]=sum;
  }
}
}



Naive matrix multiplication - CUDA

__global__ void simpleMultiply_gpu(int N)
{
 int row=blockIdx.y*blockDim.y + threadIdx.y;
 int col=blockIdx.x*blockDim.x + threadIdx.x;
 float sum = 0.0f;
 for (int i=0; i < N; i++) {
     sum+= a_dev[row][i]*b_dev[i][col];
 }
 c_dev[row][col]=sum;
}



Compare performance of naive vs CUBLAS

● try 1024 x 1024 matrix

naive (matmulti_CUDA_static.cu) - 4.94 ms

CUBLAS (matmulti_CUBLAS.cu) - 0.47 ms

This is a factor of 10 difference.  Generally 
performance of naive becomes worse as matrix grows 
larger.

Lesson: always use libraries if possible!



Why is naive code so bad?
● Cache misses

Consider 1024 x 1024 matrix multiplication with 
CUDA.  Assume blocks 32 x 32.  Each block will use 
32x32x32 elements of input matrices A and B.  

Float type has 4 bytes, so for each matrix need 
32x32x32*4=131072 bytes = 128 KB

L1 cache on P100 is 24 KB, not enough to fit 
everything in at once



Solution: work with 32x32 tiles
● Re-order the work

Load 32x32 tiles of A and B one after another, work 
with one at a time.

Copy each 32x32 tile of A and B to shared memory 
before working with it.

32x32x4= 4 KB, will fit in 64 KB of shared memory 
easily

Shared memory is as fast as L1 cache



Exercise - improve naive matrix multiply
● cd matrix_multiply
● Use matmulti_CUDA_static.cu as starting point, 

write a new kernel which works with 32x32 tiles of A 
and B.

● Copy each pair of tiles to shared memory first
● More than one synchronization might be needed
● Think carefully whether bank conflicts are something 

to worry about in this case



Helpful tools

● CUDA includes Nsight, an Integrated Development 
Environment (IDE) for Linux/Mac based on Eclipse.  IDE 
incorporates CUDA-aware editor, profiler and debugger 
in one close-integrated package.  Try it out!

● There is a Visual Studio edition of Nsight for Windows 
● On SHARCNET the DDT visual debugger has powerful 

GPU debugging capability



Concurrent execution and streams

● Concurrency (parallel execution) between GPU and CPU is either a 
default, or easily enabled behaviour

– Kernel launches are always asynchronous with regards to the host 
code; one has to use explicit device-host synchronization any time a 
kernel needs to be synchronized with the host: 

● CudaDeviceSynchronize ()
– The default behaviour of GPU<->CPU memory copy operations is 

asynchronous for small transfers (<64kB; only host->device), and 
synchronous otherwise. But one can enforce any memory copying to 
be asynchronous by adding Async suffix, e.g.:

● cudaMemcpyAsync ()
● cudaMemcpyToSymbolAsync ()

– For debugging purposes, one can enforce everything to be 
synchronous by setting the CUDA_LAUNCH_BLOCKING 
environment variable to 1.



Concurrent execution and streams (cont)

● Concurrency between different device operations (kernels 
and/or memory copying) is a completely different story

– On a hardware level, modern GPUs are capable of 
running multiple kernels and memory transfers both to 
and from the device concurrently

– By default, everything on device is done sequentially (no 
concurrency)

– To make use of the device concurrency features, one has 
to explicitly use multiple streams in the CUDA code

– But even with multiple streams, there are some 
limitations to concurrency on GPU



Concurrent execution and streams (cont)

● A stream is a sequence of commands (possibly issued by 
different host threads) that execute in order

● If stream ID is omitted, it is assumed to be “NULL” (default) 
stream. For non-default streams, the IDs have to be used 
explicitly.

● For concurrent memory copying on GPU, one has to both 
add the Async suffix and specify the (non-zero) stream ID.

mykernel <<<Nblocks, Nthreads, 0, ID>>> ();

cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID);



Concurrent execution and streams (cont)

● Before using, streams have to be created. At the end, 
they have to be destroyed
// Host code
cudaStream_t  ID[2];

// Creating streams:
for (int i = 0; i < 2; ++i)
    cudaStreamCreate (&ID[i]);

// These two commands will run concurrently on GPU:
mykernel <<<Nblocks, Nthreads, 0, ID[0]>>> ();
cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID[1]);

// Destroying streams:
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy (ID[i]);



Concurrent execution and streams (cont)

● Limitations:
– For memory copying operations to run concurrently with 

any other device operation (kernel or another memory 
copying operation), the host memory has to be page-
locked (or pinned; allocated with cudaMallocHost instead 
of malloc; static variables are pinned using 
cudaHostRegister)

– Up to 128 kernels can run concurrently (P100)
– Concurrency on GPU is not guaranteed (e.g., if kernels 

use too much local resources, they will not run 
concurrently)



Concurrent execution and streams (cont)

● Other stream-related commands
– cudaDeviceSynchronize() : global synchronization 

(across all the streams and the host);
– cudaStreamSynchronize (ID) : synchronize stream 

ID with the host;
– cudaStreamQuery (ID) : tests if the stream ID has 

finished running.



Optimizing memory copying between GPU and CPU

● Staged concurrent copy and execute

You need two streams for this:

One stream scenario:



Hands on exercise

● Staged: using streams to stage copying and 
computing


	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178

