
Lecture 8



Matrix multiplication

=X

A x B = C



Naive matrix multiplication - CPU

void simpleMultiply_cpu(float *a, float *b, float *c ,int N)
{
float sum;
for (int row=0; row < N ; row++ ){
  for (int col=0; col < N ; col++ ){
    sum = 0.0f;
    for (int i=0; i < N; i++) {
       sum+= a[row*N+i]*b[i*N+col];
    }
    c[row*N+col]=sum;
  }
}
}



Naive matrix multiplication - CUDA

__global__ void simpleMultiply_gpu(int N)
{
 int row=blockIdx.y*blockDim.y + threadIdx.y;
 int col=blockIdx.x*blockDim.x + threadIdx.x;
 float sum = 0.0f;
 for (int i=0; i < N; i++) {
     sum+= a_dev[row][i]*b_dev[i][col];
 }
 c_dev[row][col]=sum;
}



Compare performance of naive vs CUBLAS

● try 1024 x 1024 matrix

naive (matmulti_CUDA_static.cu) - 4.94 ms

CUBLAS (matmulti_CUBLAS.cu) - 0.47 ms

This is a factor of 10 difference.  Generally 
performance of naive becomes worse as matrix grows 
larger.

Lesson: always use libraries if possible!



Why is naive code so bad?
● Cache misses

Consider 1024 x 1024 matrix multiplication with 
CUDA.  Assume blocks 32 x 32.  Each block will use 
32x32x32 elements of input matrices A and B.  

Float type has 4 bytes, so for each matrix need 
32x32x32*4=131072 bytes = 128 KB

L1 cache on P100 is 24 KB, not enough to fit 
everything in at once



Solution: work with 32x32 tiles
● Re-order the work

Load 32x32 tiles of A and B one after another, work 
with one at a time.

Copy each 32x32 tile of A and B to shared memory 
before working with it.

32x32x4= 4 KB, will fit in 64 KB of shared memory 
easily

Shared memory is as fast as L1 cache



Exercise - improve naive matrix multiply
● cd matrix_multiply
● Use matmulti_CUDA_static.cu as starting point, 

write a new kernel which works with 32x32 tiles of A 
and B.

● Copy each pair of tiles to shared memory first
● More than one synchronization might be needed
● Think carefully whether bank conflicts are something 

to worry about in this case



Helpful tools

● CUDA includes Nsight, an Integrated Development 
Environment (IDE) for Linux/Mac based on Eclipse.  IDE 
incorporates CUDA-aware editor, profiler and debugger 
in one close-integrated package.  Try it out!

● There is a Visual Studio edition of Nsight for Windows 
● On SHARCNET the DDT visual debugger has powerful 

GPU debugging capability



Concurrent execution and streams

● Concurrency (parallel execution) between GPU and CPU is either a 
default, or easily enabled behaviour

– Kernel launches are always asynchronous with regards to the host 
code; one has to use explicit device-host synchronization any time a 
kernel needs to be synchronized with the host: 

● CudaDeviceSynchronize ()
– The default behaviour of GPU<->CPU memory copy operations is 

asynchronous for small transfers (<64kB; only host->device), and 
synchronous otherwise. But one can enforce any memory copying to 
be asynchronous by adding Async suffix, e.g.:

● cudaMemcpyAsync ()
● cudaMemcpyToSymbolAsync ()

– For debugging purposes, one can enforce everything to be 
synchronous by setting the CUDA_LAUNCH_BLOCKING 
environment variable to 1.



Concurrent execution and streams (cont)

● Concurrency between different device operations (kernels 
and/or memory copying) is a completely different story

– On a hardware level, modern GPUs are capable of 
running multiple kernels and memory transfers both to 
and from the device concurrently

– By default, everything on device is done sequentially (no 
concurrency)

– To make use of the device concurrency features, one has 
to explicitly use multiple streams in the CUDA code

– But even with multiple streams, there are some 
limitations to concurrency on GPU



Concurrent execution and streams (cont)

● A stream is a sequence of commands (possibly issued by 
different host threads) that execute in order

● If stream ID is omitted, it is assumed to be “NULL” (default) 
stream. For non-default streams, the IDs have to be used 
explicitly.

● For concurrent memory copying on GPU, one has to both 
add the Async suffix and specify the (non-zero) stream ID.

mykernel <<<Nblocks, Nthreads, 0, ID>>> ();

cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID);



Concurrent execution and streams (cont)

● Before using, streams have to be created. At the end, 
they have to be destroyed
// Host code
cudaStream_t  ID[2];

// Creating streams:
for (int i = 0; i < 2; ++i)
    cudaStreamCreate (&ID[i]);

// These two commands will run concurrently on GPU:
mykernel <<<Nblocks, Nthreads, 0, ID[0]>>> ();
cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID[1]);

// Destroying streams:
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy (ID[i]);



Concurrent execution and streams (cont)

● Limitations:
– For memory copying operations to run concurrently with 

any other device operation (kernel or another memory 
copying operation), the host memory has to be page-
locked (or pinned; allocated with cudaMallocHost instead 
of malloc; static variables are pinned using 
cudaHostRegister)

– Up to 128 kernels can run concurrently (P100)
– Concurrency on GPU is not guaranteed (e.g., if kernels 

use too much local resources, they will not run 
concurrently)



Concurrent execution and streams (cont)

● Other stream-related commands
– cudaDeviceSynchronize() : global synchronization 

(across all the streams and the host);
– cudaStreamSynchronize (ID) : synchronize stream 

ID with the host;
– cudaStreamQuery (ID) : tests if the stream ID has 

finished running.



Optimizing memory copying between GPU and CPU

● Staged concurrent copy and execute

You need two streams for this:

One stream scenario:



Hands on exercise

● Staged: using streams to stage copying and 
computing
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