
Lecture 9

Optimizing memory copying between GPU and CPU

– Sometimes one can reduce or eliminate the time spent on
GPU-CPU data copying if it is done in parallel
(asynchronously) with host computations:

// On host:

// This memory copying will be asynchronous only in regards to the host code:
cudaMemcpyAsync (d_a, h_a, size, cudaMemcpyHostToDevice, 0);

// This host code will be executed in parallel with memory copying
host_computation ();

– One can also run memory transfer operation concurrently
with another (opposite direction) memory transfer
operation, or a kernel. For that, one has to create and
use streams.

– Only works with pinned host memory

// This memory copying will be asynchronous in regards to the host and stream ID[1]:
cudaMemcpyAsync (d_a, h_a, size, cudaMemcpyHostToDevice, ID[0]);

// The kernel doesn't need d_a, and will run concurrently with the previous line:
kernel1 <<<N, M, 0, ID[1]>>> ();

Optimizing memory copying between GPU and CPU
(cont)

● To save on memory copying overheads, one
should try to bundle up multiple small transfers into
one large one

● This can be conveniently achieved by creating a
single structure, with the individual memory
copying arguments becoming elements of the
structure

Optimizing memory copying between GPU and CPU
(cont)

// Host code:
cudaMemcpyToSymbol (d_A, &h_A, sizeof(h_A), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol (d_B, &h_B, sizeof(h_B), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol (d_C, &h_C, sizeof(h_C), 0, cudaMemcpyHostToDevice);

// Header file:
struct my_struc {
 double A[1000];
 double B[2000];
 int C[1000];
};
__device__ struct my_struc d_struc;
struct my_struc h_struc;
// Host code:
cudaMemcpyToSymbol (d_struc, &h_struc, sizeof(h_struc), 0, cudaMemcpyHostToDevice);

Optimizing memory copying between GPU and CPU
(cont)

– If you use dynamic memory allocation on host, you can
usually accelerate copying to/from the device by using
cudaMallocHost instead of malloc.

● This will force the compiler to use page-locked memory for host
allocations, which has much higher bandwidth to the device

● Use this sparingly, as the performance can actually degrade when
not enough of system memory is available for paging

// Host code:
float *h_A;

cudaMallocHost (&h_A, N*sizeof(float));

Optimizing memory copying between GPU and CPU
(cont)

Minimizing warp divergence

● The smallest independent execution unit in CUDA is a warp
(a group of 32 consecutive threads in a block)

● Within a warp, execution is synchronous (that is, warp acts
as a 32-way vector processor)

● Any flow control instruction (if, switch, do, for, while) acting
on individual threads within a warp will result in warp
divergence (with the different execution paths serialized),
resulting in poor performance

● Warp divergence minimization is hence an important CUDA
optimization step

● Ideally, controlling conditions should be identical within
a warp:

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int warp_index = i / warpSize; // Remains constant within a warp

if (d_A[warp_index] == 0) // Identical execution path within a warp (no
divergence)
 do_one_thing (i);
else
 do_another_thing (i);
}

Minimizing warp divergence (cont)

● As warps can't span thread blocks, conditions
which are only a function of block indexes result in
non-divergent warps

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if (d_A[blockIdx.x] == 0) // No divergence, since warps can't span thread
blocks
 do_one_thing (i);
else
 do_another_thing (i);
}

Minimizing warp divergence (cont)

● More generally, making a condition to span at least
a few consecutive warps results in acceptably low
level of warp divergences (even when the condition
is not always aligned with warp boundaries)

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int cond_index = i / N_CONDITION; // Is okay if N_CONDITION >~ 5*warpSize

if (d_A[cond_index] == 0) // Only a fraction of warps will have divergences
 do_one_thing (i);
else
 do_another_thing (i);
}

Minimizing warp divergence (cont)

Accuracy versus speed

● Situation with double precision speed in CUDA
improved dramatically in the recent years, but it is still
slower than single precision
– The ratio was 1:8 for capability 1.3, and 1:2 for capability 2.0

(Fermi).
– The ratio became 1:3 for Kepler, then back to 1:2 for Pascal,

Volta, and Ampere.
● Use double precision only where it is absolutely

necessary

Optimal kernel parameters

– Number of threads per block (BLOCK_SIZE): total range
1...1024; much better if multiples of 32; better still if
multiples of 64.

– Number of threads per multiprocessor: at least 768 for
capability 2.x to completely hide read-after-write register
latency. That means >43,000 threads for P100*.

– Number of blocks in a kernel: at least equal to the
number of multiprocessors (≥56 for P100s on Graham),
to keep all multiprocessors busy.

Hands on exercise

● Primes: converting a serial code for the largest
prime number search to CUDA

CUDA on multiple GPUs

Need multiple GPUs for:

● Problems which require more memory that is available on a
single GPU

● Problems which take too long to compute on a single GPU
● number of approaches available
● the CUDA version you are using and Compute Capability of the

GPU are important here - the more advanced, the more you can
do with multiple GPUs

● good time to introduce a very useful feature of later versions of
CUDA - Unified Virtual Addressing, or Unified Address Space

Unified Virtual Addressing

● Makes the separate memory of host and attached GPUs appear as
a single region of memory

● Allows easier (for the programmer) memory access between host
and GPUs, without requiring a cudaMemcpy operation in all
cases

● Easy does not necessarily mean fast - the fundamental limitations
of the bandwidth between host and GPU will still apply

● Nevertheless, in some cases this type of access will be faster,
since computation and memory transfer will be overlapped by
default

● Some of this functionality was present in older versions of CUDA
via a more complicated, less convenient mechanism. We will not
cover it.

UVA simplifies cudaMemcpy

● Can now use the argument cudaMemcpyDefault instead of
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost etc.

● CUDA will now automatically detect where the memory referred
to by pointers supplied as cudaMemcpy arguments resides

● more convenient for the programmer, avoids errors
● IMPORTANT: for this to work for host memory, you must

allocate it as pinned memory via CUDA (with cudaMallocHost).
It will not work for memory allocated via malloc.

● remember to compile for arch 2.0 or higher

Zero copy memory access

● Unified address space means kernel can access host memory
directly via a host pointer passed as argument to kernel

● The memory on host must be allocated as pinned memory for
UVA to work

● Called “zero copy” because an explicit copy operation is not
required

● There is still a cost to accessing host memory from GPU. If you
need to do a lot of GPU computation on data, it’s better to move it
to GPU memory

● The advantage of zero-copy is that computation and memory
transfer can now be made to overlap automatically by CUDA*

Be careful with “Unified”

● certain operations permitted but not all
● you cannot access the GPU memory directly from host

...
cudaMalloc((void **) &y_0, memsize) // allocated y_0 on GPU
for (i = 0; i < n; i++) y_0[i] = 1.0; //try to modify y_0 from host, this will fail!
...

Exercise

● revisit SAXPY problem, now using UVA
● change CUDA memory copies to use the default direction

keyword
● starting file is located on graham in:

~syam/CSE746/saxpy_uva

Exercise

● modify code so that the GPU kernel does its work in host memory
● compare performance

Possible multiple GPUs paradigms

● single host thread controlling multiple GPUs which are connected
directly to the host via PCI bus. Thread can control only 1 GPU at
a time, so it will be switching between them.

● multiple host (OpenMP) threads controlling multiple GPUs which
are connected to the host via PCI bus. Could assign a single GPU
to each thread.

● multiple MPI processes, each on node with some GPUs
connected via PCI bus, nodes connected with network. Each MPI
process could be assigned on GPU.

● mixtures of above (threads + MPI) also possible

Single host thread - multiple GPUs

● only one GPU can be controlled at a time
● program sets which GPU is controlled with

cudaSetDevice(gpu_number);
where gpu_number can be 0,1,... up (number of GPUs -1)

● after cudaSetDevice is called, all subsequent CUDA calls running
on GPUs and kernels will run on GPU selected in gpu_number

● when programming, it is a good idea to add cudaSetDevice before
every GPU call, to be sure which GPU it’s executed on:

...
cudaSetDevice(gpu_number); saxpy_gpu<<<nBlocks, blockSize>>>(y_host, x_host, alpha, n);
cudaSetDevice(gpu_number); cudaDeviceSynchronize();
...

Multi-GPU synchronization

● cudaDeviceSynchronize() will only synchronize host with the
currently set GPU

● if multiple GPUs are in use and all need to be synchronized,
cudaDeviceSynchronize has to be called separately for each one

...
/* in this example have 2 GPUs which we need to synchronize */
cudaSetDevice(0); cudaDeviceSynchronize();
cudaSetDevice(1); cudaDeviceSynchronize();
...

Exercise

● modify code from 1b so that SAXPY operation is done on 2
GPUs

● simply have each GPU handle one half of the vector
● carefully modify the CUDA timing mechanisms so correct timing

is obtained on each GPU
● compare performance with code from exercise 1

Multiple GPUs with multiple threads

● can use OpenMP threads, and assign a GPU to each thread

/* compile with:
nvcc -Xcompiler -fopenmp -arch=sm_60 -O2 code.cu -o code.x
run with
OMP_NUM_THREADS=2 ./code.x
...
#include <omp.h>
...
#pragma omp parallel private(tid,error)
 {
 tid = omp_get_thread_num();
 cudaSetDevice(tid);
...
 }

Multiple host threads accessing same GPU?

● The common approach is to have a single thread of a process
assigned to access a particular GPU

● One way different threads can access different GPUs is if each
thread creates and uses its own stream.

● Starting from Kepler (capability 3.5), even simpler alternative
exists: Multi-Process Service (also called Hyper-Q). This
approach allows to share one GPU between multiple CPU threads
or processes without the need to make any changes to the code.
More about it later.

Multiple GPUs via MPI - detection
● With MPI approach programmer has to be more careful which GPU MPI process binds

to, since multiple MPI processes could be assigned to the same node

/* compile:
module unload intel openmpi
module load gcc/4.8.2 openmpi/gcc/1.8.3
nvcc -I/opt/sharcnet/openmpi/1.8.3/gcc/include/ -L/opt/sharcnet/openmpi/1.8.3/gcc/lib/ -lmpi test_mpi.cu -o test.x
run: mpirun -np 2 -o test.x
*/
#include <mpi.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "cuda.h"
int main(int argc, char *argv[]){
 int numprocs, rank,namelen;
 int devcount;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(processor_name, &namelen);
 cudaGetDeviceCount(&devcount);
 printf("Process %d of %d running on node %s is detecting %d GPU devices \
n",rank,numprocs,processor_name,devcount);
 MPI_Finalize();return 0;}

	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206

